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Abstract

Authentication mechanisms play an important role in everyday digital interactions and allow
users to prove their identity to others. Privacy-preserving Attribute-Based Credential Systems
(PABCSs) allow users to authenticate by presenting their credential attributes, while multi-
ple presentations remain unlinkable and untraceable. A revocation mechanism allows the
credential issuer to revoke a credential, for example when the attributes of a user change.
Verifiers can in turn determine the revocation status of the presented credential.

This thesis considers situations in which a verifier needs to determine the revocation
status of a credential after the presentation. This stronger revocation level, also described
as forward-looking consistency, has not been researched before in PABCSs. To address this
gap, we present the PABC-FLC design, a PABCS with forward-looking consistency. Our de-
sign allows users to remain offline after presentation, without compromising on the privacy
properties. To avoid an impossibility result, we introduce a new participant called the Non-
Revocation Prover (NRP). The NRP facilitates a verifier in determining the revocation status
of a credential, even though neither the verifier nor the issuer have to trust the NRP.

We show that our PABC-FLC design has a comparable experimental runtime to a creden-
tial system without revocation mechanism. This experiment shows our design has a run-
time overhead of +20 ms (+32%) during presentation and +20 ms (+34%) during verification.
Concluding that our PABC-FLC design is a feasible PABCS with forward-looking consistency,
while remaining unlinkable and untraceable.
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1
Introduction

1.1. Anonymous Credentials
The publication of David Chaums article “Security without identification" [23] can be seen as
the beginning of the field of Anonymous Credentials. A credential is a collection of attributes
that describe a user. Issuing organizations can issue credentials to the credential users. The
users can present their credentials to verifying organizations as a form of authentication. If
both the issuer and verifier refer to the user using pseudonyms, instead of a single unique
identifier, we call these anonymous credentials. To give an example, consider a citizen who
obtains a date-of-birth credential from the government. This credential can be presented to
a shop owner when buying alcohol, to prove that the buyer is of age. Because both the gov-
ernment and shop owner use a different pseudonym to refer to the user, they are unable to
correlate the activity of the user across their organizations. At the same time these creden-
tial provide security, a credential can only be obtained from a credential issuer and can only
be presented by the user that obtained it. Therefore, these credentials provide security with-
out identification. Although we refer to these credentials as anonymous credentials, we will
continue with the term Attribute-Based Credential (ABC). We consider this a more accurate
description as the attributes revealed during a credential presentation, like a date of birth,
can be used to uniquely identify a user. We describe the schemes and protocols that provide
this functionality as a Privacy-preserving Attribute-Based Credential System (PABCS) [19].
Multiple systems that adhere to the privacy properties of a PABCS have been described in
literature [8, 13, 20, 2].

Credential attributes are trusted by a verifier if the credential is signed by an organization
that is believed to issue trustworthy attributes. When the issuer finds out that the encoded
attributes are no longer trustworthy or if it wants to prevent a user from using a credential,
the issuer can revoke the credential. If a revocation mechanism is used, the verifier can deter-
mine the revocation status of a credential to check if a credential is revoked. Complementary
to a revocation mechanism, expiration dates allow the issuer to indicate that a credential
should not be used by a verifier after a specific time. When both are combined, a revocation
mechanism is used to revoke a credential before its expiration date.

1



2 1. Introduction

In this work, we aim to extend PABCSs to provide forward-looking consistency [47]. This
strong consistency level means that the revocation status of a credential is checked even after
a user made its request at a verifier. As an example, imagine a student requesting a monthly
discount on a music subscription. The discount is automatically granted if the student is
currently enrolled at a univerisity. As the university issues ‘proof of enrolment’ credentials,
these can prove to the music company that the student is enrolled at a university. However,
as the music company applies a monthly discount, it wants to be sure the student does not
unenroll halfway during the academic year. If the student unenrolls, the university would
revoke the ‘proof of enrolment’ credential and invalidates the requirement for the discount.
This requires the verifier to determine the revocation status of the credential even after the
student requested the discount, meaning forward-looking consistency is required in this ex-
ample. A visualization of forward-looking consistency is given in Figure 1.1. In the illustration,
C1,C2,C3 are three credentials with start time tst ar t and end time tend . When the student re-
quests a discount, indicated by the first yellow line, it presents a ‘proof of enrolment’ creden-
tial. It is required that the request is made between the start and end times of all presented
credentials. Green dots on the timeline represent revocation status checks, with tr,max indi-
cating the last occurence. Every month when the music company needs to send an invoice,
it needs to decide if the requirement for the discount is still met. These decision moments
are indicated by the next two yellow lines. Based on the latest revocation status check, which
occurs after the request, the music company decides if the discount should still be applied.

Figure 1.1: Forward-looking consistency illustrated by Shakarami and Sandhu [47]

1.2. Motivation
Existing PABCSs lack forward-looking consistency, which limits their usage in situations where
this is required. This is an unfortunate situation, because PABCSs provide substantial secu-
rity and privacy benefits over uniquely identifying authentication methods and self-attested
attributes.

The privacy properties of a PABCS primarily benefit the users. First, it is always transparant
to users what information is shared during authentication. Second, the information that is
shared is reduced to a minimum by selectively disclosing only the attributes required for the
authentication. Third, no other identifying information is shared other than the revealed at-
tributes. This data minimization also benefits the verifier, as it no longer needs to process
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and store highly identifying and personal data about users. Furthermore, as the attributes
are signed by a trusted credential issuer, users can no longer provide incorrect information
about themselves.

An example situation that requires forward-looking consistency, is the Postfilter service
[43]. In the Netherlands, the Postfilter service allows citizens to add their postal address to a
filterlist and opt out of addressed commercial mail. Currently, this registration needs to be
renewed every 5 years. One problem of the current process is that there is no reliable way
to verify if the citizen actually lives at the submitted postal address, or if this changes any
time during the 5-year registration period. By using a PABCS, it becomes possible to verify
that the postal address belongs to the person requesting the registration. This can be done by
showing a credential from the municipality that one lives at the address. While this solves part
of the problem, Postfilter also needs to know when the municipality revokes the presented
credential. But before Attribute-Based Credential (ABC)s can be used in this situation, the
credential system requires forward-looking consistency.

1.3. Research question

How to design a privacy-preserving revocation mechanism for determining the revocation
status after presentation in Privacy-preserving Attribute-Based Credential systems?

Existing PABCSs lack forward-looking consistency, which prevents them from being used
in situations where this is strong notion of consistency is required. The first research question
we want to answer, asks what revocation mechanisms currently exist and may be used to
provide forward-looking consistency.

RQ1 How can a revocation mechanism be used to determine the revocation status of an
earlier presented credential?

Revocation mechanisms by their nature rely on the usage of a unique identifier. As several
credential systems allow users to present their credential multiple times in an unlinkable way,
also referred to as multi-show credentials, this can conflict with a revocation mechanism. To
avoid compromising on the functionality or privacy, we need to research how a revocation
mechanism remains compatible with these types of credential systems. This is captured in
the second research question:

RQ2 How do revocation mechanisms remain privacy-preserving in the context of multi-
show credentials?

Another privacy property of a PABCS is that the credential issuer is unable to determine
the issuance moment of a credential from a credential presentation. This is called untrace-
ability and should hold even if the issuer colludes with a verifier. Like credentials, a revocation
mechanism should also be untraceable. This is formulated in the third research question:

RQ3 How does a revocation mechanism remain untraceable when the issuer and verifier
collude?
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Revocation mechanisms are often regarded as an extension to a basic credential system.
Although this allows them to be studied independently, this does not guarantee that they can
be (easily) integrated into any type of credential system. Therefore, we take this compatability
into consideration and formulate the following research question:

RQ4 How can a revocation mechanism that provides forward-looking consistency be used
with an existing credential system?

Finally, we want to see if a revocation mechanism with forward-looking consistency can
be used in practice. To see if this is possible, we want to measure the additional runtime cost
compared to a regular credential system. This is formulated in the fifth research question:

RQ5 How does the runtime of a PABCS with forward-looking consistency compare against
a regular credential system?

1.4. Contributions
In this work we research, for the first time, the consistency level of revocation mechanisms in
a Privacy-preserving Attribute-Based Credential System (PABCS). We find that existing mech-
anisms do not address forward-looking consistency, which prevents the usage of ABCs in sit-
uations where this is required.

To address the need for forward-looking consistency in these situations, we propose the
PABC-FLC credential system. This credential system provides forward-looking consistency
and allows credential verifiers to determine the revocation status of a credential as newer
versions of the Revocation Information (RI) are published. The PABC-FLC system provides
multi-show unlinkable and untraceable credentials. Users can remain offline after credential
issuance.

Finally, we measured the runtime performance of a proof-of-concept implementation of
the PABC-FLC system. These measurements show that credential presentations and verifica-
tions thereof take 20 ms (+34%) longer compared to a credential system without revocation
mechanism. Computing credential status updates take 85 ms and verifying them 55 ms.
These results show that our design is a reasonable alternative for a credential system that
does not provide forward-looking consistency.

1.5. Outline
The structure of the rest of this work is as follows. In Chapter 2, we give the preliminaries
of ABCs and other cryptographic building blocks of our design. Chapter 3 describes related
revocation mechanisms used both inside the field of ABCs, and outside. Chapter 4 contains
the description of the proposed PABC-FLC system, a credential system with forward-looking
consistency. In Chapter 5, a proof-of-concept of the PABC-FLC system is compared to a reg-
ular credential system on the runtime performance. Chapter 6 contains a discussion on the
benefits and limitations of this work, along with directions for future research.



2
Preliminaries

2.1. Introduction
This chapter describes the building blocks of the proposed PABC-FLC system (see Chapter
4). These consist of Signature Proof-of-Knowledge (SPK) protocols (Section 2.2), a creden-
tial system (idemix, Section 2.7), an integer commitment scheme (Damgård-Fujisaki com-
mitments, Section 2.3) and a revocation mechanism (Braavos, Section 2.5). We give a more
elaborate description of PABCSs in Section 2.6 and since the idemix credential system uses
Camenisch-Lysyanskaya signatures, this scheme is described in Section 2.4.

We use the following notations. When a value r is taken uniformly from a set S, we write
r ←R S. A generator g , which generates all elements in the set G, is written as 〈g 〉 = G. The
order of a group G is written as #G , and the same notation is used for the order of an element.
The set of all integers in the range [0,2ℓ−1] is written as {0,1}ℓ. The set of quadratic residues
mod n, is written as QRn = {r ∈Z∗

n |∃a ∈Z∗
n s.t. r = a2 mod n}. A protocol between interactive

Turing machines (P,V ) is written as 〈P (w),V 〉(x) with w a private input to P and x a common
input to both. Any (possibly malicious) machine is referenced as P∗ and has the same input
and output as P defined for the protocol. When checking equality to determine if the result

should be tr ue or f al se, we write 1
?= 1. If a protocol or algorithm uses Verify and the result of

the expression is f al se, it returns ⊥ (abort). The function HG : {0,1}∗ →G is a cryptographic
hash function with a codomain G .

2.2. Proofs of knowledge
Before introducing proofs of knowledge, we introduce (zero-knowledge) interactive proofs
[33]. Put simply, an interactive proof allows a prover to convince a verifier that a statement is
true. Let L be a language and (P,V ) be two interactive Turing machines. Both machines are
given string x as input and at the end of their interaction, the powerful prover P convinces
the Probabilistic Polynomial-Time (PPT) verifier V that x ∈ L. We require both completeness
and soundness. Completeness states that V accepts, with overwhelming probability, if x ∈ L.
Soundness states that V accepts only with negligible probability, for any prover P∗, if x ∉
L. If V accepts, it ‘learns’ that x ∈ L. When V only learns that x ∈ L, this is referred to as

5



6 2. Preliminaries

zero-knowledge. In other words, zero-knowledge means that everything V learns, can also be
learned from assuming that x ∈ L, without ever interacting with P . Like soundness should
hold for all possible provers P∗, zero-knowledge should hold for all possible verifiers V ∗.

It turns out that “all languages in NP have Zero-Knowledge proof systems” [32]. How-
ever, their usefullness is not always given. For example, all languages in the bounded-error
probabilistic polynomial time (BPP) class are easily recognized by the verifier itself, without
the need to communicate with a prover. Zero-knowledge proofs do turn out to be useful,
specifically in situations where either the prover is more powerful than the verifier (as in the
previous description) or when it is supplied with an input the verifier does not have access to.

In the rest of this work we focus on the latter case, where a Probabilistic Polynomial-Time
(PPT) prover is given a witness w for a relation (x, w) ∈ LR . (Where the language LR describes
a set of N P-relations R.) Furthermore, we want the prover to know a witness w , instead of
only convincing the verifier that x is in the language. ‘Knowing’ is defined by the existence
of an (expected PPT) knowledge extractor that outputs a witness w , such that (x, w) ∈ LR for
any x with a witness in LR . The knowledge extractor is given blackbox access to a prover that
convinces the verifier with a probability greater than the knowledge error κ. The knowledge
extractor must work for any, possibly malicious, prover P∗. A protocol that satisfies com-
pleteness and knowledge soundness, i.e. the existence of a knowledge extractor, is also called
a “proof of knowledge” with knowledge error κ. If the soundness of the protocol relies on a
computational assumption, e.g. hardness of the RSA assumption (see Section A.1.1), the pro-
tocol is also referred to as a computationally convincing proof of knowledge or argument of
knowledge.

Σ-protocols [25] are protocol constructions that yield efficient arguments of knowledge. A
Σ-protocol consists of three messages between a prover and verifier, where the verifier sends
a public challenge (public-coin) as the second message. A definition, adapted to also suit
statistical and computational zero-knowledge, is given in Definition 1.

Definition 1. Σ-protocol [26] A three-move protocol 〈P,V 〉 is said to be a Σ-protocol for rela-
tion R if P sends a message a, V sends a random challenge e and P responds with a message
z and the protocol further satisfies

• (Completeness) If P,V follow the protocol on input x and P has a private input w where
(x, w) ∈ R, the verifier always accepts

• (Special Soundness) From any x and any pair of accepting conversations on input x,
(a,e, z), (a,e ′, z ′), where e ̸= e ′, one can efficiently compute w such that (x, w) ∈ R

• (Special Honest-Verifier Zero-Knowledge) There exists a polynomial-time simulator M ,
which on input x and a random e, outputs an accepting conversation of the form
(a,e, z), with a probability distribution indistinguishable from conversations between
the honest P,V on input x.

Σ-protocols can be seen as a generalization of the Schnorr identification protocol [46].
The Schnorr identitication protocol proves knowledge of a discrete log of y , i.e. knowledge of
w in y = g w , in a group of prime order q . It uses a subgroup ofZp with p prime and q dividing
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p −1 to ensure the discrete log problem is assumed to be hard. Both prover and verifier are
given generator 〈g 〉 = Gq , q, p, and common input y . Only the prover is given a witness w .
The prover starts by taking a random element r ←R Z

∗
q and sending the commitment t ←

g r mod p to the verifier. The verifier then sends challenge c ←R {0,1}ℓc to the prover. The
prover computes response s ← r + cw mod p and sends it to the verifier. The verifier then
checks if g s ≡ t vc (mod p) holds. If the relation holds it accepts, otherwise it aborts. This
example is given in Protocol 1.

Protocol 1 Schnorr identification protocol, PK {(w) : y ≡ g w (mod p)}

Prover Public Verifier
w g , q, p, y
r ←R Z

∗
q

t ← g r mod p
t−−−−−−−−−→

c ←R {0,1}ℓc

c←−−−−−−−−−
s ← r + cw mod q

s−−−−−−−−−→
Verify g s ?≡ t yc (mod p)

We make use of the fact thatΣ-protocols can be combined, with the
⋀︁

(AND) operator, by
using the same challenge for the two protocols. Additionally, it is possible to prove equality
of two witness values in the same group. By using the same randomizer r for both relations,
a single response s is received by the verifier and proves that the witness values are equal.

To simplify the description of a proof of knowledge, we use the notation introduced by
Camenisch and Stadler [17]. As an example, consider the prime-order group Gq , with gener-
ators 〈g1〉 = 〈g2〉 =Gq , in which the discrete log problem is assumed to be hard. The following
notation denotes a proof-of-knowledge protocol of the discrete logarithm of a1 and a2 re-
garding two different generators: PK {(x) : a1 ≡ g x

1
⋀︁

a2 ≡ g x
2 }. In this example, x is the secret

discrete log that the prover claims to know. In contrast to the original notation, we do not
write the secret variables in Greek letters but only specify these between the parenthesis.

As several building blocks of our credential system use special RSA modulus groups, a
proof of knowledge must also work in these hidden-order groups. In contrast to prime-
order groups, the knowledge extractor is unable to compute a witness since it does not know
the order of the group. In fact, Bangerter shows that the minimum knowledge error of Σψ-
protocols for these hidden-order groups (using non-special homomorphisms) is 1

2 [4]. This
result shows that the only way to reduce the knowledge error is by running the protocol mul-
tiple times sequentially, which works for all proof-of-knowledge protocols [31]. This means
the proof-of-knowledge protocols using a hidden-order group, like the special RSA modulus
groups, require multiple rounds of communication between prover and verifier to achieve a
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negligible knowledge error.
Fortunately, it is possible to construct (single round) proofs of knowledge with negligible

knowledge error, provided that the prover is given an auxiliary input. In this setting, it is
assumed that the auxiliary input comes from a specific distribution and can be used by the
knowledge extractor to compute a witness it otherwise would not be able to compute. The
resulting protocol however, is no longer a proof-of-knowledge per the standard definition,
due to the specific distribution requirement on the auxiliary input. This means that when
analyzing the security of the protocol, the generation of this auxiliary input must be taken
into consideration.

As an example, we describe the Schnorr protocol in a composite (special RSA) modulus
group. Given a groupZ∗

n with n = pq , the composite of two safe primes p = 2p ′+1, q = 2q ′+1.
Let 〈g 〉 = QRn be a generator of the quadratic residue group. Soundness of the protocol re-
quires that the prover is not aware of the group order [30]. The order is p ′q ′, and knowledge
of it allows one to factor the modulus n, which is assumed to be hard under the Strong RSA
assumption (see Section A.1.2). When the prover is not aware of the order of the group, it can
still generate a randomizer in the group by taking r ←R {0,1}ℓn+ℓc+ℓ∅ . The security parameter
ℓ∅ determines the statistical zero-knowledge and ℓc determines the length of the challenge.
Since the prover is also unable to reduce the response s, this can be used to prove that the wit-
ness w lies in w ∈ {0,1}ℓw . To prove this, a prover chooses r ←R {0,1}ℓw+ℓc+ℓ∅ and the verifier
checks that s ∈ {0,1}ℓn+ℓc+ℓ∅+1. The prover can only compute this signature with a high prob-
ability if w falls within the required range [15]. In contrast to the protocol in a prime-order
group, this protocol is statistical honest-verifier zero-knowledge if ℓ∅ is taken large enough
(e.g. 80). The protocol for PK {(x) : v ≡ g x (mod n)} is given in Protocol 2. Proving equality
of two values in two different (special RSA) groups is possible if the challenge is less than the
order of both quadratic residue groups [15].

Protocol 2 Schnorr identification protocol in a composite group, PK {(w) : y ≡ g w (mod n)}

Prover Public Verifier
w g ,n, y,ℓn ,ℓc ,ℓ∅
r ←R {0,1}ℓn+ℓc+ℓ∅
t ← g r mod n

t−−−−−−−−−→
c ←R {0,1}ℓc

c←−−−−−−−−−
s ← r + cw

s−−−−−−−−−→
Verify t

?≡ y−c g s (mod n)

These three-move public-coin interactive proof protocols can also be used as a signature
scheme, by applying the Fiat-Shamir transformation [29]. Using Camenisch-Stadler notation,
this Signature Proof-of-Knowledge (SPK) written as SPK {(x) : a1 ≡ g x

1
⋀︁

a2 ≡ g x
2 }(m), with x
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the prover input, m the message that is signed and all other values as public input [17]. When
used as a signature scheme, the challenge is no longer provided by the verifier. Instead, the
prover queries a random oracle for the challenge. In practice, we use a cryptographic hash
function H{0,1}ℓc . The input to the oracle contains all public knowledge, a description of the
relation(s) being proven, the t-commitments and a message m. Including all public param-
eters in the input to the hash function is required to prevent attacks on the soundness of the
protocol [7]. As the prover takes the role of the verifier, it preserves the zero-knowledge prop-
erty of the protocol if this was proven in the (special) honest-verifier setting. The resulting
signature scheme is secure against adaptive chosen message attacks [42]. An algorithm com-
puting SPK {(w) : y ≡ g w (mod n)} is given in Algorithm 3, with a verification algorithm in
Algorithm 4.

Algorithm 3 Sign SPK {(w) : y ≡ g w (mod n)}(m)

1: function SPK(w, g ,n, y,ℓn ,ℓc ,ℓ∅,m)
2: r ←R {0,1}ℓn+ℓc+ℓ∅
3: t ← g r mod n
4: c ←H{0,1}ℓc (desc(y ≡ g w (mod n)),n, g , y, t ,m)
5: s ← r + cw
6: return (c, s)
7: end function

Algorithm 4 Verify SPK {(w) : y ≡ g w (mod n)}(m)

1: function SPK(g ,n, y,ℓn ,ℓc ,ℓ∅,m, (c, s))
2: t ′ ← y−c g s mod n
3: c ′ ←H{0,1}ℓc (desc(y ≡ g w (mod n)),n, g , y, t ′,m)

4: return Verify c
?= c ′

5: end function

2.3. Damgård-Fujisaki integer commitment scheme
A commitment scheme is used by a committer to commit to a value, creating a commitment.
At the same time, the commitment hides the committed value from the receiver of the com-
mitment. If the committer wants to open the commitment, it will only be able to do so to
the originally committed value. Commitment schemes therefore have two properties: hiding
and binding.

The Damgård-Fujisaki integer commitment scheme [27] is a revised version of the earlier
Fujisaki-Okamoto commitment scheme [30]. The scheme is statistically hiding and com-
putationally binding under the integer factorization assumption. We describe the scheme
and show how one can prove knowledge of a commitment opening. The statistical zero-
knowledge argument of knowledge over a commitment opening is sound under the Strong
RSA assumption (see Section A.1.2) [27]. Later work showed that soundness also holds under
the (normal) RSA assumption (see Section A.1.1) [24].
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Remark. Although the authors of [24] mention that their result extends to all “discrete-logarithm
relation sets”, the rest of this work will refer to the original analysis that assumes the Strong
RSA assumption. We do so because the PABC-FLC design, presented in Chapter 4.3, requires
this stronger assumption anyway. Showing that the soundness of the different SPK protocols
we use hold under the (weaker) RSA assumption would therefore not improve the security of
the overall design.

Setup Given a security parameter 1κ, the receiver generates the public parameters that the
committer will use. Let n = pq be a special RSA modulus, with p, q safe primes that have a bit
length of κ. Let 〈h〉 = QRn be a generator of quadratic residue group and generate element
g ←R 〈h〉 such that the discrete log of g regarding h is unknown to the committer. An upper-
bound on the order of QRn , written as 2B , is assumed to be efficiently computable (i.e. n

4 ).
Output (n, g ,h).

Commit The committer chooses a random integer r ←R [0,2B+κ]. To commit to integer x,
compute commitment c ← g x hr mod n. The committer stores x,r and sends commitment c
to the receiver.

Open To open a commitment c, the committer sends the stored x,r to the receiver. The

receiver verifies that c
?≡±g x hr (mod n).

Argument of the commitment opening If a committer wants to prove that it knows the
committed integer and associated opening of a commitment, it can use a proof-of-knowledge
protocol. This computationally convincing protocol is described as PK {(x,r ) : c ≡ ±g x hr

(mod n)} and is sound under the Strong RSA assumption [27].

2.4. Camenisch-Lysyanskaya signature scheme
The Camenisch-Lysyanskaya signature scheme [12] is used to create signatures that have ef-
ficient proof of knowledge protocols. These protocols allow a prover to prove knowledge of a
signature and message without revealing either of them. The signature scheme is unforgeable
under the Strong RSA assumption (see Section A.1.2) and described as follows.

KeyGen Given a security parameter 1κ, generate an RSA modulus n = pq with safe primes
p = 2p ′+1, q = 2q ′+1. The modulus n should have a length 2 times the security parameter κ.
Then randomly select quadratic residues a,b,c ←R QRn . Return public key pk ← (n, a,b,c)
and secret key sk ← (p, q).

Sign For a message m ∈ {0,1}ℓm , generate random prime e ←R [2ℓe−1,2ℓe −1] with ℓe ≥ ℓm +
2. Generate random integer v ←R [2ℓv−1,2ℓv −1] with ℓv = ℓm +ℓn +ℓ∅ and ℓ∅ a statistical
security parameter. Compute A such that Ae ≡ ambv c (mod n). Return signature (A,e, v).
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Verify Given a signature (A,e, v) over message m ∈ {0,1}ℓm , verify that Ae ?≡ ambv c (mod n).
Also verify that 2ℓe−1 < e < 2ℓe . If none of the verifications abort, return tr ue.

2.5. Cryptographic accumulators
Cryptographic accumulators represent a set of elements in a short, constant size value. Each
element comes with a witness that proves its (non-)membership in the set. Over time differ-
ent accumulators have been proposed, varying in properties and hardness assumptions [14,
41, 11, 40]. Dynamic accumulators allow elements to be added or removed from the set of ac-
cumulated elements. After each addition or removal a new accumulator value is published.
Each new accumulator value requires the witness of an element to be updated. One might
wonder if it is possible to batch these witness updates, but unfortunately this is not possi-
ble and the number of updates is (at least) linear to the number of additions or removals [9].
One accumulator scheme that achieves this lower bound is the Braavos accumulator design.
This scheme requires witness updates only on removals, i.e. revocations [3]. The Braavos de-
sign provides an efficient Signature Proof-of-Knowledge (SPK) of set membership, allowing a
prover to keep both the accumulated element and associated witness secret.

We will give a short description of the Braavos design and associated CL-RSA-B accumu-
lator [3]. The Braavos design shows how two different accumulators, one additive accumu-
lator and one dynamic accumulator that lacks soundness, can be combined to provide the
best properties of both. Soundness means that an adversary is unable to prove membership
of an element in the accumulator, if that element is not contained in the accumulator. The
adversary can add and remove any element it wants to. Non-adaptive soundness means an
adversary can only add or remove elements from a specific set of elements. The adversary
commits to this set before the setup. By combining an adaptively sound additive accumula-
tor, called ACC A , and non-adaptively sound dynamic accumulator, called ACCN A , the result-
ing accumulator is both dynamic and adaptively sound. The ACC A accumulator can be con-
structed using a signature scheme, like the Camenisch-Lysyanskaya signature scheme (see
Section 2.4). The ACCN A accumulator, called CL-RSA-B, is based on the earlier Camenisch-
Lysyanskaya accumulator design [14]. The security of both accumulators relies on the Strong
RSA assumption (see Section A.1.2). The Braavos design improves on earlier accumulators
by reducing the number of witness updates. Witness updates are no longer required on addi-
tions (i.e. credential issuance) but only on removals (i.e. credential revocation). The CL-RSA-
B accumulator is described in terms of the following algorithms: setup, adding, removing,
proving membership and witness updating. The domain of accumulated values is the set of
all odd primes in [A,B ] with 2 < A,B < A2.

Setup Given the security parameter 1ℓn , choose safe primes p ←R 2p ′+1, q ←R 2q ′+1 of
bit length ℓn/2 where p ′, q ′ are also prime numbers. Compute n ← pq . The (initial) accumu-
lator value is taken randomly from the set of quadratic residues v ←QRn . In addition to the
accumulator, two bases for the commitment scheme are generated g ,h ←R QRn . Return the
public key pk ← (n, g ,h), secret key sk ← (p ′, q ′) and accumulator value v .
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Adding Select a random prime e ←R [A,B ] that will be added to the accumulator. Compute
the witness w ← ve−1 (mod p ′q ′) mod n. Note that the accumulator value does not change and
the witness for other elements does need to be updated. Return the accumulated value e and
associated witness w .

Proving Let e be the accumulated value, w the witness and v the accumulator value. A
proof of membership shows that v ≡ we (mod n). The proof of membership protocol is
given in Protocol 5, but for more details on the SPK we refer to Appendix A of the origi-
nal Camenisch-Lysyanskaya accumulator [14]. At the start of the protocol the verifier sends
nonce n1 to the prover. The prover computes integer commitments Ce ,Cw ,Cr to e, w and
the commitment opening of w , r2. Then it uses the specified SPK to sign n1 and sends the
signature to the verifier. The verifier checks the SPK and accepts if the signature is valid. As
mentioned before, the CL-RSA-B accumulator should be combined with another accumu-
lator. This means that the prover also needs to prove that the committed value e is part of
another accumulator, for example by showing that it is an attribute value of a signed creden-
tial (see Section 2.7).

Removing First, verify that e, the element that will be removed, comes from the accumula-
tion domain (i.e. is an odd prime in [A,B ]). The new accumulator value can be computed as
v ′ ← ve−1 (mod p ′q ′) mod n. Return update message (v ′,e).

Updating witness Given an update message (v, y), the witness w for an element e can be
updated if the element is not the one that is revoked e ̸= y . First, compute the Bezout coeffi-
cients b,c in bw +c y = 1. Since both w, y are primes, these values exist. The updated witness
is computed as w ′ ← wc vb .

2.6. Privacy-preserving Attribute-Based Credential Systems
A Privacy-preserving Attribute-Based Credential System (PABCS) consists of three roles: a
credential issuer, a credential user and a credential verifier. The issuer can issue new creden-
tials to users, usually based on another credential or a pre-existing relation. These credentials
contain a bundle of attributes that are associated with the identity of the user. An example
credential may be a passport containing a name, date of birth and nationality. Users can ob-
tain credentials from different issuers and present them to credential verifiers. During this
credential presentation, the user reveals a subset of the attributes in the credential to the ver-
ifier. If the presented credential was issued by an issuer the verifier trusts, the verifier can use
the revealed attributes in the decision it has to make. For example to grant or deny access
based on the date of birth of a user. Verifiers are free to choose the issuers they trust and can
even decide to trust an issuer only for a specific set of attributes. As an example, a verifier
may trust a university to state that someone is a student, but not that someone has a valid
driving licence.

When we consider the revocation of credentials, we introduce a new role: the Revocation
Authority (RA). The Revocation Authority (RA) has the ability to globally revoke a previously
issued credential. The RA cooperates with the issuer during credential issuance and together
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Protocol 5 Proof of membership v ≡ we (mod n) [14]

Prover Public Verifier
g ,h,n,B ,ℓ∅,ℓc

w,e v
n1 ←R {0,1}ℓ∅

n1←−−−−−−−−−
r1,r2,r3 ←R Zn/4

Ce ← g e hr1 mod n
Cw ← whr2 mod n
Cr ← g r 2hr 3 mod n

σ← SPK {(e,u,r1,r2,r3) :
Ce ≡ g e hr1 (mod n)⋀︁

Cr ≡ g r2 hr3 (mod n)⋀︁
v ≡C e

w h−er2 (mod n)⋀︁
1 ≡C e

r h−er3 g−er2 (mod n)⋀︁
e ∈ [−B2ℓ∅+ℓc+1,B2ℓ∅+ℓc+1]}(n1)

σ−−−−−−−−−→
Verify σ
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Credential Issuance
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Figure 2.1: Relations between the issuer, user, verifier and revocation authority

they encode a special attribute, a Revocation Handle (RH), in the new credential. If a revo-
cation mechanism publishes information about the set of (un)revoked credentials, we refer
to this as the Revocation Information (RI). When the issuer wants to revoke a credential, it
notifies the RA. The RA then updates the Revocation Information (RI) by adding or removing
the revocation handle from the RI. Based on the most recent version of the RI, users and/or
verifiers can determine if a credential is revoked. The issuer, user, verifier and revocation
authority roles are illustrated in Figure 2.1. Although we describe the issuer and RA as two
seperate roles, this work only considers the situation in which the issuer revokes a credential,
and does so for all verifiers. This means the issuer and RA are the same participant, which is
assumed to be the case in the rest of this work, if not otherwise specified.

As a clarification for readers more familiar with Self-Sovereign Identity (SSI) systems,
what we describe as the credential user is similar to the concept of a credential holder. Al-
though the holder has a credential, this does not mean it is also the subject of that credential.
The credential subject can be another entity, while the holder only has access to the creden-
tial. For example a pet owner can hold a credential about their pet. This allows the holder to
reveal attributes not just about itself, but also about their pet. In this work, we stick to the cre-
dential user terminology and only consider credentials that describe the user. Do note that
a single entity can change its role at any moment. For example, a driver acts as a credential
user when presenting a driving licence during a traffic stop, but at the same time acts as a
credential verifier to verify that the other person is a police officer.

2.7. Idemix
One construction of a PABCS is the Identity Mixer design, also known as idemix [13, 18].
Idemix is built on the Camenisch-Lysyanskaya signature scheme (see Section 2.4). Using the
Signature Proof-of-Knowledge (SPK) algorithms defined for this signature scheme, users can
prove knowledge of a credential issued to them. This provides both multi-show unlinkabil-
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ity and issuance-presentation untraceability. In addition, it allows blind issuance of (user)
attributes and selective attribute disclosure during credential presentation.

Blind issuance of attributes, combined with the ability to keep attribute values hidden
during presentation, allows a user to encode a user secret in the credential. This user secret
is never revealing to any other participant, such as the issuer or verifier. By proving knowl-
edge of the user secret attribute during a credential presentation, instead of revealing the at-
tribute, this proves that the credential was issued to the same user that presents it. That is,
if we assume users do not share their user secret with others. This is also referred to as the
non-transferability of credentials. Furthermore, if a user proves that the user secret in one
credential equals that of another credential, this proves that both credentials were issued to
the same user. This property is known as consistency of credentials.

We will give a brief description of the idemix credential system, although we leave out
several aspects not related to this work such as pseudonyms, range proofs or more efficient
methods to encode credentials. For a description of those, we refer to the idemix specification
[49].

System setup The system setup algorithm outputs the security parameters, which are used
by all other algorithms and protocols. Attribute values are in the set {0,1}ℓm , as in the sig-
nature scheme (see Section 2.4). The ℓn ,ℓe ,ℓv ,ℓ∅ parameters are used as in the signature
scheme, with the addition of the ℓ′e parameter that determines the upper limit of the inter-
val of e values. The parameter ℓc denotes the maximum length of challenges in the SPKs.
The requirements on the lengths of these parameters are slightly different from the signature
scheme, for these we refer to table 2 of the idemix specification [49].

Issuer setup The issuer first generates a special RSA modulus by computing N = pq with
p = 2p ′+1, q = 2q ′+1 and p, q, p ′, q ′ all prime. As N should have a length of ℓn , p and q should
both have a length of ℓn/2. The issuer continues by generating quadratic residue S ←R QRN

and Z ,R1, . . . ,Ri ←R 〈S〉, with i the number of credential attributes. The set of attributes is
described as At t = {1, . . . , i }. The secret key of the issuer is (p ′, q ′), while the public key is
returned as (N ,S, Z ,R1, . . . ,Ri , At t ).

Credential issuance Using the credential issuance protocol, users can obtain a new creden-
tial from the issuer. Known attributes At tk ⊂ At t are known to both user and issuer, while the
rest of the attributes At t∁k = At t \ At tk are only known to the user. The user secret attribute
(m1) is always part of the set of user attributes, 1 ∉ At tk . We assume the user and issuer agree
on the known attribute values {mk }k∈At tk beforehand. The issuance protocol is specified in
Protocol 6.

Credential presentation Given is a user with credential (A,e, v), which it will present to a
verifier. Beforehand the verifier and user agree on the attributes that will be revealed. Re-
vealed attribute values are in the set At tr and the values of these attributes, {mi }i∈At tr , are
sent to the verifier. Other attribute values, {mi }i∉At tr , are kept hidden. The protocol starts
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Protocol 6 Credential issuance protocol of idemix

User Public Issuer
N ,S, Z , {Ri }i∈At t , At t , At tk ⊂ At t

{mh}h∉At tk {mk }k∈At tk p ′, q ′

n1 ←R {0,1}ℓ∅
n1←−−−−−−−−−

v ′ ←R {0,1}ℓn+ℓ∅
U ← Sv ′ ∏︁

h∉At tk
R

m j

j mod N

σP ← SPK {({mh}h∈At th , v ′) :
U ≡ Sv ′ ∏︁

h∉At tk
Rmh

h (mod N )⋀︁
{mh ∈ {0,1}ℓm+ℓ∅+ℓc+1}h∉At tk

}(n1)
n2 ←R {0,1}ℓ∅

n2,σP ,U−−−−−−−−−→
Verify σP

prime e ←R [2ℓe−1,2ℓe−1 +2ℓ
′
e−1]

v ′′ ←R {0,1}ℓv−1

B ← Z
U Sv ′′ ∏︁

k∈At tk
R

mk
i

mod N

A ← B e−1 mod p ′q ′
mod N

σI ← SPK {(e−1) : A ≡ B e−1
(mod N )}(n2)

σI ,(A,e,v ′′)←−−−−−−−−−
v ← v ′+ v ′′

Verify σI

Verify Z
?≡ Ae Sv ∏︁

i∈At t Rmi

i (mod N )
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with the verifier sending a nonce to the user, to prevent replay attacks. The user can random-
ize the credential and prove knowledge of the signature over both the revealed and hidden
attribute values. A description of the protocol is given in Protocol 7.

Protocol 7 Credential presentation protocol of idemix

User Public Verifier
(A,e, v) N ,S, Z , {Ri }i∈At t , At t
{mi }i∉At tr {mi }i∈At tr , At tr ⊂ At t

n1 ←R {0,1}ℓ∅
n1←−−−−−−−−−

r ←R {0,1}ℓn+ℓ∅
A′ ← AS−r mod N
v ′ ← v −er

σ← SPK {(e, {mi }i∉At tr ) :
Z∏︁

i∈At tr R
mi
i

≡ A′e S′v ∏︁
i∉At tr

Rmi

i (mod N )⋀︁
{mi ← {0,1}ℓm+ℓ∅+ℓc+1}i∉At tr⋀︁
e −2ℓe−1 ∈ {0,1}ℓ

′
e+ℓ∅+ℓc+1

}(n1)
σ−−−−−−−−−→

Verify σ
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Related work

3.1. Introduction
This chapter describes existing revocation mechanisms relevant to providing forward-looking
consistency in a PABCS. First, two revocation mechanisms from outside the field of PABCSs
are described, specifically Certificate Revocation Lists (CRLs) and Online Certificate Status
Protocol (OCSP). Both are used as a revocation mechanism in the Web PKI. The other three
mechanisms were specifically designed for PABCSs. These include Verifiable Encryption, N-
Times unlinkable proofs and cryptographic accumulators. The Braavos [3] cryptographic
accumulator, described in Section 2.5, will not be repeated here, but is taken into account
in the discussion section. Likewise, the idemix credential system and Signature Proof-of-
Knowledge (SPK) protocols are described in the preliminaries. This chapter ends with a com-
parison of the described revocation mechanisms in terms of the properties they provide, in-
cluding forward-looking consistency, unlinkability and untraceability.

3.2. Web PKI revocation mechanisms
The Web PKI is used to authenticate website certificates, often recognized as a green pad-
lock in the web browser. These certificates authenticate the domain name and are issued by
trusted Certificate Authorities (CAs). Note that in contrast to ABCs, these certificates do not
provide any privacy properties like selective disclosure or multi-show unlinkability.

One of the first revocation mechanisms, standardization began in 1996, is the Certificate
Revocation List (CRL) [36, 37]. This mechanism requires CAs to periodically sign and publish
a list of all revoked certificates. The certificates themselves are referenced by a unique serial
number. These serial numbers are added to the certificate, together with a location where the
latest CRL can be found. Web browsers and other verifiers retrieve the CRL on a regular basis
to ensure they have the latest version. The revocation status of a certificate can be deter-
mined by searching the list for its serial number. As the size of the list is linear to the number
of revoked certificates, this requires web browsers to store a large amout of data. Another
downside is that if a certificate references an unknown CRL, one that was not downloaded
before, it stalls the revocation check of the certificate until the list is downloaded.

19
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Another revocation mechanism used in the Web PKI is using Online Certificate Status
Protocol (OCSP) requests [38]. This mechanism works by online querying the CA for the re-
vocation status of a certificate. Compared to CRLs, web browsers and other verifiers are no
longer required to store the revocation information locally. However, the downside is that the
CA is must be available at all times. From a privacy perspective, this also allows the CA to
keep track of which certificates were queried by which verifier. To alleviate these problems,
it is possible for the presenter of the certificate, e.g. a website, to “staple” the Online Certifi-
cate Status Protocol (OCSP) response to its certificate presentation. As the verifier no longer
makes the OCSP query, this removes the privacy problem. Furthermore, the responses can
be cached for a small period of time to reduce both the number of requests made to the CA
and impact of availability issues.

3.3. Verifiable Encryption
Verifiable Encryption (VE) also involves querying another party for information about a cre-
dential. VE was first introduced as an anonymity revocation mechanism for ABCs [16]. It lets
a user encrypt a credential attribute, and prove that it did so correctly. For example, if a ver-
ifier wants the ability to take legal action against a user that violated some policy, it can ask
the user to encrypt its name under the public key of a third party auditor. As only the third
party auditor is able to decrypt the information, the verifier can only learn the users name in
cooporation with the auditor. VE can also be used as a revocation mechanism, by encrypting
a Revocation Handle (RH) under the public key of the RA. As with OCSP, this requires the
RA to be available at all times and allows it to monitor credential usage. For these reasons,
VE is useful as an anonymity revocation mechanism, but less so as a credential revocation
mechanism [16].

3.4. N-times unlinkable proofs
Applications like smart cards and electronic identity cards require a revocation mechanism
that works without any internet connectivity of a user. The “N-times unlinkable proofs”
scheme is designed for these situations and only requires verifiers to keep track of the RI.
Each credential can generate a limited number of N unlinkable proofs (pseudonyms) within
a predefined time period (epoch) [10]. One of these pseudonyms is generated during the cre-
dential presentation and given to the credential verifier. The RA distributes a list of revoked
pseudonyms to all verifiers, who can lookup the received pseudonym in the list. However,
there is a trade-off, as N pseudonyms can be generated per credential, the size of the RI in-
creases linearly with N . The major component of the scheme is the way users prove that the
pseudonym is generated correctly, meaning generated from the RH in the credential.

We give a short description of the n-times unlinkable proofs scheme as described in [10].
Users use a Revocation Handle (RH) and signed “randomizers” to generate pseudonyms.
Since both the RH and randomizers are generated by the RA, the RA can also generate all
pseudonyms in case the RH needs to be revoked. The RI acts as a denylist and is updated
each epoch.
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Setup First select parameters ( j ,k) such that n = k j and with n the number of unlinkable
pseudonyms that can be created. Then select a group 〈g 〉 = Gp of prime-order p and an
order related to the security parameter 1κ. Select random elements a1, . . . , a j ←R Zp and
compute gi ← g ai for all ai . Let Σ be an existentially unforgeable signing scheme that allows
for efficiently generating a proof of knowledge over the signature (see Section 2.4 for such
a scheme). The algorithm Σ.K e yGen generates a signing and verification key, while the al-
gorithms Σ.Si g n and Σ.V er respectively place and verify a signature on a message. As the
randomizers need to be signed, generate a key pair (sk, pk) ← Σ.K e yGen(1κ). Select the set
of randomizers {ei ←R Zp }i=1,...,k and sign them {σi ←Σ.Si g n(sk,ei )}i=1,...,k . Publish the sys-
tem parameters (g , p,k, j , (g1, . . . , g j ), (a1, . . . , a j ),Σ, {(e1,σ1), (ek ,σk )}). Store the secret key sk
and publish the public key pk.

Issuance The RA generates a RH w ←R Zp and stores it in the list of issued handles. The RH
w is given to the issuer and put in a credential. Since w is put in a credential, the credential
signature acts as signature over w . As a result, there is no need for the RA to also sign the RH
as it did with the randomizers.

Proving Per epoch, the user can generate n = k j different pseudonyms. To make sure this
limit is not exceeded, which would result in reuse and linkability of pseudonyms, it keeps an
integer counter ctr to indicate the number of pseudonyms that have been generated already
during the current epoch. Counter ctr is also used as a k-ary number (ctr0, . . . ,ctr j−1). The
epoch value should be known to both parties and have an associated RI published. The user
and verifier can for example agree to use the epoch of the latest RI RLepoch that the verifier
has access to. Here we take it that w comes from a (signed) credential and is contained in
the commitment c. The Com.V er algorithm proves that commitment c opens to w using
opening o. It is assumed that both parties know the commitment key and that Com.V er has
a relation that can be proven with a SPK (see Section 2.3 for such a commitment scheme). To
prevent replay attacks, the user signs a nonce n1. The length of the nonce (ℓ∅) should be re-
lated to the security parameter 1κ. Both proving and verifying the generation of a pseudonym
are specified in Protocol 8.

Verifying During verification, the verifier checks the proof π and uses pseudonym C to see
if it exists in the RI of that epoch (RLepoch). If the pseudonym does not appear in the RI, it
means the credential is not revoked. The authors mention that by using a hash function with
short output length, the size of the RI remains acceptable.

Revoking The RA keeps a separate list of all revoked RHs to which a RH is added when it
gets revoked. When a RH gets revoked, the RA publishes all possible pseudonyms in the RI
for the next and all following epochs. It does so by computing H (Ci ) for all pseudonyms
i = 0, . . . ,k j − 1 during the next epoch. It then publishes the RI, a sorted list of all revoked
pseudonyms, for the next epoch. This repeats for each epoch as long as the credential is
revoked, for example until it expires.
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Protocol 8 Proving and verifying a pseudonym in N-times unlinkable proofs

Prover Public Verifier
g , p,k, j ,Σ, pk,ℓ∅

(g1, . . . , g j ), (a1, . . . , a j )
{(e1,σ1), . . . , (ek ,σk )}

ctr, w,o,c epoch RLepoch

n1 ←R {0,1}ℓ∅
n1←−−−−−−−−−

(ctr0, . . . ,ctr j−1) ← ctr

i ←∑︁ j−1
ℓ=0 ai ectrℓ

C ← g 1/(w+i+H (epoch)) mod p

σ← SPK {(w, i ,ectr1 , . . . , {ei }, {σi },o) :
gC−H (epoch) ≡C wC i (mod p)⋀︁

g−i ∏︁ j
ℓ=1 g

ectrℓ

ℓ
≡ 1 (mod p)⋀︁ j

ℓ=1Σ.V er (pk,σctrℓ ,ectrℓ) ≡ 1⋀︁
Com.V er (c, w,o) ≡ 1

}(n1)
ctr ← ctr +1

σ,C ,c−−−−−−−−−→
Verify H (C ) ∉ RLepoch

Verify σ
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This construction does not require the user to keep track of updates in the RI and still
maintains backwards unlinkability, even when the credential is revoked. Computing the
pseudonym and associated proofs are efficient enough to run on smart cards with limited
computation power [10]. However, since anyone with knowledge of to the RH can generate
all pseudonyms (for all epochs), this means the pseudonyms are traceable. In other words,
since the credential issuer has access to the RH, it is able to link any pseudonym to a specific
issuance moment. The generated pseudonyms themselves are unlinkable due to the Dodis-
Yampolskiy Verifiable Random Function construction [28]. This ensures that without knowl-
edge of the RH, credentials can be presented multiple times without linkability between those
presentations.

3.5. Delegatable cryptographic accumulator
When researching delegatable credentials, Acar and Nguyen designed a delegatable revoca-
tion mechanism [1]. Delegatable credentials allow a user to provide their credentials to a
delegatee who is then able to use the credentials on their behalf. Delegation should be un-
linkable in that two different delegated credentials cannot be linked to the same ancestor cre-
dential. Regarding revocation, this means that the RH is not revealed during delegation, just
as it is not during presentation. The cryptographic accumulator scheme is build on the ho-
momorphic properties of Groth-Sahai proofs [34] and provides this unlinkability. The com-
bination of accumulator and homomorphic proofs allows the delegatee to also update the
non-membership proof when the RI changes, providing a new non-revocation proof that is
required when presenting the credential.

We will give a description of the Accumulator with Delegatable Non-Membership Proofs
(ADNMP) scheme, but refer to the original paper for the instantiation using Groth-Sahai
proofs [1]. All algorithms mentioned run in PPT and implicitly take the system parameters
Par a as input. The first algorithms are standard in non-membership accumulators, the
Upd ateV al and Upd ateN MW i t algorithms make it a dynamic accumulator and delega-
tion uses the Del e,Rede,V ali and CompN MPr oo f algorithms.

Setup is given a security parameter 1κ and returns the system parameters and auxiliary
information (Par a, Aux).

Accu is given the set elements to accumulate AcSet . It returns the accumulator value
AcV al .

CompNMWit takes the set of accumulated values AcSet and the accumulator value AcV al .
It is also given an accumulated element Ele for which it computes the non-membership wit-
ness N MW i t .

ProveNM can produce a proof of non-membership of element Ele and associated witness
N MW i t for the accumulator value AcV al . As this is an accumulator, it does not need access
to the entire set of accumulated elements.

VerifyNM takes the proof of non-membership and accumulator value AcV al and returns
a boolean value indicating if the proof is valid.

UpdateVal computes the new accumulator value AcV al ′ when element El e is added. It
does not take AcSet as input to compute the new accumulator value, but does require the
old accumulator value AcV al .
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UpdateNMWit allows the computation of a new N MW i t ′ when the element El e is added
to the set of accumulator values, given also the current N MW i t and new AcV al .

Dele is given an element El e and returns the delegating key De.

Rede takes as input a key De and produces another delegating key De ′.

Vali is given a delegating key De and returns a boolean value indicating if the delegation
is valid.

CompNMProof takes a delegating key De, accumulator set AcSet and accumulator value
AcV al . It returns a non-membership proof that the element El e, associated with delegation
key De, is not accumulated in the accumulator value AcV al .

The authors describe how the ADNMP scheme can be used to provide a revocation mech-
anism for delegatable credentials. The scheme provides delegatability by allowing users to
prove the ancestor delegators are not included in the accumulator. It also provides redele-
gability by delegating the non-membership proof to others. The non-membership proofs by
users and delegators are indistinguishable from each other and unlinkability prevents users
from linking delegations to the same delegator. There is a trade-off however, between del-
egability and anonymity. Any user who delegates a credential can collude with the RA to
determine if a non-membership proof was generated by their element, i.e. break anonymity
(see Section 4.2.7).

3.6. Discussion
Our goal is to find a revocation mechanism that provides forward-looking consistency in a
PABCS. At the same time, we require that such a mechanism does not compromise the pri-
vacy properties of Attribute-Based Credentials. First, we compare the described mechanisms
on the properties they already provide. We then discuss the missing properties to see if these
can be added, for example by changing how the revocation mechanism works.

We compare the discussed revocation mechanisms on the different properties they pro-
vide. The key property we need is that a credential verifier can check the revocation status of
a credential in newer versions of the RI, which is referred to as forward-looking consistency
(FLC). As a PABCS provides both multi-show unlinkable and untraceable, we also compare
the revocation mechanisms on these properties. Concerning the RI, we compare the revoca-
tion mechanisms on the size of the RI and frequency of new versions. Both are described in
terms of the number of revoked handles / revocations (R), epochs (E), unlinkable proofs (U),
constant (1) or not applicable (7). Note that for both accumulator, Braavos and ADNMP, the
user needs to download each version of the RI. While the size is constant, the total size that
users need to download is not. The last property we consider is the required connectivity of
the participants. In the table we write I if the issuer needs to be online during verification.
If the user needs to download the RI or update a witness, we write U. If the verifier needs to
download the RI, we write V. We exclude the connectivity requirement of the issuer if it needs
to publish the RI and note that if the connectivity of the user can replace that of the verifier.
Any information the verifier needs, can be passed by the user if the information is signed by
the issuer.
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Mechanism FLC Unlinkable Untraceable RI (size/freq) Online
CRL [37] ✓ ✗ ✗ R / R V
OCSP [38] ✓ ✗ ✗ ✗ I, V
VE [16] ✓ ✓ ✗ ✗ I, V
N-times [10] ✗ ✓ ✗ R × U / E V
Braavos [3] ✗ ✓ ✓ 1 / R U, V
ADNMP [1] ✓ ✓ ✗ 1 / R U, V

Table 3.1: Comparison of the described revocation mechanisms.

The Certificate Revocation List (CRL) and OCSP mechanisms were not designed with
Attribute-Based Credentials in mind, and this shows in the comparison. In both mechanisms
the verifier learns the RH of a credential. This makes both mechanisms linkable and trace-
able, although this also gives verifiers the ability to see if a credential is revoked in newer RI
versions. Given that the verifier learns the RH, there is no clear solution to prevent either
unlinkability or untraceability in these mechanisms.

Although the Verifiable Encryption was introduced as an anonymity revocation mecha-
nism, it can also be used as a credential revocation mechanism by encrypting the RH under
the public key of the issuer or RA. But as the issuer now learns the RH, the scheme becomes
traceable. Encrypting the RH to a third party can make the scheme untraceable, but only if
the third party does not collude with the issuer. However, doing so requires the verifier to
trust the third party to return the correct revocation status. Furthermore, this scenario also
requires an additional mechanism that allows the third party to determine the revocation
status of the RH. In the N-times unlinkable proofs revocation mechanism, the RA does not
play an active role during verification. The pseudonyms however, are only valid for a single
epoch/RI version. By generating pseudonyms for a number of future epochs the mechanism
can also provide forward-looking consistency. The traceability issue remains however, be-
cause the issuer can still generate all future pseudonyms.

The Braavos cryptographic accumulator provides both unlinkability and untraceability,
due to the use of proof-of-knowledge protocols. But as the prover in these protocols requires
knowledge of the RH, it does not allow a verifier to verify the membership of a handle in an-
other version of the RI. The ADNMP homomorphic accumulator design does provide a way to
“update” the non-membership proof, but this conflicts with the untraceability of credentials.

We do want to note that revocation mechanisms other than those described here exist.
The described revocation mechanisms were chosen because we expected that they provide
at least some required properties. Other mechanisms are similar in functionality and/or vari-
ants on the described approaches here. For a more detailed discussion on revocation mech-
anisms used in PABCSs, we refer to the work of Lapon [39].

Based on the comparison of related work we conclude that current revocation mecha-
nisms are unable to provide forward-looking consistency, while adhering to the privacy prop-
erties of PABCSs. The lack of a suitable revocation mechanism for this situation means that
less privacy-friendly solutions are used. We conclude that research into revocation mecha-
nisms that address forward-looking consistency in PABCS is needed.





4
The PABC-FLC credential system

design

4.1. Overview
In this chapter we present a Privacy-preserving Attribute-Based Credential System (PABCS)
with forward-looking consistency, the PABC-FLC design. The design we propose has four
types of participants: issuers, users, verifiers and the Non-Revocation Prover (NRP). Of these,
the NRP is added in comparison to other credential systems and its function will be explained
later. Although we usually describe the system as interactions between these participants, the
system we propose is primarily described as a set of algorithms. To keep our design simple
and focus on the forward-looking consistency aspect, we only consider a single issuer and
do not take into account user pseudonyms or presenting multiple credentials at once. Our
design does not exclude these however, it should be easy to see how these can be added. We
will continue with a brief description of the algorithms, their intended use and examples of
their usage.

Before the system can be used, all participants run their respective key generation algo-
rithm. The system parameters are generated first, using the SPGen algorithm. The issuer
uses the I ssK e yGen algorithm to generate their signing and revocation keys, while users and
the NRP use the User K e yGen and N RPK e yGen algorithms to generate their own keys. Af-
ter this setup, users can use the Credential Issuance protocol to obtain a credential from the
issuer. A credential is a collection of attributes, agreed upon by both parties, and a signature
by the issuer. Each credential contains the user secret key and a revocation handle as first two
attributes.

Users can request access to various resources provided by verifiers using these creden-
tials. To do so, they use the Cr edPr esent ati on algorithm to compute a presentation token
(pt ). This token reveals a subset of the attributes and proves that they were signed by the
issuer. Presentation tokens are verified using the V er i f yCr edPr esent ati on algorithm. As
an example, imagine a student who wants access to a university building. The university
requires authentication before granting access to the building. A student can present a cre-

27
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dential attesting that they are a student, providing (just) enough information to the university
for it to grant access. When using an ABC, this authentication is based on the attributes that
describe the user, not (necessarily) the unique identity of the user. In the example, showing
that one is a student is enough to be granted access. More importantly, there is no need to
reveal a name or unique student number.

Credential systems with a revocation mechanism, give verifiers the additional assurance
that a presented credential is still valid. Previously issued credentials can be revoked by the
issuer by using the Cr edRevoke algorithm, for example when the student is no longer en-
rolled at the univeristy. After revoking a credential, the issuer publishes a new version of
the RI to reflect the revocation. The other (unrevoked) credentials are updated using the
RevW i tnessUpd ate algorithm.

To enforce forward-looking consistency, the presentation tokens contain a redeemable
revocation token (r r t ). The credential verifier can exchange these tokens for a revocation
token (r t ) with the help of the NRP. The Cr edSt atusUpd ate algorithm allows the NRP to
exchange one into the other. The resulting revocation token can be verified by the credential
verifier, using the V er i f yCr edSt atusUpd ate algorithm. As the revocation token is com-
puted against the latest RI, this gives credential verifiers information about the revocation
status of the earlier presented credential. This information allows it to enforce forward-
looking consistency. As an example, imagine the student from before applies for a student
discount for a music subscription service. The company, acting as a credential verifier, can
retrieve a new revocation token each month and verify if the student is still enrolled. Without
involvement of the student and without learning the (unique) identity of the student in ques-
tion, this allows the company to determine if the discount should still be applied. In effect,
allow the verifier to enforce forward-looking consistency on the student credential.

Regarding the security of the system, we assume that credential verifiers trust the creden-
tial issuer to behave honestly when executing all its algorithms and the issuance protocol.
This is a justified assumption, because if the verifier does not trust the issuer, there is no
good reason for it to trust the credentials it signs. At the same time, the user is not required to
trust either the issuer nor the verifier. However, the user does trust the NRP. We justify this,
because an impossibility result shows no other solution is possible (see Section 4.2.7). For
more details on the security, see Section 4.2.

Our design builds on the idemix credential system [49] and uses the Braavos revocation
mechanism [3]. We combine these and extend them with the possibility to enforce forward-
looking consistency. In terms of computational assumptions we rely on the Strong RSA as-
sumption or weaker assumptions thereof (see Section A.1). Our security analysis is given in
the random oracle model [6].

The rest of this chapter is structured as follows. Section 4.2 describes the requirements for
a Privacy-preserving Attribute-Based Credential System (PABCS) with forward-looking con-
sistency. These requirements resemble the formulations of [22], but are less formal and have
been adapted to our use case. Section 4.3 proposes PABC-FLC, a credential system that ad-
heres to these requirements. Section 4.4 describes the security analysis, showing that the
proposed design adheres to the formulated requirements. The security analysis concludes
with a short comparison of this work with other revocation mechanisms, as described in the
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related work (see Chapter 3). An overview of symbols used in this chapter, and their explana-
tion, is given in the appendix in Table A.1.

4.2. Requirements
4.2.1. Security setting
In the context of a credential system where participants communicate with eachother, we
assume the existence of secure channels that authenticate the receiving participant. Further-
more, we assume that the issuer and NRP can be contacted at any time and that the verifier
can be contacted by a user who wants to authenticate. There is no availability requirement for
the user(s). In fact, we are specifically designing a credential system for situations in which
this is not possible.

Additionally, we assume that a user does not share their user secret with anyone else. In
practice, ensuring non-transferability of the user secret is a challenging problem. Several
approaches to this problem are given in [13, 35].

4.2.2. Correctness
Correctness refers to the notion that the credential system can be used by all honest partici-
pants. In the design we propose this means that

• participants can run their key generation algorithm,

• users can obtain credentials from the issuer,

• users can create presentation tokens for unrevoked credentials,

• presentation tokens for unrevoked credentials can be verified,

• unrevoked credentials can be revoked by the issuer,

• the revocation witness for a credential can be updated if another credential is revoked,

• the Non-Revocation Prover (NRP) can provide a revocation token for unrevoked cre-
dentials when given a redeemable revocation token,

• revocation tokens for unrevoked credentials can be verified.

4.2.3. Credential unforgeability
Credentials are unforgeable if V er i f yCr edenti al only returns true for credentials obtained
through the Cr edenti al I ssuance protocol, i.e. the credential was signed by the issuer and
conforms to the attribute length requirements.

4.2.4. Presentation token unforgeability
Credential verifiers need to be assured that if a presentation token verifies as true, the cre-
dential user that generated the token possesses a credential with the presented attributes.
Recall that we assume verifiers trust the issuer to behave honestly. Presentation tokens are
considered unforgeable if
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• the presented credential was issued to the user that presents it,

• the presented credential was signed by the issuer,

• the revealed attributes correspond to the attributes in the credential,

• the redeemable revocation token contains a commitment to the revocation handle.

4.2.5. Revocation token unforgeability
Similar to the unforgeability of presentation tokens, we require that revocation tokens can
only be computed for revocation handles that were generated by the issuer and are still con-
tained in the Revocation Information (RI) (i.e. not revoked). Due to the working of the
Braavos revocation mechanism, we require that a redeemable revocation token (r r t ) used
to compute a revocation token (r t ) comes from a (valid) presentation token.

4.2.6. Presentation token privacy
We call presentation tokens private if they are multi-show unlinkable and untraceable, when
no attributes are revealed. In the context of issuers and verifiers, this means that even when
a malicious issuer colludes with malicious verifiers, they are unable to determine which user
presented a credential. Multi-show unlinkability means that given two presentation tokens,
it is not possible to determine if they were generated from the same or two different creden-
tials. This also implies that given two credentials, it is not possible to determine which of two
different credentials was used to generate a presentation token (unlinkability). Untraceabil-
ity means that it is not impossible for a (malicious) issuer to determine which credential was
used when it is given a presentation token. Definition 2 captures multi-show unlinkability
and untraceability of unrevoked credentials.

Definition 2 (Presentation token privacy). Presentation tokens are private, if for every effi-
cient adversary A there exists a negligible function ν such that the following holds

Pr [b′ = b ∧pt0 ̸= ⊥∧pt1 ̸= ⊥ :

spar ← SPGen(1κ,1λ),

(pkN RP , skN RP ) ← N RPK e yGen,

(pkI ss , skI ss ,σI ssK e yGen ,cr ed0,cr ed1, st ) ← A,

pt0 ←Cr edPr esent ati on(pkI ss , pkN RP ,cr ed0, {},0),

b ←R {0,1}, ptb ←Cr edPr esent ati on(pkI ss , pkN RP ,cr edb , {},0),

b′ ← A(pt0, ptb , st )] ≤ 1

2
+ν(κ,λ)

4.2.7. Revocation token privacy
The privacy of revocation tokens is similar to the requirement for privacy of presentation
tokens. It means that given two unrevoked credentials, the revocation tokens generated from
a (possibly adversarially generated) redeemable revocation token are multi-show unlinkable.
The (multi-show) unlinkability of redeemable revocation tokens is implied by the privacy
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of presentation tokens, and not included in this definition. Note that only two unrevoked
credentials with the same Revocation Information (RI) are considered, this is due to what we
describe as the “revoke all but one attack”. Definition 3 describes revocation token privacy.

Remark (“Revoke all but one attack”). This attack refers to the situation in which a malicious
issuer and malicious verifier collude and break the unlinkability of revocation tokens. See
also the definition of revocation privacy in [21]. More specifically, this attack is possible when
an adversary has access to an oracle that returns a revocation token for any (reference to a)
revocation handle when given any RI. This oracle represents the verifier’s ability to enforce
forward-looking consistency.

The attack works as follows. During issuance, the adversary can store all issued revocation
handles in state st . When given (a reference to) a revocation handle, the adversary can use the
stored information to compute a collection of RI’s, with each RI containing a single unrevoked
revocation handle. It can then use the oracle to obtain revocation tokens for all computed
RI’s. The returned revocation tokens can be verified to determine which RI contained the
referenced revocation handle. This allows the adversary to break unlinkability, since it now
knows which revocation handle was used to compute a revocation token.

Definition 3 (Revocation token privacy). Revocation tokens are private, if for every efficient
adversary A there exists a negligible function ν such that the following holds

Pr [b′ = b ∧pt0 ̸= ⊥∧pt1 ̸= ⊥∧ r t0 ̸= ⊥∧ r t1 ̸= ⊥ :

spar ← SPGen(1κ,1λ),

(pkN RP , skN RP ) ← N RPK e yGen, N RPStor e ← {}

(pkI ss , skI ss ,σI ssK e yGen , st ) ← A,

(cr ed0,cr ed1, w0, w1,RI ) ← A(st ),

(r h0,r h1) ← (cr ed0,cr ed1), N RPStor e ← N RPStor e ∪ {(r h0, w0), (r h1, w1)},

{pti ←Cr edPr esent ati on(pkI ss , pkN RP ,cr ed0, {},0)}i∈{0,1},

(r r t0,r r t1) ← (pt0, pt1),

r t0 ←Cr edSt atusUpd ate(pkI ss ,RI ,r r t0, pkN RP , skN RP , N RPStor e,0),

b ←R {0,1},r tb ←Cr edSt atusUpd ate(pkI ss ,RI ,r r tb , pkN RP , skN RP , N RPStor e,0),

b′ ← A(pt0, pt1,r t0,r tb , st )] ≤ 1

2
+ν(κ,λ)

4.3. Credential system algorithms and protocols
4.3.1. System parameter generation

The system parameter generation algorithm SPGen(1κ,1λ) → spar takes as input computa-
tional and statistical security parameters 1κ,1λ and outputs parameters (1ℓN ,1ℓ∅ ,1ℓc ,1ℓm ,1ℓr h ,
1ℓe ,1ℓ

′
e ,1ℓv ,1ℓenc ). All algorithms, except SPGen, take spar as an implicit input. The idemix

specification [49] contains a list of suggested parameters. We add the requirement that ℓr h +
ℓn +ℓ∅+2ℓc +2 < ℓenc . To match the idemix parameters, one can use ℓenc = 3072.
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4.3.2. Issuer key generation
Before the issuer can issue credentials, it is required to generate appropriate keys for the sig-
nature, commitment and revocation schemes. The I ssK e yGen(ℓAt t ) → (pkI ss , skI ss ,RI0) al-
gorithm is specified in Algorithm 10 and will be described here briefly.

The algorithm takes as input the number of attributes ℓAt t in the credentials. It out-
puts a keypair for the signature scheme (pkSi g , skSi g ), a keypair for the revocation scheme
(pkAcc , skAcc ), the first version of the Revocation Information (RI) RI0, and a proof of the cor-
rect generation of the public keys σI ssK e yGen . The public keys and SPK are bundled in the
issuer public key pkI ss , the secret keys are similarly bundled in skI ss .

The algorithm starts by generating a signing key pair for the Camenisch-Lysyanskaya sig-
nature scheme [13]. To generate the special RSA modulus, Algorithm 9 is used. It continues by
generating a keypair for the CL-RSA-B accumulator [3] and commitment key for the integer
commitment scheme [30, 27]. After the generation of all keys, it computes an initial version
of the Revocation Information (RI) RI0. Finally, SPK I ssK e yGen (see Protocol 11) attests to the
correct setup and is used to sign the public key values.

Algorithm 9 Generate Special RSA modulus

1: function GENSPECIALRSA(1ℓN )
2: Generate p = 2p ′+1 s.t. p has length ℓN

2 and p, p ′ are both prime

3: Generate q = 2q ′+1 s.t. q has length ℓN
2 and q, q ′ are both prime

4: N ← pq
5: return (N , (p ′, q ′))
6: end function

Protocol 11 is used in the signature variant by the credential issuer to sign the public
keys. The protocol is used to convince the other participants that Z , {Ri }i∈At t ∈ 〈S〉,G ∈ 〈H〉
by showing that the issuer knows the discrete log of these values regarding generator S. Note
that the issuer acts as prover in the protocol. The protocol follows that of [44], which is sound
if ℓc is chosen large enough. The resulting protocol can be turned into a signature variant
using the Fiat-Shamir transformation [29] (see Section 2.2) and can be statistically simulated
provided that ℓ∅ is chosen large enough.

Other participants of the credential system can verify the correct generation of the issuer
key by verifying σI ssK e yGen . This verification is used implicitly by all (honest) participants
when they use the issuer public key.

4.3.3. User key generation
Users generate a user secret mus , before they engage in the issuance protocol. User K e yGen →
mus is specified in Algorithm 12.

4.3.4. Non-Revocation Prover setup
The Non-Revocation Prover (NRP) is contacted by a verifier when they want to know if an
earlier presented credential has been revoked. If the credential was not revoked, the NRP
returns a revocation token attesting to this fact. If it was revoked and the NRP communicates
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Algorithm 10 Issuer Key Generation

1: function ISSKEYGEN(ℓAt t )
2: At t ← {us,r h,1, . . . ,ℓAt t −2} ▷ At t = {us,r h}∪ At tk

3: (NSi g , skSi g ) ← GENSPECIALRSA(1ℓN ) ▷ sk = (p ′, q ′),#QRN = p ′q ′

4: S ←R QRNSi g ▷ s.t. S is a generator

5: {ri ←R {0,1}ℓN }i∈At t∪{z}

6: Z ← Srz mod NSi g , {Ri ← Sri mod NSi g }i∈At t

7: pkSi g ← (At t , NSi g ,S, Z , {Ri }i∈At t )

8: (NAcc , skAcc ) ← GENSPECIALRSA(1ℓN ) ▷ sk = (p ′, q ′),#QRN = p ′q ′

9: Acc,G ←R QRNAcc ▷ s.t. G is a generator
10: rg ←R {0,1}ℓN

11: G ← H rg mod NAcc

12: RI0 ← (Acc,0)
13: pkAcc ← (NAcc ,G , H)

14: σI ssK e yGen ← SPK I ssK e yGen{({ri }i∈At t∪{z,g }) :
Z ≡ Srz (mod NSi g )⋀︁

{Ri ≡ Sri (mod NSi g )}i∈At t⋀︁
G ≡ H rg (mod NAcc )

}()

15: pkI ss ← (pkSi g , pkAcc ,σI ssK e yGen)
16: skI ss ← (skSi g , skAcc )
17: return (pkI ss , skI ss ,RI0)
18: end function
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Protocol 11 PK I ssK e yGen

Prover Public Verifier
rz ,rg , {ri }i∈At t NSi g ,S, Z , {Ri }i∈At t , NAcc , H ,G
az ←R {0,1}ℓN+ℓc+ℓ∅
{ai ←R {0,1}ℓN+ℓc+ℓ∅}i∈At t

ag ←R {0,1}ℓN+ℓc+ℓ∅
tz ← Saz mod NSi g

{ti ← Sai mod NSi g }i∈At t

tg ← H ag mod NAcc
tz ,{ti }i∈At t ,tg−−−−−−−−−→

c ←R {0,1}ℓc

c←−−−−−−−−−
sz ← az + crz

{si ← ai + cri }i∈At t

sg ← ag + crg
sz ,{si }i∈At t ,sg−−−−−−−−−→

Verify tz ≡ Z−c Ssz (mod NSi g )
Verify {ti ≡ R−c

i Ssi (mod NSi g )}i∈At t

Verify tg ≡G−c H sg (mod NAcc )

Algorithm 12 User Key Generation

1: function USERKEYGEN

2: return mus ←R {0,1}ℓm

3: end function
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this, the verifier can enforce forward-looking consistency and suspend the service(s) they
provided to a user. The key generation algorithm N RPGenK e y → (pkN RP , skN RP ) is further
specified in Algorithm 13.

As users need to convey secret information to the Non-Revocation Prover (NRP), the NRP
requires a public encryption key that can be used for this purpose. Let Enc = (K e yGen,
Encr y pt ,Decr y pt ) be a public-key encryption scheme. The function Enc.K e yGen(1κ) →
(pk, sk) takes the computational security parameter 1κ as input and returns a keypair (pk, sk).
A message m can be encrypted under the public key pk with Enc.Encr y pt (pk,m) → ct , re-
turning a ciphertext message. The ciphertext can be decrypted using the secret key sk using
Enc.Decr y pt (sk,ct ) → m/⊥. In this design we use RSA-OAEP scheme [5], which is IND-
CCA2 under the random oracle assumption and hardness assumption of the RSA problem.
Both are no stronger assumptions than what we already assume for other security definitions
of the credential system.

Although not part of the key generation algorithm, the NRP keeps track of revocation
handle and witness tuples (mr h , w) in the (initially empty) set N RPStor e = {}.

Algorithm 13 NRP Key Generation

1: function NRPKEYGEN

2: (pkN RP , skN RP ) ←R Enc.K e yGen(1ℓenc )
3: return (pkN RP , skN RP )
4: end function

4.3.5. Credential issuance
During credential issuance, a user receives a new credential from the issuer. Before issuance,
both parties must agree on the known attribute values {mi }∀i∈Ak that will be encoded in
the credential. Note that the known attribute values, as all attribute values, are from the
set {0,1}ℓm . Additionally, the user has user secret mus and the issuer has secret keys skI ss .
Both have access to the issuer public key pkI ss and latest RI. Issuance protocol 〈User (mus),
I ssuer (skI ss)〉(pkI ss ,RI , {mi }∀i∈Ak ) → (cr ed , w)/⊥ is specified in Protocol 14.

The issuer starts by sending a nonce n1 to the user. The issuer nonce, like the user nonce
introduced later, are used to prove freshness. The user continues by computing the partial
credential U , which includes their user secret mus . They prove that U is computed correctly
by signing the nonce n1 with a SPK. The SPK P1, U and generated nonce n2 are sent to the
issuer. The issuer verifies P1, aborting if this fails, and generates RH mr h with associated wit-
ness w . The revocation handle is chosen from the set of all revocation handles, in this design
all odd primes in {0,1}ℓm . It follows by computing a signature over the credential and proves
knowledge of the singing key with SPK P2. The signature σI ss , generated revocation handle
mr h associated witness w and SPK P2 are returned to the user. The user follows by verify-
ing P2 and checking that the generated values e,mr h are prime numbers of the appropriate
length. Next, it checks that the credential was signed correctly and the revocation handle
is contained in the accumulator. The protocol ends with the user storing the attribute val-
ues, Revocation Witness (Revocation Witness) and associated accumulator value Acc, and
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the signature itself.
For each credential the user obtains, the revocation handle mr h and witness w are sent to

the NRP. Knowledge of these is required for creating a revocation token. The NRP verifies that

the membership relation Acc
?≡ wmr h (mod NAcc ) holds and stores both values N RPStor e ←

N RPStor e ∪ (mr h , wi ). If the NRP notices that a newer RI version is published by the issuer,
it uses the revocation witness update algorithm to update the witness (see Section 4.3.9).

4.3.6. Credential verification
Using algorithm Cr edV er i f y(pkI ss ,cr ed) → tr ue/ f al se (see Algorithm 15), it can be veri-
fied that a credential — meaning a set of attributes and a signature — conforms to the length
requirements and was signed by pkI ss .

4.3.7. Credential presentation
Credentials can be used to create presentation tokens. Presentation tokens are requested
by verifiers to authenticate users that request access to a service or resource. For example,
a music subscription company may request a proof of enrolment at some university before
applying a monthly student discount requested by the user. The presentation token shows
that the user has a requested proof of enrolment credential and also provides the verifier
with a redeemable revocation token. The redeemable revocation token can be exchanged for
a revocation token at a later point in time.

The Cr edPr esent ati on(pkI ss , pkN RP ,cr ed , At tr ,npr es) → pt/⊥ algorithm is used to cre-
ate a presentation token for a credential cr ed . Beforehand, the user and verifier agree on the
set of attributes Ar that will be revealed. The verifier also specifies a presentation nonce npr es ,
which prevents replay attacks of the presentation token. The complete algorithm is specified
in Algorithm 16.

The algorithm starts by creating a commitment (see Section 2.3) to the RH mr h in the cre-
dential. This commitment is later used to tie revocation tokens to the RH from this credential.
As the NRP also needs to open the commitment, both mr h and r1 are encrypted under the
public encryption key pkN RP . The ciphertext ct together with the commitment Cr h is called
a redeemable revocation token (r r t ). After computing the r r t , the algorithm follows a reg-
ular idemix credential presentation [49]. This involves randomizing the credential signature
(A,e, v) and computing a SPK that proves the credential is signed by the issuer and contains
the revealed attributes. It also proves that the value committed to in Cr h equals the value
of the revocation handle mr h . The SPK is used to sign the nonce npr es . See Protocol 17 for
details on this protocol, as well as the following section(s). At the end of the algorithm, the
presentation token pt is returned.

Presentation tokens can be verified using the V er i f yCr edPr esent ati on(pkI ss , pt , At tr ,
npr es) → tr ue/ f al se algorithm specified in Algorithm 18.

4.3.8. Credential revocation
Credentials are revoked to prevent a verifier from relying on them during or after authenti-
cation. In our design, the issuer is responsible for revoking credentials. One reason that the
issuer may decide to revoke a credential, is when the encoded attributes have changed or
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Protocol 14 Credential issuance

User Public Issuer
mus {mi }∀i∈Ak

pkI ss = (pkSi g , pkAcc ,σI ssK e yGen)
RI = (Acc,mr evoked ) skSi g , skAcc

n1 ←R {0,1}ℓ∅
n1←−−−−−−−−−

v ′ ←R {0,1}ℓN+ℓ∅
U ← Sv ′

Rmus
us mod NSi g

P1 ← SPK {(v ′,mus) :
U ≡ Sv ′

Rmus
us (mod NSi g )⋀︁

mus ∈ {0,1}ℓm+ℓ∅+ℓc+1

}(n1)

n2 ←R {0,1}ℓ∅
U ,P1,n2−−−−−−−−−→

Verify P1

mr h ←R [2ℓr h−1,2ℓr h −1] s.t. mr h is an odd prime

w ← Accm−1
r h mod #QRN Acc mod NAcc

prime e ←R [2ℓe−1,2ℓe−1 +2ℓe′−1]
ṽ ←R {0,1}ℓv−1

v ′′ ← 2ℓv−1 + ṽ
Q ← Z

U Sv ′′Rmr h
r h

∏︁
∀i∈Ak

R
mi
i

mod NSi g

A ←Qe−1 mod #QRN Si g mod NSi g

σI ss ← (A,e, v ′′)

P2 ← SPK {(e−1) :

A ≡Qe−1
(mod NSi g )}(n2)

mr h ,w,σI ss ,P2←−−−−−−−−−
Verify e ∈ [2ℓe−1,2ℓe−1 +2ℓe′−1] and is prime
v ← v ′′+ v ′

Q ← Z
Sv

∏︁
i∈A R

mi
i

mod NSi g

Qˆ︁ ← Ae mod NSi g

Verify P2

Verify Q =Qˆ︁
Verify mr h ∈ [2ℓr h−1,2ℓr h −1] and is prime
Verify Acc ≡ wmr h (mod NAcc )
Store cr ed ← ((A,e, v), {mi }i∈At t ), w
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Algorithm 15 Credential Verification

1: function CREDVERIFY(pkI ss ,cr ed)
2: (pkSi g , pkAcc ,σI ssK e yGen) ← pkI ss

3: (At t , NSi g ,S, Z , {Ri }i∈At t ) ← pkSi g

4: ((A,e, v), {mi }i∈At t ) ← cr ed

5: for a ∈ At t do
6: if ma ∉ {0,1}ℓm then
7: return f al se
8: end if
9: end for

10: if mr h ∉ [2ℓr h−1,2ℓr h −1] then
11: return f al se
12: end if
13: if e ∉ [2ℓe−1,2ℓe−1 +2ℓe′−1] or e is not prime then
14: return f al se
15: end if
16: if Z ̸≡ Ae Sv Rmus

us Rmr h

r h

∏︁
i∈At t Rmi

i (mod NSi g ) then
17: return f al se
18: end if

19: return tr ue
20: end function
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Algorithm 16 Credential Presentation Token Generation

1: function CREDPRESENTATION(pkI ss , pkN RP ,cr ed , At tr ,npr es)
2: (pkSi g , pkAcc ,σI ssK e yGen) ← pkI ss

3: (At t , NSi g ,S, Z , {Ri }i∈At t ) ← pkSi g

4: (NAcc ,G , H) ← pkAcc

5: ((A,e, v), {mi }i∈At t ) ← cr ed

6: if CREDVERIFY(pkI ss ,cr ed) ̸= tr ue then
7: return ⊥
8: end if

9: oCom ←R {0,1}ℓN+ℓ∅
10: Cr h ←Gmr h H oCom mod NAcc

11: ct ← ENC.ENCRYPT(pkN RP , mr h ||oCom)
12: r r t ← (Cr h ,ct )

13: r A ←R {0,1}ℓN+ℓ∅
14: A′ ← ASr A mod NSi g

15: v ′ ← v −er A

16: σpr es ← SPKCr edPr esent ati on{(e, v ′,mus ,mr h , {mi }i∉At tr ,oCom) :
Z∏︁

i∈At tr R
mi
i

≡ A′e Sv ′
Rmus

us Rmr h

r h

∏︁
i∉At tr

Rmi

i (mod NSi g )⋀︁
e −2ℓe−1 ∈ {0,1}ℓ

′
e+ℓ∅+ℓc+1⋀︁

Cr h ≡Gmr h H oCom (mod NAcc )⋀︁
{mi ∈ {0,1}ℓm+ℓ∅+ℓc+1}i∉At tr⋀︁
mus ∈ {0,1}ℓm+ℓ∅+ℓc+1⋀︁
mr h ∈ {0,1}ℓr h+ℓ∅+ℓc+1

}(npr es)
17: return pt ← (A′, {mi }i∈At tr ,σpr es ,r r t )
18: end function
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Protocol 17 PKCr edPr esent ati on

Prover Public Verifier
e, v ′,mus ,mr h , {mi }i∉At tr ,rCom pkI ss , A′, {mi }i∈At trr ,Cr h

{ri ←R {0,1}ℓm+ℓc+ℓ∅}i∉At tr

rus ←R {0,1}ℓm+ℓc+ℓ∅
rr h ←R {0,1}ℓr h+ℓc+ℓ∅
re ←R {0,1}ℓ

′
e+ℓc+ℓ∅

rv ′ ←R {0,1}ℓv+ℓc+ℓ∅
rc ←R {0,1}ℓn+ℓc+ℓ∅
tcr ed ← A′re Srv ′ Rrus

us Rrr h

r h

∏︁
i∉At tr

Rri

i mod NSi g

tcom ←Grr h H rc mod NAcc
tcr ed ,tcom−−−−−−−−−→

c ←R {0,1}ℓc

c←−−−−−−−−−
{si ← ri + cmi }i∉At tr

sus ← rus + cmus

sr h ← rr h + cmr h

sc ← rc + crCom

se ← re + c(e −2ℓe−1)
sv ′ ← rv ′ + cv ′

{si }i∈At tr ,sus ,sr h ,sc ,se ,sv ′−−−−−−−−−→
Verify {si ∈ {0,1}ℓm+ℓc+ℓ∅+1}i∈At tr

Verify sus ∈ {0,1}ℓm+ℓc+ℓ∅+1

Verify sr h ∈ {0,1}ℓr h+ℓc+ℓ∅+1

Verify se ∈ {0,1}ℓ
′
e+ℓc+ℓ∅+1

B ← Z
(A′)2ℓe−1 ∏︁

i∉At tr R
mi
i

mod NSi g

Verify tcr ed ≡ B−c A′se Ssv ′ R sus
us R sr h

r h

∏︁
i∈At tr

R si

i (mod NSi g )
Verify tcom ≡C−c

r h G sr h H sc (mod NAcc )

Algorithm 18 Verify Credential Presentation Token

1: function VERIFYCREDPRESENTATION(pkI ss , pt , At tr ,npr es)
2: (A′, {mr }r∈At tr ,σpr es ,r r t ) ← pt
3: (Cr h ,ct ) ← r r t
4: verify {mr ∈ {0,1}ℓm }r∈At tr

5: return verify σpr es ▷ See Protocol 17
6: end function
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turned out to be incorrect. Another reason may be that the issuer no longer wants a user to
use the credential.

To revoke revocation handle mr h and produce new Revocation Information (RI) RIi+1,
the algorithm Cr edRevoke(pkI ss , skI ss ,RIi ,mr h) → RIi+1 = (Acci+1,mr h/⊥ is used. This al-
gorithm is specified in Algorithm 20.

During credential issuance, a RH mr h generated by the issuer is encoded in the creden-
tial. At the same time, the user is provided with a Revocation Witness (Revocation Witness)
that can be used to prove the handle is contained in the accumulator value Acc. By removing
the handle mr h from the accumulator, its membership can no longer be proven by a user.
(A credential user cannot update their witness if the revocation handle is removed from the
accumulator, nor is it able to compute a witness by itself.) After removing the handle, the
issuer publishes the new accumulator and updates the set of revoked handles. The set of re-
voked handles is used by other users to update their witness, see Section 4.3.9. The algorithm
specified in Algorithm 19 follows that of the CL-RSA-B accumulator [3].

Algorithm 19 Credential Revocation [3]

1: function CREDREVOKE(pkI ss , skI ss ,RIi ,mr h)
2: (pkSi g , pkAcc ,σI ssK e yGen) ← pkI ss

3: (skSi g , skAcc ) ← skI ss

4: NAcc ← pkAcc

5: (p ′, q ′) ← skAcc

6: (Acc,Revoked H andl e) ← RIi

7: if mr h ∉ [2ℓr h−1,2ℓr h −1] or not prime then
8: return ⊥
9: end if ▷ Verify mr h is a revocation handle

10: Acci+1 ← Accm−1
r h mod p ′q ′

mod NAcc ▷ #QRNAcc = p ′q ′

11: return RIi+1 ← (Acci+1,mr h)
12: end function

4.3.9. Revocation witness update

Each time a credential is revoked, a new accumulator value is computed. When the accu-
mulator value changes, the previously computed witness w can no longer be used to prove
membership of mr h in the new accumulator value.

The algorithm RevW i tnessUpd ate(pkI ss ,mr h , wi−1, Acci−1,RIi ) → wi /⊥, specified in
Algorithm 20, computes the witness value for a new accumulator version. (Provided that the
credential in question is not the one getting revoked.) It follows the algorithm specified for the
CL-RSA-B accumulator [3]. Note that witness updates are linear in the number of revocations
and do not depend on the total number of credentials.

When the NRP uses the witness update algorithm to update the set N RPStor e, it replaces
the witness in each tuple with the output of the algorithm.
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Algorithm 20 Revocation Witness Update [3]

1: function REVWITNESSUPDATE(pkI ss ,mr h , wi−1, Acci−1,RIi )
2: (pkSi g , pkAcc ,σI ssK e yGen) ← pkI ss

3: (Acci ,mr evoked ) ← RIi

4: if mr h = mr evoked then
5: return ⊥
6: end if
7: Compute Bézout coefficients b,c s.t. bmr h + cmr evoked = 1
8: wi ← wc

i−1 Accb
i−1 mod NAcc

9: return wi

10: end function

4.3.10. Credential status update

The defining aspect of forward-looking consistency is that a verifier can determine the re-
vocation status of a credential that was presented before. The verifier can contact the NRP,
provide a redeemable revocation token obtained from a presentation token and ask if the cre-
dential is still unrevoked. The NRP can compute a revocation token attesting to the fact that
it was not, if that is indeed the case. The verifier can contact the NRP at a decision moment,
when it is possible to take action if the earlier presented credential turn out to be revoked.
In the example of subscription discounts, when the company sends out a monthly invoice it
can use this moment to check if the criteria for a discount are still met or if these should no
longer be applied. This is checked by verifying that the presented credential was not revoked.

The NRP uses the Cr edSt atusUpd ate(pkI ss ,RI ,r r t , pkN RP , skN RP , N RPStor e,nr r t ) →
r t/⊥ algorithm to compute a revocation token r t for a redeemable revocation token r r t .
The NRP received a witness from the user after credential issuance and stored this in the
N RPStor e (see Section 4.3.5). The NRP also kept the witness up-to-date when newer ver-
sions of the RI were published. The algorithm is given in Protocol 21.

After receiving a nonce nr r t ∈R {0,1}ℓ∅ and redeemable revocation token ciphertext ct
from a verifier, the NRP begins by decrypting the ciphertext ct . If decryption fails or the
encrypted RH is not known in N RPStor e, the algorithm aborts. The NRP continues with re-
constructing the commitment Cr h . Following the (re)construction of the commitment, two
other commitments are made to the witness and the randomizer of the witness commitment.
These commitments and the β,δ values are used in the SPK proof of membership. The sig-
nature proof-of-membership follows that of [14] and is used to sign the nonce nr r t .

The revocation token can be verified using the Cr edSt atusV er i f y(pkI ss ,C ′
r h ,r t ) → tr ue

/ f al se algorithm, specified in Algorithm 22. In addition to the revocation token r t , it also
takes the commitment C ′

r h from the earlier presentation token and nonce nr r t as input. The
commitment from the stored r r t is used to verify signature σCr edSt atusUpd ate .
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Algorithm 21 Credential Status Update

1: function CREDSTATUSUPDATE(pkI ss ,RI ,ct , pkN RP , skN RP , N RPStor e,nr r t )
2: (pkSi g , pkAcc ,σI ssK e yGen) ← pkI ss

3: NAcc ← pkAcc

4: Acc ← RI
5: d ← Enc.Decr y pt (skN RP ,ct )
6: if d =⊥ then
7: return ⊥
8: end if
9: mr h ||r1 ← d

10: (mr h , w) ∈ N RPStor e, if this tuple does not exist, output ⊥.
11: Cr h ←Gmr h H r1 mod NAcc

12: r2 ←R {0,1}ℓN+ℓ∅
13: r3 ←R {0,1}ℓN+ℓ∅
14: β← mr hr2

15: δ← mr hr3

16: Cw ← w H r2 mod NAcc

17: Cr ←Gr2 H r3 mod NAcc

18: σCr edSt atusUpd ate ← SPK {(mr h , w,r1,r2,r3,β,δ) :
Cr h ≡Gmr h H r (mod NAcc )⋀︁

mr h ∈ {0,1}ℓr h+ℓ∅+ℓc+1⋀︁
Cr ≡Gr2 H r3 (mod NAcc )⋀︁
Acc ≡C mr h

w ( 1
G )β (mod NAcc )⋀︁

1 ≡C mr h
r ( 1

G )β( 1
H )δ (mod NAcc )

}(nr r t )

19: return r t ← (Cw ,Cr ,σCr edSt atusUpd ate )
20: end function

Algorithm 22 Credential Status Verify

1: function CREDSTATUSVERIFY(pkI ss ,RI ,Cr h ,r t ,nr r t )
2: (Cw ,Cr ,σCr edSt atusUpd ate ) ← r t
3: return verify σCr edSt atusUpd ate ▷ See Appendix A of [14]
4: end function
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4.4. Security analysis
4.4.1. Correctness
The PABC-FLC design satisfies correctness, which can be seen from the following observa-
tions. The system parameter generation SPGen algorithm and other key generation algo-
rithms I ssK e yGen, N RPK e yGen, User K e yGen do not abort. Credential users can run Pro-
tocol 14 with the credential issuer to obtain a credential. The protocol does not abort if both
parties behave honestly. The Cr edPr esent ati on algorithm can be used to compute a pre-
sentation token and does not abort if the issuer key is generated correctly and the creden-
tial is obtained through the credential issuance protocol. Following the completeness of the
SPKCr ed I ssuance , the resulting presentation token always returns true when verified using
V er i f yCr edPr esent ati on and if the same pkI ss , At tr , npr es values are used. The creden-
tial issuer, having knowledge of pkI ss , can revoke a revocation handle, generated during the
credential issuance protocol, using the Cr edRevoke algorithm. The witness w for a previ-
ously unrevoked credential cr ed and revocation information RIi can be used to compute
a witness for RIi+1 using the RevW i tnessUpd ate algorithm, provided that the revocation
handle in the credential is not the one that was revoked. The Cr edSt atusUpd ate algo-
rithm always computes a revocation token if the ciphertext ct from the presentation token
was computed correctly and the revocation handle is contained within the most recent ver-
sion of the accumulator (i.e. the credential is unrevoked). Note that an honest credential user
sends a witness for the membership relation to the NRP after the credential issuance proto-
col. Finally, the verification algorithm Cr edSt atusV er i f y alway returns true for revocation
tokens computed using Cr edSt atusUpd ate, provided the same pkI ss , RI , r r t and nonce
nr r t are used.

4.4.2. Credential unforgeability
The unforgeability of the Camenisch-Lysyanskaya signatures relies on the Strong RSA as-
sumption, as proven in [12].

4.4.3. Presentation token unforgeability
Theorem 1. The PABC-FLC credential system has presentation token unforgeability under the
Strong RSA assumption in the random oracle model.

Proof (sketch). In this proof sketch we argue that any PPT adversary, without knowledge of
the issuer secret key, has negligible probability to forge presentation tokens. Consider the
I ssK e yGen algorithm. Per the statistical zero-knowledge property of the PK I ssK e yGen pro-
tocol [44], this signature can always be simulated and gives the adversary no additional in-
formation about the secret keys of the issuer. Consider the credential issuance protocol. A
user proves knowledge of their user secret mus using SPKP1 , if this fails, the protocol aborts.
The adversary has only negligible probability in ℓn ,ℓc to produce a valid SPKP1 , assuming
the Strong RSA assumption holds, in the random oracle model and provided that the prover
(user) is not aware of the factorization of NSi g . The user secret is encoded in a credential by
the issuer, along with a revocation handle and the other agreed upon attributes. The rest of
the protocol does not abort if the issuer is honest and end with the user receiving a signed
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credential. Consider the Cr edPr esent ati on algorithm. Any adversary that wants to forge a
presentation token is required to provide a valid SPKCr edPr esent ati on . The SPK proves that the
prover knows a credential with the specified attributes, the credential is signed by the issuer
and that the commitment Cr h contains the value mr h from the credential. Note that these
attributes also include the user secret attribute. As we assume that users do not share their
user secret with others, this proves that the presented credential was issued to the same user
that computes the presentation token. The adversary has only negligible probability in ℓn ,ℓc

to produce a valid SPKCr edPr esent ati on , assuming the Strong RSA assumption holds, in the
random oracle model and provided that the prover (user) is not aware of the factorizations
of NSi g and NS Acc . Since the signature scheme is unforgeable under the Strong RSA assump-
tion, the adversary has a negligible probability to produce a valid SPKCr edPr esent ati on , except
for when it has a credential signed by the issuer, the credential contains the user secret of
the user, the credential contains the revealed attributes and the commitment contains the
revocation handle mr h .

4.4.4. Revocation token unforgeability
Theorem 2. The PABC-FLC credential system has revocation token unforgeability under the
Strong RSA assumption in the random oracle model.

Proof (sketch). Like the unforgeability of presentation tokens, we argue that any PPT, with-
out knowledge of the issuer secret key, has negligible probability to forge presentation tokens.
Recall that for unforgeability, the issuer is trusted but the NRP is not. Also recall that the NRP
has a list of revocation witnesses and keeps these up-to-date when the issuer publishs a new
version of the RI. Consider the redeemable revocation token r r t = (Cr h ,ct ). The verifica-
tion algorithm uses Cr h to verify SPKCr edSt atusUpd ate . This ensures that the commitment
used by the NRP equals that of the r r t . The algorithm aborts if this is not the case. The
binding property of the commitment, which holds under the integer factorization assump-
tion [27], means the committed value is the revocation handle from the presented credential.
Consider SPKCr edSt atusUpd ate . The SPK proves that the value committed to in Cr h is con-
tained in the accumulator of the given RI [14]. A prover (the NRP) can cheat the protocol with
negligible probability in ℓn ,ℓc , assuming the Strong RSA assumption holds, in the random
oracle model and provided that the prover (NRP) is not aware of the factorization of NAcc .
Soundness of the CL-RSA-B accumulator [3] states that computing a (new) witness for the
proof-of-membership relation is not possible when the revocation handle gets revoked in a
(new) version of the accumulator. This means that if the issuer revokes a credential, the NRP
is no longer able to prove membership in the accumulator. If the NRP does not know a wit-
ness for the revocation handle, it aborts the protocol. We conclude that the adversary has
negligle chance in ℓn ,ℓc to forge revocation tokens, assuming the hardness of the Strong RSA
assumption (see Section A.1.2) and in the random oracle model [6].

4.4.5. Presentation token privacy
Theorem 3. The PABC-FLC credential system has presentation token privacy in the random
oracle model under the RSA assumption.

Proof. We show that a PPT adversary is unable to make a distinction between two presenta-



46 4. The PABC-FLC credential system design

tion tokens pt , pt ′. Recall a presentation token as pt = (A′, {mi }i∈At tr ,σpr es ,r r t ). Per defini-
tion, the set of revealed attributes is empty At tr =∅.

First, we focus on the redeemable revocation token r t t = (Cr h ,ct ). The encryption al-
gorithm Enc (RSA OAEP) provides ciphertext indistinguishability under chosen plain text at-
tacks in the random oracle model under the RSA assumption. As the adversary does not know
skN RP , the ciphertexts ct ,ct ′ in the two tokens are indistinguishable from eachother. There-
fore, ct cannot be used to distinguish between the (adversarially generated) values mr h ,m′

r h .
Cr h and C ′

r h are both statistically hiding commitments when G ∈ 〈H〉 [27]. This is assured
during the generation of the presentation tokens, as any algorithm using the (adversarially
generated) issuer public key pkI ss implicitly verifies σI ssK e yGen . The (possibly malicious) is-
suer has negligible probability to produce a forged signature σI ssK e yGen if ℓc is chosen large
enough.

We continue with A′ ← ASr A mod NSi g . Although A is part of the credential provided
by the adversary, it is verified that the credential is valid and therefore that A ∈ 〈S〉. With
r A ∈ {0,1}ℓN+ℓ∅ , Sr A is taken statistically indistinguisable from the order of S. A′ is therefore
also indistinguishable from any other element of 〈S〉, like all other (valid) credentials.

We continue withσpr es . Aside from A′,Cr h , the other public input values to the SPK come
from the same pkI ss . The message that is signed in the SPK variant is per definition the same.
Completeness and (honest-verifier) statisical zero-knowledge of the PKCr edPr esent ati on pro-
tocol is easy to see, provided that the prover is convinced that Z ,S, {Ri }i∈At t ∈ 〈S〉. As de-
scribed earlier, the adversary is able to convince the prover that this is the case only with
negligible probability in ℓc .

Given that the two presentation token(s) are indistinguishable from other (valid) presen-
tation tokens, the best guess of the adversary on which credential was used, is now limited to
a random guess of 1

2 , plus a negligible function in terms of the security parameter(s).

4.4.6. Revocation token privacy
Theorem 4. The PABC-FLC credential system has revocation token privacy in the random or-
acle model under the RSA assumption.

Proof. This proof follows that of presentation token privacy by showing that the distributions
of two (valid) revocation tokens are indistinguishable from eachother. Recall revocation to-
kens as r t = (Cw ,Cr ,σCr edSt atusUpd ate ). Also recall that the adversary knows cr ed0,cr ed1,RI
as it generated these. Like before, the set of revealed attributes is empty, pkI ss , pkN RP ,RI
are the same, and the nonces are equal per definition. Per Theorem 3, the distribution of
pt0, pt1 is equal for all (valid) credentials in the random oracle model and assuming the RSA
assumption. Both credentials are clearly unrevoked, because r t0 ̸= ⊥,r t1 ̸= ⊥.

If we focus on Cw ,Cr , both variables are statistically hiding commitments. As for Cr h , part
of the presentation token, the prover is assured that the commitments are hiding ifσI ssK e yGen

verifies. The adversary has a negligible probability in ℓc to cheat this SPK since pt0 ̸= ⊥, pt1 ̸=
⊥.

Moving on toσCr edSt atusUpd ate , indistinguishability of this variable depends on the (honest-
verifier) statistical zero-knowledge of PKCr edSt atusUpd ate . This protocol follows that of [14],
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Mechanism FLC Unlinkable Untraceable RI (size/freq) Online
CRL [37] ✓ ✗ ✗ R / R V
OCSP [38] ✓ ✗ ✗ ✗ I, V
VE [16] ✓ ✓ ✗ ✗ I, V
N-times [10] ✗ ✓ ✗ R × U / E V
Braavos [3] ✗ ✓ ✓ 1 / R U, V
ADNMP [1] ✓ ✓ ✗ 1 / R U, V
PABC-FLC ✓ ✓ ✓ 1 / R NRP, V

Table 4.1: Comparison of the PABC-FLC design with related work.

but differs in that we do not have an additional commitment to mr h . Showing statistical
zero-knowledge follows the standard technique, see Section 2.2 for more details.

4.4.7. A comparison with related work
We give a brief comparison between the presented PABC-FLC design and related work, as
described in Section 3. Remember first of all that we introduced a new role in the credential
system, the NRP. We assume that the NRP does not collude with either the issuer or any veri-
fier, as doing so breaks the multi-show unlinkability and untraceability properties (both cap-
tured in the privacy definitions). We also require that the NRP can be contacted at any time
to produce a new credential status update. At the same time, the user is no longer required
to keep track of the revocation witness and can remain offline after credential issuance. The
RI size and update frequency are equal to the Braavos construction, which is also used in the
PABC-FLC credential system. Given that a verifier can contact the NRP for a new revocation
token, proving that a credential is not revoked in a newer version of the RI, our design also
satisfies the forward-looking consistency requirement. A full comparison is given in Table
4.1.





5
Performance evaluation

5.1. Introduction
As part of this research, we also take a look at the experimental runtime of the PABC-FLC
credential system. We do so by comparing the PABC-FLC design, which provides forward-
looking consistency, against a regular credential system. We consider our PABC-FLC design
without revocation as regular credential system. This comparison gives a clear indication of
the overhead incurred from the revocation mechanism with forward-looking consistency.

The proof-of-concept implementation used in the experiments is written in Go 1.14 [50]
and makes use of the standard Go big integer implementation. Our implementation uses
the safe prime generation algorithm of [48], but otherwise matches the algorithm and pro-
tocol descriptions of this work. (Unfortunately, we were unable to use other parts of the
research library described in [48], as this required significant changes to the implementa-
tion. Nonetheless, we do appreciate the effort of the authors to facilitate further research
on privacy-preserving cryptography.) The system parameters are based on those of idemix
[49], with the addition of ℓenc = 3072. The runtime measurements were performed on a lap-
top with an Intel Core i7-7560U @ 2.40GHz CPU and 16 GB of RAM, using the standard Go
benchmarking functions.

We compare the runtime of the two credential systems for following algorithms and pro-
tocols: issuer key generation, credential issuance, creating presentation tokens and verifying
presentation tokens. We also measure the runtime of creating and verifying revocation to-
kens, which do not exist in a standard credential system.

5.2. Issuer key generation
Runtime measurements of the I ssK e yGen algorithm indicate the (one time) cost for the is-
suer. We measure the average runtime of 10 executions and consider both our credential
system and a standard credential system without revocation mechanism. As the number
of attributes in a credential can influence the runtime, we considered two scenarios. One
without attributes in the credential, the other with 20 additional attributes. Note that these
numbers does not include the user secret and revocation handle attributes. The results are
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given in Table 5.1. Recall that the issuer needs to find suitable primes for the RSA modulus,
which is expected to contibute to a high runtime. The addition of the revocation mechanism
is expected to double this, due to the generation of the additional RSA modulus for the re-
vocation mechanism. The measurements clearly show that adding a revocation mechanism
adds to the setup cost for the issuer, which is at least doubled in runtime in both cases. At
the same time there is a decrease in overhead percentage in the credential with 20 attributes,
which indicates a smaller but linear cost of additional attributes. We consider the increase
in runtime reasonable, as the issuer is expected to run the algorithm only once and before it
begins to issue credentials.

Table 5.1: Runtime measurements issuer key generation

Attributes Regular credential system PABC-FLC Difference
0 15.6 sec 34.7 sec +19.1 sec (+122%)

20 17.5 sec 36.0 sec +18,5 sec (+106%)

5.3. Credential issuance
To measure the runtime of credential issuance, we compare our credential system with a reg-
ular credential system. Additionally, we vary the number of attributes from 0 to 20 in steps
of 5. The measurements are the average runtime of 50 executions of the credential issuance
protocol. The results are given in Table 5.2. Recall that the issuance protocol includes prime
number generation for both the credential signature and, if the revocation mechanism is
used, the revocation handle. The results indicate no clear difference between the two cre-
dential systems, which is considerd surprising given the additional work on both the issuer
and user side of the protocol. This may be explained by the work already required in a regular
credential system, for example signing the credential. We conclude that our design does not
influence the runtime of credential issuance compared to a regular credential system.

Table 5.2: Runtime measurements credential issuance

Attributes Regular credential system PABC-FLC Difference
0 448 ms 405 ms -43 ms (-10%)
5 413 ms 537 ms +124 ms (+30%)

10 539 ms 511 ms -28 ms (-5%)
15 640 ms 643 ms +3 ms (0%)
20 640 ms 672 ms +32 ms (+5%)

5.4. Presentation token generation and verification
When measuring the runtime of the Cr edPr esent ati on algorithm in the two credential sys-
tems, we also vary the number of credential attributes from 0 to 20. The measurements were
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obtained by averaging the runtime of 50 CredPresentation algorithm executions and are given
in Table 5.3. During the presentation, we do not reveal any attributes. Since revealing an at-
tribute is faster than not revealing it, the scenario of not revealing any attribute exemplifies
the worst case scenario. The results indicate that both the number of attributes and the revo-
cation mechanism have a clear influence on the runtime. Like the original idemix credential
system, the runtime increases with the number of attributes in the credential. Our PABC-FLC
credential system additionally adds 20 ms to each presentation. This is a 32% increase for
credentials without (additional) attributes, but this overhead percentage decreases for cre-
dentials with more attributes.

Table 5.3: Runtime measurements credential presentation

Attributes Regular credential system PABC-FLC Difference
0 59 ms 78 ms +19 ms (+32%)
5 72 ms 92 ms +20 ms (+28%)

10 85 ms 105 ms +20 ms (+24%)
15 99 ms 119 ms +20 ms (+20%)
20 111 ms 134 ms +23 ms (+21%)

Presentation tokens are verified using the V er i f yCr edPr esent ati on algorithm. We
consider the same scenarios as before and take the average runtime of 50 runs of the al-
gorithm. The results are given in Table 5.4. Similar to the previous results on generating
presentation tokens, we see that verifying a token takes about the same time. Also similar, is
that the PABC-FLC design adds about 20 ms to the runtime, regardless of the number of at-
tributes in a credential. Compared to additional runtime of more credential attributes, which
is 2,75 ms per attribute, the cost of adding a revocation mechanism is similar to the addition
of 7-8 credential attributes. We consider this a reasonable increase for both algorithms.

Table 5.4: Runtime measurements credential presentation verification

Attributes Regular credential system PABC-FLC Difference
0 58 ms 78 ms +20 ms (+34%)
5 73 ms 91 ms +18 ms (+25%)

10 86 ms 104 ms +18 ms (+21%)
15 100 ms 119 ms +20 ms (+20%)
20 112 ms 132 ms +20 ms (+18%)

5.5. Additional algorithms
The PABC-FLC credential system adds several algorithms not used in a regular credential sys-
tem. , we make no comparison to a regular credential system, but do measure their runtime.

The Cr edSt atusUpd ate algorithm used by the NRP has an average runtime of 85 ms (50
runs). Verifying revocation tokens, using the V er i f yCr edSt atusUpd ate algorithm, takes
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on average 55 ms (50 runs). Both of these are considered reasonable compared with, for
example, verifying a presentation token (78+ ms).



6
Discussion and future work

6.1. Discussion
This thesis started out by asking how a PABCS can be used in situations that require forward-
looking consistency. This work, especially the PABC-FLC design, provides new insights to an-
swer previously unanswered research questions. In this discussion, we return to the research
questions formulated in the introduction. We revisit each question and give an answer based
on the results of this work. But before answering these research questions, we first discuss
the results and limitations of this work.

This work presents the PABC-FLC design. To the best of our knowledge, this is the first
Privacy-preserving Attribute-Based Credential System (PABCS) to provide forward-looking
consistency. The PABC-FLC design shows that PABCSs can be used in situations that require
this strong consistency level.

We also describe why existing revocation mechansisms are unable to provide both forward-
looking consistency and privacy. This is because we assume a possible collusion between the
issuer and verifier(s), and because we assume that users remain offline after a credential pre-
sentation. In this setting, where the issuer also acts as the Revocation Authority (RA), no
solution can satisfy all of these requirements (see Section 4.2.7).

The PABC-FLC design (see Chapter 4) avoids this impossibility by introducing a new role
in the credential system, the NRP. This new participant does not affect the unforgeability of
credentials or credential presentations, meaning that neither the issuer nor the verifiers need
to trust the NRP to behave honestly. Credential users however, do need to trust the NRP as
otherwise their privacy is not guaranteed. This raises the question of who would be trusted by
all users. Considering that most users already trust a software implementation of the creden-
tial system to work as intended, one suggestion is to have the organization developing this
software run the NRP. In the future work section, we elaborate on other approaches. For ex-
ample by having multiple NRPs in the system or by reconsidering the assumption that users
remain offline.

The introduction of the NRP is argueably the most influential design decision that was
made. We will briefly describe the other decisions made in the PABC-FLC design. We build
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on the idemix credential system as this is one of the few that supports multi-show creden-
tials. Furthermore, quite a few revocation mechanisms were designed specifically to work
with this credential system. One of these revocation mechanisms is the Braavos accumula-
tor, a state-of-the-art accumulator that achieves the lowerbound of required witness updates.
Both idemix and the Braavos accumulator do not require a trusted setup, outside the veri-
fier trusting the issuer, which sets them apart from other credential systems and revocation
mechanisms. The choice to use RSA-OAEP as the encryption algorithm stems from the RSA
assumption the scheme requires. This is a weaker assumption compared to the Strong RSA
assumption of the idemix credential system, meaning the unforgeability of the system does
not require any additional hardness assumption(s).

The security assumptions mentioned in the previous paragraph also play a role in the
security definitions and analysis. Previous work, especially [21], provide formal definitions
on the unforgeability and privacy of a PABCS. Unfortunately, the introduction of the NRP
prevents us from using the definitions and results of this work. Additionally, we wanted to
avoid the trusted setup that is assumed in this work. Given the limited time and scope of this
thesis, we decided to use less formal definitions than those specified in earlier work. Likewise,
we only provide a proof sketch on the unforgeability definitions.

In the performance evaluation (see Chapter 5), we compare our proof-of-concept imple-
mentation against the same implementation without revocation mechanism. We consider
this a fair comparison as our goal is to show that the PABC-FLC design can be used instead
of a credential system that does not provide forward-looking consistency. A comparison
of our proof-of-concept implementation, which lacks performance optimizations, against
other implementations would also prevent us from reliably computing the additional over-
head incurred. Furthermore, performance results from related work cannot be compared
directly with ours as the environment (smartcard, laptop, server) of the experiments differs.

After discussing the results and limitations of this work, we return to the research ques-
tions we set out to answer.

RQ1 How can a revocation mechanism be used to determine the revocation status of an
earlier presented credential?

To answer this question, we conducted a literature survey on existing revocation mecha-
nisms (see related work, Section 3). Existing mechanisms implicitly assume that the verifier
determines the revocation status of a credential when one is presented to them. In this work,
we consider situations in which the verifier needs to determine the revocation status at a mo-
ment after the credential is presented. Since the revocation status of a credential can change
over time, from unrevoked to revoked, the revocation status at this later moment can differ
from the revocation status at presentation time.

Although the existing revocation mechanisms can be used to determine the revocation
status of a credential at presentation time, not all of them can be used after that moment.
Specifically the Braavos accumulator and “N-times unlinkable proofs” mechanisms cannot
be used this way, because a verifier can only determine if a credential is revoked in one spe-
cific version of the Revocation Information (RI). The other revocation mechanisms allow the
verifier to either contact the issuer for the revocation status of a credential (OCSP, VE), or pro-
vide the verifier with information that can be used to check the revocation in newer versions
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of the RI (CRL, ADNMP). We conclude that a revocation mechanism must do either of these,
if it wants to provide forward-looking consistency. The PABC-FLC design allows the verifier
to contact the NRP, which returns the revocation status of a credential in a verifiable manner.

RQ2 How do revocation mechanisms remain privacy-preserving in the context of multi-
show credentials?

Multi-show credentials are credentials that can be presented multiple times. We consider
these credentials privacy-preserving if they are multi-show unlinkable. Unlinkable means
that a verifier is unable to link a credential presentation to one of two credentials. Multi-
show unlinkable means that it is not possible to determine if two different presentations were
generated by the same credential. Regarding revocation mechanisms, this means that any
information revealed during a credential presentation must be multi-show unlinkable. This
immediately excludes any mechanism that reveals a single unique identifier to the verifier.

The revocation mechanisms that are multi-show unlinkable, take one of the follow ap-
proaches: (1) The credential presentation contains a ciphertext of the RH and requires an-
other participant to decrypt the ciphtertext and return the revocation status of the creden-
tial. This is how Verifiable Encryption (VE) works. (2) The credential presentation contains
a pseudonym derived from the RH. This is how the “N-times unlinkable proofs” mechanism
works. (3) The credential presentation contains a proof-of-knowledge that the RH is (not)
contained in the set of (un)revoked handles. This is how the accumulator mechanisms work.
The PABC-FLC design combines the first and last approach. A redeemable revocation to-
ken given to the verifier, as part of the credential presentation, consists of a ciphertext and
statistically-hiding commitment. The revocation token, returned to the verifier by the NRP,
is a (zero-knowledge) Signature Proof-of-Knowledge (SPK) that only reveals that a credential
is revoked. Neither the redeemable revocation tokens nor the revocation tokens can be linked
to a specific credential by a verifier (or issuer).

RQ3 How does a revocation mechanism remain untraceable when the issuer and verifier
collude?

The untraceability of the revocation mechanisms means that the issuer cannot link a cre-
dential presentation to a specific credential (issuance moment). Since we are interested in
a revocation mechanism that works for all verifiers (global) and allows the issuer to revoke a
credential (“issuer-driven”), this requires the use of a RH that allows the issuer to identify the
credential it wants to revoke. As a consequence, credential presentations should not contain
any information that can be linked to this RH. This excludes mechanisms that reveal the RH
directly (CRL, OCSP) or indirectly in a way that still allows the issuer to link it to the RH (VE,
N-Times).

The cryptographic accumulators are untraceable, since they use a zero-knowledge proof-
of-membership that only proves the RH is not revoked. The homomorphic ADNMP accu-
mulator also provides the ability to delegate the computation of the non-membership proof,
but as the authors mention, this conflicts with the linkability (and untraceability). We con-
clude that the best way to satisfy untraceability is by using a (zero-knowledge) proof-of-
membership that proves the credential is not revoked. For this reason, the PABC-FLC de-
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sign uses the Braavos accumulator and associated Signature Proof-of-Knowledge (SPK) algo-
rithms.

However, we should note that we assume that the issuer also acts as the Revocation Au-
thority (RA) for the credentials it issues. If these roles were separated and if one assumes that
these participants do not collude, we expect that a number of the existing mechanisms can
also provide untraceability. At the same time however, a system that separates these roles
needs to ensure that if the issuer wants to revoke a credential, the RA actually revokes this
credential. Our PABC-FLC design does not have this issue, as the issuer itself publishes the
RI.

RQ4 How can a revocation mechanism that provides forward-looking consistency be used
with an existing credential system?

In Chapter 4, we present the PABC-FLC design, which shows one approach on how a
revocation mechanism can be combined with an existing credential system. We explain our
choice for idemix (as existing credential system) and the Braavos accumulator (part of the
revocation mechanism) at the beginning of this section. Here we focus only on how these
were combined. To clarify, we answer this question by explaining the approach used in the
PABC-FLC design. We do not claim that this is the only approach.

The idemix crededential system is built around the Camenisch-Lysyanskaya signature
scheme (see Section 2.4). This signature scheme works in a special RSA modulus group and
can be used in a (zero-knowledge) Signature Proof-of-Knowledge (SPK) (see Section 2.2) to
prove knowledge of message and signature. This is how a credential is presented. The cre-
dential presentation is combined with a revocation mechanism by creating a commitment to
one of the signed messages, the RH. In the case of the Braavos accumulator, this commitment
is then used in a proof-of-membership to convince the verifier that the committed value is
contained in the accumulator. Because both the Braavos accumulator and Damgård-Fujisaki
commitments work in a special RSA modulus group like the Camenisch-Lysyanskaya signa-
ture scheme, their different SPKs can be combined without additional cost.

As discussed in the related work chapter, the Braavos accumulator by itself does not pro-
vide any forward-looking consistency. For this reason we introduced the NRP. During the
credential presentation we not only create a commitment to the RH, but also encrypt the RH
and commitment opening under the public key of the NRP. The NRP can in turn compute a
proof-of-membership, based on the RH and revocation witness received earlier, to convince
the verifier that the RH is contained in the latest version of the accumulator. In other words,
to prove that the credential is not revoked.

To recap, the PABC-FLC design builds on the idemix credential system. We combine
idemix with a revocation mechanism by creating a commitment to the RH during a credential
presentation. The commitment is tied to the credential by combining the SPKs of both.

RQ5 How does the runtime of a PABCS with forward-looking consistency compare against
a regular credential system?

In Chapter 5, we give the results of an experimental performance evaluation of a proof-of-
concept implementation of the PABC-FLC design. This evaluation shows that the runtime of
the issuer setup is more than doubled (+112%), compared to a credential without revocation
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mechanism. It also shows that computing a credential presentation, and verification thereof,
is increased by 20 ms. Percentagewise the overhead decreases from +32%, for a credential
without attributes, to +21% for a credential with 20 attributes. The time for the NRP to com-
pute a new credential status update, a revocation token, is 85 ms. It takes the verifier 55 ms to
verify the resulting revocation token. Given that the setup is only ran once, we conclude that
the PABC-FLC design has a reasonable overhead compared to a regular credential system.

At the same time, we should note that our proof-of-concept implementation is not opti-
mized. Any optimization can reduce both the runtime of the revocation mechanism or the
credential system itself, which may result in both an increase or decrease of the overhead as
a percentage. The absolute runtime is reduced in either case.

How to design a privacy-preserving revocation mechanism for determining the revocation
status after presentation in Privacy-preserving Attribute-Based Credential systems?

Considering the answers we formulated to the subquestions, we now return to the main
research question. In this work, we researched for the first time how a Privacy-preserving
Attribute-Based Credential System (PABCS) can provide forward-looking consistency. We de-
scribe the requirements that a revocation mechanism has to fulfill and how existing mecha-
nisms do not satisfy these requirements. We also show that without the introduction of the
NRP role, no design can satisfy all of our requirements. Given the introduction of this NRP,
the PABC-FLC design shows one approach to design a revocation mechanism with forward-
looking consistency and how this is used with an existing credential system. In the PABC-FLC
design, a verifier can determine the revocation status of a credential at any moment after the
credential was presented. This provides the verifier the ability to enforce forward-looking
consistency, without compromise on the privacy aspects of the credential system.

6.2. Future work
As discussed in the previous section, this work has several limitations and poses new ques-
tions regarding forward-looking consistency in PABCSs. Here we suggest three directions for
future research. In the first suggestion, we describe how the PABC-FLC design can be ex-
tended to use multiple NRPs. We expect that this can reduce the trust users need to have in a
single NRP. Another direction relates to the business side of using the PABC-FLC design and
needs to clarify if and when forward-looking consistency is required in a situation. The final
suggestion we have for researchers interested in this, is to first conduct a case study to clar-
ify the exact requirements in a specific situation before using our (or any) PABCS. We expect
that if a situation does not require all the requirements we set for the PABC-FLC design, many
other solutions can be designed as well and that these should be considered too.

Extending our design with multiple NRPs The PABC-FLC design assumes that there is only
one Non-Revocation Prover (NRP). Credential users must trust the NRP to not collude with
other participants, otherwise their privacy is not guaranteed. The design can be extended by
allowing multiple NRPs in the system. This allows users to choose a NRP they trust or even
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act as the NRP themselves. As a reminder, neither the verifier nor the issuer is required to
trust the NRP and the unforgeability of the system is guaranteed even if the NRP behaves
malicious.

However, the implication of multiple NRPs is that verifiers need to know which NRP to
contact. This information can be provided along with the redeemable revocation token, part
of the presentation token, but it should be clear that the verifier now learns more information
than it would otherwise have. This information can in fact be used to distinguish between two
users and/or credentials that use different NRPs, violating the unlinkability definition.

When is forward-looking consistency required Another direction for research is to design
a framework that can be used to analyse situations to determine if forward-looking consis-
tency is required. And if so, what would be the appropriate moment for a verifier to check the
revocation status of a credential. Although we give several example scenarios, we do not take
into account the benefits for a verifier that requires forward-looking consistency. It should be
clear that the number of times a verifier needs to contact the NRP is limited to the number of
credentials that are revoked, i.e. the number of RI updates. But contacting the NRP that often,
may not be appropriate. A framework that takes into account the goals of the verifier, deci-
sion moments where forward-looking consistency can make a difference, and the benefits of
doing so, can help a verifier to determine if and when it should contact the NRP.

Reconsideration of our requirements This thesis assumes that multi-show credentials are
useful, issuer(s) and verifiers collude, credentials require a revocation mechanism, the issuer
always acts as the Revocation Authority (RA) and that a user cannot be contacted by a verifier
after a credential presentation. These assumptions influence the requirements we set for the
PABC-FLC system and this work in general. Although this allows our design to be used in a
wide variety of situations, not all situations have the same requirements. We expect that if
any of these requirements is reconsiderd, other approaches to provide forward-looking con-
sistency in a PABCS become possible. If for example the credential verifier can contact the
user at any point in time, it can also request a new credential presentation. If the credential
presentation is combined with a ‘regular’ revocation mechanism, this can replace the func-
tion of the NRP in the credential system. Therefore, we recommend that researchers first
conduct a case study to determine if all requirements of this work are also required. If that
is not the case, we suggest they explore other designs. But if that is the case, then we recom-
mend they consider using our PABC-FLC design.
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A.1. Computational assumptions
A.1.1. RSA assumption
Definition 4 (RSA problem [45]). Given is (N ,Y ,e) with N the composite of two prime num-
bers P,Q and e prime to φ(n). Output (X ) such that Y ≡ X e (mod N ).

A.1.2. Strong RSA assumption
The strong RSA problem is a generalization of the well-known RSA problem that allows the
adversary to choose e. The assumption states that it is hard for any Probabilistic Polynomial-
Time (PPT) machine to solve the strong RSA problem with more than negligible probability
in the length of N .

Definition 5 (Strong RSA problem [30]). Given is (N ,Y ) with N the composite of two prime
numbers P,Q. Output (X ,e) with e ≥ 2 such that Y ≡ X e (mod N ).
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A.2. Overview symbols

Symbol Explanation
spar System parameters, generated by SPGen.
ℓN Length of the (special) RSA modulus.
ℓm (Maximum) length of attribute values.
ℓAt t Number of attributes in a credential, including the user secret and

revocation handle.
ℓe Beginning of the e values interval. ℓe > ℓm +1.
ℓe ′ Length of the interval of e values.
ℓ∅ Length of the statistical zero-knowledge security parameter.
ℓc Length of challenges in the SPK protocols. ℓc must be smaller than

the order of the group.
ℓv Length of v as used in the Camenish-Lysyanskaya signature

scheme. ℓv = ℓn +ℓm +ℓc .
ℓr h Length of the revocation handle(s). ℓr h ≤ ℓm .
At tk Set of credential attributes known to both user and issuer.
At t = At tk ∪ {us,r h} Set of all credential attributes.
At tr Set of credential attributes that is revealed during credential pre-

sentation. At tr ⊂ At tk .
Ri Base value of attribute i , as used in the Camenisch-Lysyanskaya

signature scheme.
mi Attribute value of attribute i .
mus User Secret attribute value.
mr h Revocation Handle attribute value.
RIi Revocation Information at version i . The version starts at 0, when

the accumulator is generated, and increases monotonically with
each version.

Acc Accumulator value, part of the revocation information.
NSi g , NAcc (Special) RSA modulus of respectively the Camenisch-Lysyanskaya

signature scheme and CL-RSA-B accumulator.

Table A.1: Overview of symbols and their usage.
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Abbreviations

ABC Attribute-Based Credential (ABC) A credential that allows a user to authenticate based
on the attributes in the credential.

CRL Certificate Revocation List (CRL) A list of revoked credential serial numbers (revocation
handles), used in the WebPKI.

NRP Non-Revocation Prover (NRP) The (additional) participant responsible for generating
revocation tokens given a redeemable revocation token.

OCSP Online Certificate Status Protocol (OCSP) A protocol to retrieve the revocation status
of a X.509 certificate from the issuing Certificate Authority, as used in the WebPKI.

PABCS Privacy-preserving Attribute-Based Credential System (PABCS) A privacy-preserving
Attribute-Based Credential system. Credentials in this system allow the selective dis-
closure of individual attributes. Credential presentations are unlinkable and untrace-
able, even if a credential is presented multiple times.

PPT Probabilistic Polynomial-Time (PPT) The complexity class of algorithms that run in
Probabilistic Polynomial Time with regards to the input size.

RA Revocation Authority (RA) The participant responsible for revoking a credential, identi-
fied by a Revocation Handle.

Revocation Witness Revocation Witness (Revocation Witness) The additional input required
to compute revocation tokens for a Revocation Handle.

RH Revocation Handle (RH) A unique identifier, encoded as an attribute in a credential, that
is used to revoke a credential.

RI Revocation Information (RI) The (public) information published by the Revocation Au-
thority, that allows verifiers and/or users to check the revocation status of a specific
Revocation Handle. It also contains information for users that allows them to update
the Revocation Witness, if the revocation mechanism requires this.

SPK Signature Proof-of-Knowledge (SPK) See Section 2.2.
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