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I. INTRODUCTION

In recent years, the European Central Bank (ECB) has
increased its efforts in exploring the possibility of realising
its own Central Bank Digital Currency (CDBC), the ‘digital
Euro’. The ECB has published various reports and resources
that outline the desirability, necessity even, of such a project
(i.e. [1], [2]). Calls for expression of interest are being pub-
lished and the ECB is in its investigation phase until October
2023 [3] [4].

Most resources mention the decline of cash usage and
corresponding rise of digital payments as a prominent reason
for a digital Euro. According to reports published by De Ned-
erlandsche Bank (DNB), the national bank of the Netherlands,
the share of cash payments dropped from 56% in 2010 to 21%
in 2020 [5]] [6]]. Cash is currently the only publicly accessible
form of sovereign money [2]]. Digital payments are made using
services provided by private and/or foreign (non-European)
actors. The money involved in these transactions is a liability
of the respective actor and not a claim on a European central
bank.

Perhaps more importantly, a report published by ECB
discusses a potential ‘currency substitution’; a scenario where
a new form of money that is entirely unregulated by ECB
becomes a viable medium of exchange and store of value.
Currency substitution could reduce the effectiveness of ECB’s
monetary policy, harm market competition, and finally even
threaten the European Union’s strategic independence [[1]]. The
private and/or foreign actors that are largely responsible for
the fear of currency substitution are large corporations, big
tech, and foreign central banks [2] [[7]. In order to compete
with these parties, the ECB has enumerated many requirements
and wishes for its CBDC. First and foremost it is necessary
for the value of digital Euros to be anchored to physical Euros.
Moreover, the ECB wishes for its CBDC to enjoy beneficial
cash-like features, such as being usable in an offline setting.
For a full specification of the ECB’s requirements and wishes
for its CBDC, we refer the reader to the report [[1].

Some of the demands and wishes mentioned by the ECB
are difficult to realise individually and perhaps not even unifi-

able. The aforementioned report outlines multiple scenarios
and analyses [1]]. This research focuses on a scenario that
attempts to somewhat resemble cash usage; physical Euros are
mimicked by digital units of fixed, indivisible value (‘tokens’)
and emphasis is placed on researching their functioning in
an offline setting. Due to technical limitations however, some
design choices were made that do not fall in line with the
anonymity and decentralisation of cash usage. Please refer to
Section [VI for further elaboration. This research contributes 1)
a token-based transaction system 2) a performance analysis of
various bottlenecks in the system to highlight its weaknesses
and empirical upper performance bounds and 3) a software-
tested reference implementation.

II. PROBLEM DESCRIPTION

This research focuses on exploring offline spending in
CBDCs. Various other problems that trouble common CBDC
design are discussed in Section and/or are left out of
scope. ‘Offline spending’ in this context refers to the action of
spending a CBDC without having a connection to its network.
This is crucial in areas without a reliable internet connection
or in case of network/system failure.

A prominent example of currency that can be spent offline
is cash. Cash, however, has various other drawbacks, which is
reflected in its declining usage over the last years [6]. Cash
is passed around physically, which is crucial to its offline
functioning. In a cash transaction, the sender passes their
currency to the receiver, thereby ensuring that they are unable
to spend their currency again because they do not possess
it anymore. Trivial as it may seem, for digital systems this is
difficult to realize. In both decentralized and offline transaction
systems it is non-trivial to verify whether parties still own the
funds they want to spend and have not spent them before.
Unlike cash, which is designed to be difficult to recreate,
digital data can be copied easily. Thus verifying transactions
requires some information about the sender - for instance
whether they have spent the involved funds or not - though
details differ per protocol. In a decentralized environment it
is difficult to obtain this information reliably from peers due
to potential malicious behavior. In an offline environment,
connectivity problems further increase this difficulty.

With a toy example in an offline setting, we envision a
malicious party A who transacts their digital currency to honest
party B. After this transaction, A can simply ‘undo’ their last
transaction, for instance by keeping copies of the funds they



transacted to B and restoring them. Now A can transact the
same funds they already spent to honest party C. Without
an additional direct or shared connection from B to C, the
honest parties cannot determine whether A committed fraud.
This is called the ‘double spending problem’ and we assume
the reader to be familiar with it [8§]].

There have been numerous attempts at solving or mitigating
the double spending problem. A large fraction of the proposed
solutions utilize a form of ‘global consensus’, which requires
connectivity with the rest of the network. Global consensus
disallows offline transfers and is therefore not robust enough
to substitute cash.

III. RELATED WORK
A. Eurotoken

We consider the main prior work for this thesis to be
Eurotoken [9]]. Most of our design decisions are based upon
the strengths and weaknesses of this work.

One such decision is to have a limited number of trusted
authorities to verify transactions. This makes the system dis-
tributed but not decentralized. The advantage of this approach
is that it enables the respective central bank to enforce potential
future policies. Moreover, it provides a non-deterministic near-
immediate transaction finality.

A crucial lesson from this work is that balance-based
systems appear to greatly complicate robustness measures. We
believe that a token-based architecture is more resilient and
easier to realise. A token-based system requires the generation
of tokens - analogous to minting coins - and a different trans-
action protocol. The token minting process and transaction
protocol are described in Section A major implication of
a token-based system is that multiple tokens need to be sent
per payment, comparable to how cash payments often require
multiple notes and coins.

From measurements it became apparent that Eurotoken’s
transaction throughput was not high enough to facilitate the
needs of the Eurozone. Transactions were measured to be
around ?. VISA is capable of processing 24000 transactions
per second (self-proclaimed, [10]) and Alipay 544000 [11]. It
is worth noting that the scale of these systems is massively
larger than measured in the Eurotoken paper, which results in
skewed measurements [9].

IV. DESIGN AND ARCHITECTURE

This research proposes a centralized CBDC that allows
offline transactions with fixed-value tokens and guarantees
retroactive fraud detection.

The proposed system requires a number of trusted parties
that are in charge of token exchange and transaction verifica-
tion. We refer to these parties as ‘authorities’ and identify
them by their public key. The limited number of trusted
authorities makes verification a distributed yet centralized
operation. The motivation for this design choice is elaborated
upon in Section The process of exchanging currency
for tokens is beyond the scope of this paper and is briefly
discussed in Section [V1l
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Fig. 1. Graphical representation of a token. Tokens represent monetary units
of fixed value that store all their previous recipients until they are verified by
an authority.

Clients are all system participants that are not authorities.
They, too, are identified by their public key. It is assumed that
clients know the public keys of the authorities in the network.
It is also assumed that authorities know the real identities of
clients. While this is not necessary for the proposed system to
function, implicating a public key with fraud loses its severity
if the instigator can remain anonymous. This is discussed
further in Section [VI-Al

Clients can transact tokens to each other and consult au-
thorities to verify the validity of their tokens. If clients cannot
connect to an authority, for instance during a power outage,
they can continue transacting but defer verification until they
can connect.

To realize retroactive fraud detection, the proposed system
requires authorities to be able to unambiguously reconstruct
the sequence of owners of a token. This is done by providing
each token with a linked list of all previous owners until its
last verification. Details of this procedure are explained further
in this section.

A. Token Format

The token protocol is based upon transacting tokens. A
diagram of a token is given in Figure m Each token containﬂ

1) Serial number. An 8-byte unique token identifier.

2) Value. A 1-byte representation of the token’s worth in
Euros. Like cash, tokens have a limited number of fixed
denominations and the byte values are mapped to those.
For example, a token worth 1 Euro has a byte value of
7, though this mapping is arbitrary.

3) Authority public key. A 74-byte public key of the au-
thority that is in charge of the token (the ‘authority’).

I'The bit-lengths of the signatures and public keys were adapted from those
used in Kotlin-IPv8 (https://github.com/Tribler/kotlin-ipv8), upon which the
implementation was built, and are not integral to the protocol’s functioning.


https://github.com/Tribler/kotlin-ipv8

4) Nonce. A 64-byte pseudo-random nonce used by the
authority to differentiate between differing occasions
where the same token is sent to the same recipient.

5) Recipients. A list of recipient-proof pairs in chronolog-
ical order. This list must contain at least a first pair:

a) First recipient public key. A 74-byte public key of
the token’s first recipient after creation or valida-
tion.

b) First proof. A 64-byte signature (‘proof’) given by
the authority signing Serial number, Value, Nonce,
and First recipient public key.

All pairs in the list are of the same format and bit-length.
The second pair - if present - contains Second recipient
public key and a signature given by First recipient public
key signing First proof and Second recipient public key.
Likewise, all subsequent pairs follow the same pattern;
they contain a signature by the previous public key in
the list, signing the previous proof together with the next
public key. This signature chain corresponds to the token
changing ownership during transactions.

B. Token Minting

When a token is created, its Serial number, Value, Nonce,
Authority public key, and Recipients list are set as specified in
Section The authority stores a copy of the entire token
and sends it to the intended client.

C. Client Verification

When a client obtains a token, it verifies it in a 3-step
process. First, the client verifies that the token’s last recipient
(that is, the last public key in the Recipients list) refers to them.
Second, the client verifies that it knows the token’s Authority
public key and that this key created the token’s First proof.
Third, the client verifies the remaining chain of proofs in the
Recipients list. The purpose of the client’s verification process
is merely to ensure that they have received an unambiguous
proof of transfer from their transaction’s counterparty. This
proof can later be used by the relevant authority to proof
potential fraud. A client deciding that a token is valid does
not imply that an authority will decide the same. The client’s
verification does however guarantee that clients victimized by
fraud can proof so eventually.

D. Client Transaction

A token’s initial recipient may choose to send it to another
client. If it does, it must append a new pair to the token’s
Recipients list that contains the desired recipient’s public key
and a signature of the token’s last proof together with the
desired recipient’s public key. This is depicted in Figure [I}

E. Authority Verification

The authority’s verification process is started when a client
sends them a token to verify. The verification process contains
6 steps:

1) The authority ensures that the received token has more

than 1 recipient in its Recipients list. If not, the token is
either invalid or ineligible for verification.
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Fig. 2. The authority’s double spending detection mechanism. In the figure,
recipient B doubly spent a token, which was detected because proof N+ K +1
of the authority was not equal to proof 1 + K 4 1 of the incoming token.
This mechanism can only be applied if the authority’s token-copy’s last proof
is not equal to the incoming token’s First proof.

2) The authority ensures that the token’s last recipient is
the client that sent the token in for verification.

3) The authority queries if the token is still valid. The
knowledge that the authority once signed the received
token, which can be derived from the token’s First proof,
says little about the token’s current state. The authority
compares its public key against the token’s Authority
public key and queries the token’s Serial number to
ensure that itself is the authority that manages the token.
Then it verifies that the token is still in circulation.

4) The authority will, like an honest client, verify the chain
of proofs in the Recipients list.

5) The authority will attempt to detect double spending by
comparing the proof of the last pair (‘last proof) of its
token-copy to First proof in the received token. If these
are identical, double spending cannot be proven (see
Section and the authority will finalize verification.
Finalizing verification requires the authority to update its
copy of the token by appending all new recipient-proof
pairs of the received token to its Recipients list. It will
also append a new pair containing the desired recipient
- the one who sent the token for verification - and a
corresponding proof.

6) The authority sends the verified token to the desired
recipient.

F. Double Spending Detection

In Section it is mentioned that the authority updates
its token-copy’s Recipients list upon a valid verification. This



means that its last proof is updated as well. To detect double
spending, an authority compares the last proof of its token-
copy to First proof in the received token. A diagram of this
scenario is depicted in Figure [2]

If a token is doubly spent, then multiple versions of the
token will eventually reach their authority. The first time,
double spending cannot be detected and the token-copy is
updated. Subsequent times, the authority’s token-copy already
has an updated Recipients list and therefore its last proof
does not correspond to the doubly spent token’s First proof
anymore. Thus, if the proofs differ double spending has
occurred. If the proofs are equal, double spending might have
occurred.

When double spending is detected, the authority will search
for the instigator. It will find the received token’s First proof
in the Recipients list of its token-copy. It will then compare
the recipient-proof pairs of the token-copy with those of the
received token starting from the pairs that contain First proof
in both lists, respectively. Eventually, it must find two differing
pairs, after which all pairs will be different because proofs are
chained to each other. The first differing pairs are the start of
the token’s split history and proof that double spending was
performed by the client that signed them.

G. Replay Attack Prevention

The detection mechanism of Section [V-H allows for a
replay attack in an offline environment. If a malicious sender
A were to replay sending the same token to the same receiver
B as before, said receiver would not flag this as malicious be-
havior. If B in turn were to spend this token, upon verification
of the token, B would be flagged as a double spender. When
an authority compares the transaction history of the token, it
cannot distinguish A’s first transaction to B from its second.
Thus B spending the token is the first occurrence that differs
from the authority’s history. As described in Section B
is therefore marked as a fraudster.

There exist various solutions for preventing such an attack.
One such solution is to initiate a transaction with the receiver
sending a short handshake that includes a pseudo-random
nonce. The sender must include this nonce in its transaction to
proof with overwhelming probability that they did not replay
the transaction. Another solution is to have receivers maintain
a list of the last proofs of all tokens they have ever received.

H. Tokens vs. Balances

The choice to use tokens instead of balances was motivated
by the protocol’s emphasis on supporting offline transactions.
Integral to the effectiveness of this protocol is another that,
given a proof of fraud, provides conflict resolution and damage
mitigation. It thereby deters fraud without the need to ‘solve’
the double spending problem in an offline setting. The protocol
described in Section provides a way for authorities to
eventually proof fraud has occurred, even in offline settings,
on a per-token basis. This proof only requires knowledge
that pertains to a single token. Generalizing such a proof to
a balance, which is an aggregation of multiple transactions,
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Fig. 4. Throughput of cryptographic verification for varying data sizes on a
single CPU thread. The red circle marks 201 bytes, the size of a token.

requires a more complex proof. Although we cannot give
conclusive evidence regarding the difficulty of such a proof,
we consider it to be beyond the scope of this paper.

V. PERFORMANCE ANALYSIS

We analyzed the system’s performance to expose its short-
comings. For a proper frame of reference, we also performed
a brief performance analysis of low-level functionality such as
data transfer throughput and cryptographic operations.

Experiments were performed on standard consumer elec-
tronics; a Lenovo Thinkpad L13 with an Intel i5 CPU operat-
ing at 2.11 GHz and 8 GB of DDR4 RAM. All experiments
were performed 5 times.

A. Cryptographic Verification

We measured the throughput of various cryptographic op-
erations to ascertain the upper performance bounds of our
protocol. The core idea is that by stripping the implementation
of all other factors, we can determine the influence of crypto-
graphic operations on the authority’s overall throughput. All
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operations were performed with Ed25519 using a Kotlin port
of Libsodiu [12]]. The chosen parameters were identical to
those used in IPv&]

Figure [3] shows the throughput of the cryptographic op-
erations required to verify tokens in an online scenario. As
described in Section the authority’s signature needs to be
verified as well as the first recipient’s. Figure [3] shows that
throughput increases monotonically although not linearly with
the number of CPUs, even though verification and signing
processes can be executed independently from each other. We
suspect the diminishing increase to be due to resource sharing,
although the exact reasons are unknown. Interestingly, the
highest verification measurement of 17483 tokens per second,
at 201 bytes to verify per token, corresponds to a signature
verification throughput of only 3.51 megabytes per second. To
verify this was not an erroneous result, we measured signature
verification for different data sizes.

Figure [ shows the throughput of cryptographic verification
for varying data sizes on a single thread. It is apparent that
larger file sizes are tremendously faster to verify than smaller.
We expect this to hold true for signing operations well. A
potential improvement to the protocol that can utilize this fact
is described in Section [VIl

B. Data Transfer

EVA’s implementer could not give the exact reason for
EVA’s observed low throughput but speculated it to be a
limitation of the underlying IPv8 protocol [BAMBACHT]. To
verify this assumption, we performed additional measurements
that we show in Figure [5] Figure [5 shows that the overhead
of using Kotlin as opposed to a natively compiled UDP
sender is significant but not problematic. Kotlin maximally
utilizes the available bandwidth when constrained by a 1Gbps
connection, measuring a throughput of almost 125 megabytes
per second. The overhead of Kotlin-IPv8 is indeed significant,
dropping to an average of 60.2 megabytes per second without
encryption and 8.3 with. When encryption is enabled, each
individual IPv8 packet is encrypted. Based upon the results
of Figure [d we expect encryption to also be a bottleneck for
packet throughput. Nevertheless, even encrypted IPv8 traffic
was massively faster than EVA’s throughput for all measured

2For Lazysodium, see https://github.com/terl/lazysodium-java,
3For Kotlin-IPv8, see https:/github.com/Tribler/kotlin-ipv8.

configurations. This eliminates IPv8 as a potential reason for
EVA’s low throughput.

VI. DISCUSSION & FUTURE WORK

In the vast design space of CBDCs, this research focuses
specifically on offline usage. Realizing even limited offline
functionality came with a cost, meaning we’ve had to com-
promise on other desirable features.

A. Anonymity

For offline usage, the proposed system requires aggregating
a linked list of previous owners of a token, up until the last
verification by an authority. Unless the means of identifying
past owners - currently by means of a public key - can be
decoupled from the owners’ real identities, this has enormous
implications on users’ privacy. Specifically, recipients of a
token can see all previous recipients of that token until its last
verification. It is expected that exposing this list of owners is
unnecessary, although a solution is as of yet unknown.

Moreover, it is assumed that authorities know the identities
of their clients. It is expected that fraudsters cannot always
be penalized within the confines of the transaction system.
For example, dealing a corrective fine requires a convict to
own enough tokens to pay. If a fine cannot be paid, corrective
actions need to be taken in another way that does not involve
tokens. Finding a fair way to correct fraud and penalize
fraudsters was deliberately left out of scope.

B. Decentralization

The system depends on a number of trusted authorities to
verify transactions. If the system is deployed as a substitute
for cash, then decentralization is desirable. Decentralizing
the system would likely have disadvantages that might be
unacceptable, such as probabilistic transaction finality, limited
scalability, and less effective monetary policy. For this work,
we opted to choose the same approach as our main prior work
[9].

C. Price Stability

It is fundamental for a European CBDC to be tethered in
value to the Euro. A high price volatility like Bitcoin’s is
undesirable for a medium of exchange [13]]. There are various
ways in which the value of an asset can be kept stable and this
topic has gained renewed interest with the rise of ‘stablecoins’
- cryptocurrencies that aim to be non-volatile with regards to
a major non-cryptocurrency. There is an inverse relationship
between the potential stability of stablecoins and how much
they are decentralized. The strongest stabilization mechanism
is collateralisation by currency or off-chain assets such as
gold. By allowing free trade between a stablecoin and its
collateral at a fixed price, arbitrage prevents the stablecoin’s
price from fluctuating greatly. However, off-chain assets are
not traded in a decentralized way and as such there is a trade-
off between decentralisation and stability [14]. To the best of
our knowledge, no decentralised and highly stable stablecoins
exist.
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