
Fairness and Freedom for
Artists: Towards a Robot
Economy for the Music Indus-
try

Tim Wissel

Fairness and Freedom for
Artists: Towards a Robot

Economy for the Music Industry
by

Tim Wissel
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on XXX at XXX.

Student number: 4460251
Project duration: March 6, 2020 – XXX
Thesis committee: Dr. ir. J.A. Pouwelse, TU Delft, supervisor

Dr. ir. C.C.S. Liem, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Tim Wissel
Delft, October 2020

iii

Contents

1 Introduction 1
1.1 Monopolization on the Internet. 1
1.2 Towards a robot economy. 2
1.3 Centralization of power in the music industry . 3
1.4 Proposed solution: MusicDAO . 4

2 Problem description 5
2.1 History in the industry: centralization of power . 5
2.2 Monopoly power of centralized platforms. 7
2.3 Intermediaries take a large share . 7
2.4 Financial transparency . 8
2.5 Profit-driven recommendation engines . 9
2.6 Research question . 9

3 State of the Art 11
3.1 Decentralized Autonomous Organizations . 11
3.2 AI and DAO . 11
3.3 Decentralized music distribution technologies . 12
3.4 Financial transparency in the music industry . 13
3.5 Decentralized application frameworks . 13
3.6 Decentralized content delivery networks . 14

3.6.1 BitTorrent . 14
3.6.2 IPFS . 15

3.7 File hosting incentive algorithms . 15

4 Design 17
4.1 Zero-cost autonomous music industry . 17
4.2 Zero-server phone-to-phone application . 18
4.3 Phone-to-phone connectivity . 18
4.4 Open protocol and artist freedom. 19
4.5 End-to-end music delivery model. 19
4.6 Identification of participants . 20
4.7 Establishing trust and reducing sybil attacks . 20
4.8 Distributed storage . 21
4.9 Peer-to-peer music sharing . 21
4.10 Distributed search . 21
4.11 Transparent money flow . 21
4.12 Artist income division algorithm . 23
4.13 Content popularity algorithm . 23

5 Implementation 25
5.1 Zero-server infrastructure Android application . 25
5.2 Peer-to-peer content discovery . 26

5.2.1 Distributed keyword search algorithm . 27
5.2.2 Gossip-based algorithm for content popularity . 27

5.3 Music streaming algorithm . 28
5.4 Peer-to-peer financial infrastructure . 28
5.5 Permissionless publishing of music . 28
5.6 Identity and authenticity . 29
5.7 Quality assurance . 29

v

vi Contents

6 Evaluation 33
6.1 Unsupervised experiment: public release . 33

6.1.1 Automated starter money transactions. 33
6.1.2 Donation money flow . 33

6.2 Supervised experiments. 35
6.2.1 Downloading and streaming . 35
6.2.2 File headers and BitTorrent piece ordering . 36
6.2.3 Content discovery . 36
6.2.4 Random access latency . 37

6.3 Device connectivity and network bootstrapping . 38
6.4 Scalability . 39
6.5 Bitcoin node and transaction fees. 39
6.6 Battery usage . 39

7 Conclusion and Future Work 41
7.1 Generality: beyond music. 41
7.2 Future research directions . 41

Bibliography 43

1
Introduction

The centralization of power on Internet platforms cause unfairness in many industries. The technological
advancements of the Internet has mainly lead to income polarization. The explosive increase in revenue on
Internet platforms has mainly lead to higher profit margins for Big Tech instead of the core contributors on
these platforms. During the last decades, we observe the trend of platformization: a shift of economic activity
from happening on a wide range of companies to a few major platforms run by Big Tech corporations. This
trend is highly susceptible to the rise of monopolies and oligarchs. This results in small and untraceable pay-
outs to the core contributors on such platforms. The users of centralized platforms are affected by decisions
that are made based on business strategies instead of democratic procedures.

Platformization already has a strong effect on the music industry, in which the succesful music streaming
services have an immense amount of power. The biggest streaming services dictate the rules which artists
have to play by. The top 5 streaming services and the top 3 labels dominate the market. Artists have a hard
time to make a living because the streaming companies and labels take large revenue cuts of up to 40%. The
processing of royalties through many intermediaries is unclear on purpose. Artists can also suffer from po-
litical interference in these companies, reducing their freedom of speech. This thesis aims to distribute the
power from centralized streaming platforms to listeners and artists, with the goals that artists (1) obtain a fair
income and (2) are freed from censorship.

The main contributions of this thesis are:

1. A novel framework as an alternative for Big Tech: the robot economy in software;

2. A partial implementation of this framework: a fully decentralized Android music streaming application
MusicDAO which attempts to liberate artists and consumers from powerful intermediaries.

MusicDAO implements a few key components of our framework: P2P leaderless infrastructure, resilient com-
munication, trustless content sharing/exploration and a trustless monetary system (see 1.1). We design, im-
plement and evaluate the MusicDAO system. We perform supervised experiments with 10 Android devices
to test the responsiveness and latency of its main features. Aditionally, we release the application publicly to
50+ users and measure the monetary flows from users to artists over time. It is available on Google Play1 and
its code is open source2.

1.1. Monopolization on the Internet
The Internet is moving from a network of people to a sparse selection of platforms over which nearly all
commerce is regulated. The consumer choice is diminishing due to the power of oligarchs and monopolies.
A few Big Tech corporations are gaining increasing power in the the surface on which market exchange takes
place. These corporations take a large cut in revenue streams which majorly affects income for creators of
content and services. Examples are Uber, Ebay and Spotify. Revenue streams towards the core contributors
on a platforms are opaque on purpose. The software and algorithms powering these platforms are also a

1https://play.google.com/store/apps/details?id=nl.tudelft.trustchain
2github.com/Tribler/trustchain-superapp/

1

https://play.google.com/store/apps/details?id=nl.tudelft.trustchain
github.com/Tribler/trustchain-superapp/

2 1. Introduction

Figure 1.1: A robot economy in software: democratic and autonomous software

black box to creators and consumers. Furthermore, users have negligible influence on the future of these
platforms. As explained by (Stiglitz, 2019), the funcamental problem is the growing “concentration of market
power, which allows dominant firms to exploit their customers and squeeze their employees, whose own
bargaining power and legal protections are being weakened”, while “[...] CEOs and executives are extracting
higher pay for themselves”.

1.2. Towards a robot economy
An alternative for Big Tech is building a robot economy in software. Our novel vision of a robot economy
follows recent theoretical groundwork by Arduengo and Sentis (2020): In a robot economy, intelligent robots
play a key role, by performing economic operations autonomously. Robot tasks are driven by artificial in-
telligence, and cooperate with humans. While robots already take an active part in society today, the key
difference in this vision is that robots have internal funds (which may be money, tokens or other assets) and
can perform transactions on their own. Our work sets the first steps towards a robot economy in software by
building and evaluating a few key components of this theory. Software as a robot economy is a service that
runs autonomously, with which humans interact. Humans can spend funds, perform decisions or interact
with data, while the software is run by robots.

A robot economy in software can have large influence: it can replace a company, or even a full value
chain, Our framework for a robot economy in software allows designing and implementing infrastructure for
the common good: software that is governed by its key users and contributors, and as such leads to more
fairness on Internet platforms. In a traditional software system, a company decides the parameters and func-
tions of software. The software is run on company infrastructure only, which creates central points of failure.
In a software system in the robot economy, its parameters and functions are voted on by its user base in a
democratic voting process. It is run on distributed infrastructure, so is not susceptible to central points of
failure. Since to the introduction of blockchains and crypto-currency, this voting process can be automated
and transparent. Robots make intelligent decisions based on data and value given by humans. Such an im-
plementation can replace entire value chains of industries.

As seen in 1.1, the central component of the Robot Economy in software is an intelligent autonomous
software system using a DAO. Every participant can vote on changes of the inner workings of the software
using a democratic voting protocol.

1.3. Centralization of power in the music industry 3

Figure 1.2: Artist compensation inconsistency

A full robot economy aims to have the following key characteristics:

• Automated;

• Transparent;

• Fair;

• Democratic;

• Open (permissionless);

• Leaderless;

• Self-evolving.

To accomplish these key characteristics in a software system, we envision the main building blocks to be as
described in fig. 1.1.

1.3. Centralization of power in the music industry
An industry with great consequences of this trend is the music industry. In the last 20 years there has been a
remarkably fast shift from the exchange of CDs in various stores to music streaming on the Internet. Music
platforms and labels use their economic muscle to push down artist salaries. They take large cuts of revenue
from the user subscription money.

Firstly, corporations with power squeeze the music production side by taking large cuts of revenue from
the user subscription money. As a result, the artists receive a low compensation. Especially independent
artists have a hard time making a living. The distributors Spotify, iTunes and Google Play take on a 25% to
40% revenue cut.

Secondly, Big Tech has curatorial power to decide what is shown in the catalog of their application. The
music catalog may seem endless, but in reality it is controlled by the Big Tech corporation and dictated by the
interests of major labels. The inner workings of recommendation algorithms and playlists are in the hands of
a few labels and streaming services.

Finally, the streaming companies can sensor tracks. The freedom of artist expression is then decided by
undemocratic judgments. Big Tech has the power to decide the future of an artist.

4 1. Introduction

Component Focus in MusicDAO
Peer-to-peer leaderless infrastructure X
Resilient communication X
Trustless content sharing and exploration X
Trustless monetary system X
Democratic user engagement ×
AI for decision making (robot tasks) ×
Continuous code evolution and distribution ×

Table 1.1: The main components to achieve a robot economy in software

1.4. Proposed solution: MusicDAO
This thesis proposes an alternative technology from Big Tech streaming services. We observe that most func-
tions of music streaming systems are already completely automated. We design and implement a decentral-
ized system which attempts to replace the full value chain in music streaming industry, from the subscription
money to the artist, by removing all intermediaries and giving power back to the artists and listeners. Listen-
ers can stream music without being dependent on a single provider and can give money directly to artists.
Artists receive 100% of this donation and subscription money.

In essence, the solution is a decentralized autonomous organization (DAO) which is formed by listeners
and artists. A DAO is defined by Buterin (2014) as an “entity that lives on the internet and exists autonomously,
but also heavily relies on hiring individuals to perform certain tasks that the automation itself cannot do” (see
3.2). In this thesis we present the design and implementation of our mobile android app MusicDAO: a music
streaming service for the common good. Users of this app form a phone-to-phone zero-server network over
which they publish music, download music and transfer money. This proof-of-principle of a DAO shows a
fair and transparent music streaming service in which no external servers, third parties or intermediaries are
necessary. Any person can join the network, publish music and get paid for it. 100% of music revenue goes to
artists.

MusicDAO contains the following key functionalities:

• Defining and publishing music content with metadata;

• Streaming music over BitTorrent;

• Caching and streaming optimization algorithms;

• Browsing playlists;

• Remote keyword search;

• Peer-to-peer donations to artists using Bitcoin.

In a real-world experiment with Android phones, we tested the feasibility of such a phone-to-phone
infrastructure-less system. In a public release experiment, MusicDAO is published to the crowd via the Google
Play Store3, and is installed on more than 50 devices. We evaluated all the money flow from its users towards
the artists using a public blockchain. We evaluated the responsiveness of our decentralized infrastructure
using supervised experiments, in which we measured the effect of network size on the latency of the key
functionalities of our system.

3https://play.google.com/store/apps/details?id=nl.tudelft.trustchain

https://play.google.com/store/apps/details?id=nl.tudelft.trustchain

2
Problem description

Music artists have a hard time making a living. The oligarchical power of music streaming services and labels
squeeze the production size of the music industry. The biggest music streaming services run centralized, pro-
prietary and closed-source software. The top 5 streaming services have 82%, and the top 3 labels 70% com-
bined market share. These major corporations have huge power over both the producer and consumer sides
of music streaming. Because of their power, they can ask high commission fees or lock artists to one platform.
As a result, artists receive low compensation. Furthermore, the recommendation and playlist generation al-
gorithms on streaming platforms are a black box to the user. This gives streaming and playlist companies
curatorial power. A visualization of the economic muscle of both the label oligarchy and streaming platform
oligarchy is shown in 2.1.

At the time of writing, there exists no alternative decentralized and transparent music streaming system
with peer-to-peer payments directly to artists.

2.1. History in the industry: centralization of power
The nature of distributing music has changed spectacularly in the last 30 years. There has been a remarkable
shift from physical sales, to online track downloads and piracy issues, to digital on-demand streaming. The
bargaining power in music sales was once distributed over many different physical stores and labels, but is
nowadays in the hand of a few labels and Big Tech corporations. According to MidiaResearch (2020), the
top 5 streaming services have 82%, and the top 3 labels 70% combined market share (see 2.2, 2.1). The core
problem follows: “A large number of sellers (musicians, singers, bands) are in interaction with a very small
number of buyers” (Rayna & Striukova, 2009).

In the CD era of music, every city would have one or a few stores selling physical records. There were many
music distribution companies competing for their sales. With the rapid shift towards digital sales around
the 2000s, IT companies used their advantageous network infrastructures to sell digital copies to massive
audiences. The downfall of the physical record stores began. At the same time, only a dozen digital stores
managed to attract large audiences on their platforms, and thus survived. This marked the start of platform
accumulation (Meier & Manzerolle, 2019): the routing of all music and money flow over centralized platforms.

Figure 2.1: The current flow from publishing music to receiving it as a listener. The figure shows that the framework on which music is
published and found is dominated by label and streaming oligarchs and by corporate decisions.

5

6 2. Problem description

Figure 2.2: Global recorded music industry revenues (in Billion USD) (source: IFPI (2020))

Streaming service Market share
Spotify 32%
Apple Music 18%
Amazon Music 14%
Tencent Music 11%
YouTube Music 6%
Total 82%

Table 2.1: Global music streaming market share, measured by subscriber share (source: MidiaResearch (2020))

Around the 2010s, the attention started to turn again to a new industry: on-demand streaming of music.
This started a major transition in the last 10 years. The financial sources of the music industry changed rapidly
as seen in fig. 2.2. According to Friedlander (2020), streaming accounted for 79% of music revenue (excluding
concerts and merchandise) in the US in 2019, compared to only 15% in 2012. Nowadays, the number of
distributors to choose from is reduced to only 5 Big Tech platforms. Together they form over 80% share of
all subscribers. Clearly, streaming royalties are an increasingly important piece of income for musicians.
However, these increased revenues are not felt in the pockets of musicians, but rather in major label and
platform profits.

This history shows a trend towards centralization of power in the music industry. The future of artists is
in the hand of a few large corporations, as they have monopoly power over them. This comes with several
issues, as explained in the next section.

Major music label Market share
Universal Music 31%
Sony Music 21%
Warner Music 18%
Total 70%

Table 2.2: Global market share of the top 3 music labels, measured by volume of recorded music (MidiaResearch, 2020)

2.2. Monopoly power of centralized platforms 7

2.2. Monopoly power of centralized platforms
The infrastructure of current internet applications are increasingly moving towards platformization. In the
context of music, subscriptions and purchases are majorly happening on a few central platforms, such as
Spotify or Apple Music. In essence, platforms are taking control of “the surface on which the market exchange
take place” (Andersson Schwarz, 2016) with digital distribution and network effects enabling an increasing
centralization of power. This phenomenon is related to IT gatekeeping: tying access of content to a specific
internet service. An example of this is the release of the album The Life of Pablo in 2016, which was contracted
to only be played on one platform, Tidal.

In relation to gatekeeping, platforms are now given the task to perform moral judgments on content, for
example whether to censor a certain artist. This is controversial as these judgments are no longer in the
hands of democracies but rather in the hands of companies. Recent issues exist such as the disappearance of
Li Zhi1, who published songs about democracy and social issues in China. All of China’s main streaming sites
removed his songs. In 2019, Apple Music also removed content from their platform by singer Jacky Cheung,
who referenced the tragedies of Tiananmen Square in his songs2

The latest movement in platform accumulation is the monopolization of data. Large scale of data about
user interactions with the platform forms a ‘monopoly of knowledge’ (Innis, 2007). The power of platform
companies are raising because platforms, in general, tend towards monopoly (Srnicek, 2017).

Aside from a monopoly, Rayna and Striukova (2009) interpret these platforms as monopsomies. Monop-
sony power means that a dominant buyer has the power to push prices down with suppliers. In the context
of music, this means that artists have little choice over which platform to publish their music on, because
of the dominance of one platform. A few major players in the music industry together form an oligopolistic
market. Monopsony power in this area can lead to squeezing the producer side. An example of monopsony
power is an event that happened in 2014, between Amazon and Hachette. Amazon, having a large market
share on e-books, used its commercial muscle to demand a larger cut of the price of Hachette books it sells.
This included for all Hachette books “preventing customers from being able to pre-order titles, reducing the
discounts it offered on books and delaying shipment” (Ellis-Petersen, 2014).

Along the same lines, the music streaming oligarchs can use their commercial muscle to demand low pays
to artists. Spotify founder and CEO Daniel Ek declared to its investors that the increase in interactions with
its in-house curated playlists “puts Spotify in control of the demand curve” 3.

2.3. Intermediaries take a large share
Artists publishing their content on a music streaming service such as Google Music, Spotify and Apple Music
receive low compensation, because the intermediaries take a large cut in revenue, typically between 25 and
40 percent (see 2.3). The top 5 streaming services, controlling 80% market share (MidiaResearch, 2020), have
the power to ask high subscription fees. The Big Tech corporations behind these services are also tightly inter-
twined with dominant labels. For instance, Aguiar and Waldfogel (2018) notice that “major record labels have
substantial ownership stakes in Spotify”. Meier and Manzerolle (2019) also point out that Big Tech platforms
have shown to make lucrative deals with major labels, paying them millions of dollars up front.

According to IFPI (2020), 2019 became the first year in which digital streaming is the single biggest source
of revenue for the music industry globally. At the same time, streaming services take a large cut in revenue,
and artists are having a harder time making money from music. Only a small portion of all music revenue
lands in the hands of artists, as seen in fig. 2.3. This graph shows a large portion of revenue declared as plat-
form costs for streaming services, however it is unclear how much of these costs are for actual infrastructure
and services and how much is for profit. According to investigations by aCooke (2018) and ReCode (2015),
the revenue cut of Apple Music and Spotify is between 25% and 40%. The largest revenue cuts are for inde-
pendent musicians, which makes it very difficult to make a stable income while not contracting with the label
oligarchy and music streaming oligarchy (see 2.1). An additional problem is opacity: streaming deals on these
platforms remain behind closed doors.

For these reasons, massive audiences are needed to generate sustaining profits. An investigation by

1https://www.independent.co.uk/news/world/asia/tiananmen-square-china-li-zhi-singer-disappears
-anniversary-protests-a8940641.html

2https://hongkongfp.com/2019/04/09/apple-music-china-removes-jacky-cheung-song-reference-tiananmen
-massacre/

3https://investors.spotify.com/financials/press-release-details/2019/Spotify-Technology-SA-Announces
-Financial-Results-for-Fourth-Quarter-2018/default.aspx

https://www.independent.co.uk/news/world/asia/tiananmen-square-china-li-zhi-singer-disappears-anniversary-protests-a8940641.html
https://www.independent.co.uk/news/world/asia/tiananmen-square-china-li-zhi-singer-disappears-anniversary-protests-a8940641.html
https://hongkongfp.com/2019/04/09/apple-music-china-removes-jacky-cheung-song-reference-tiananmen-massacre/
https://hongkongfp.com/2019/04/09/apple-music-china-removes-jacky-cheung-song-reference-tiananmen-massacre/
https://investors.spotify.com/financials/press-release-details/2019/Spotify-Technology-SA-Announces-Financial-Results-for-Fourth-Quarter-2018/default.aspx
https://investors.spotify.com/financials/press-release-details/2019/Spotify-Technology-SA-Announces-Financial-Results-for-Fourth-Quarter-2018/default.aspx

8 2. Problem description

Figure 2.3: Artist revenue compared to other intermediaries (source: Bazinet et al. (2018))

Music release Label cut Platform cut Artist/band cut
Streams per month
to earn min. wage
(solo musician)

TIDAL Unsigned 0% 40% 60% 117,760
Signed 55% 50% 20% 353,280

Spotify Unsigned 0% 40% 60% 287,574
Signed 55% 25% 20% 862,722

Apple Music Unsigned 0% 40% 60% 200,272
Signed 55% 25% 20% 600,816

Google Play Unsigned 0% 40% 60% 217,752
Signed 55% 25% 20% 653,256

This thesis challenge Unsigned 0% 0% 100% <75,000

Table 2.3: Overview of revenue cuts (estimated) on streaming platforms, with a note on the streams/plays per month that an artist should
have in order to make a minimum wage. The challenge of this thesis is to liberate artists from depending on intermediaries that take a
large revenue cut. Sources: Trichordist (2014), DigitalMusicNews (2018).

Bloomberg4 shows that 152,094 Spotify subscriber streams generate only $100 on average for artists. Con-
sequently, only 0.733% of all acts generate enough revenue for an artist to make a living (Ingham, 2018). The
International Federation of the Phonographic Industry states that as of 2018 there exists a "value gap" in dig-
ital music streaming, meaning a “mismatch between the value that some digital platforms [...] extract from
music and the revenue returned to the music community–those who are creating and investing in music”
(IFPI, 2018).

2.4. Financial transparency
The actual overhead of the music industry is unclear, as the flow of money towards artists is either not public
or lacks detail and explanation. Contract details and royalty payments are vague on purpose. This is part of
the business model of music stakeholders. According to Music (2015), “Despite streaming services paying the
same percentage of their revenue (70 percent) to rights holders as an iTunes download sale, low payouts and
many intermediaries are creating concerns” (Music, 2015).

The complex flow of intermediaries results in slow and inaccurate royalty payments. As reported by BBC
(2019), Eminem’s publisher sued spotify because he has never been properly paid for songs that are streamed
on Spotify for billions of times. The court mentioned that the streaming service “[...] lacked the infrastruc-

4https://www.bloomberg.com/opinion/articles/2017-09-25/the-music-business-is-more-unfair-than-ever

https://www.bloomberg.com/opinion/articles/2017-09-25/the-music-business-is-more-unfair-than-ever

2.5. Profit-driven recommendation engines 9

ture needed to make sure songs are licensed and musicians are paid”. Royalty payments are generally also
unnecessarily time-consuming: it can take 6 to 12 months to arrive at artists (Music, 2015).

It appears that a large amount of royalty revenue flows outside of the artists, in a “black box” (Music, 2015).
The reason is that there is no industry-wide system for declaring rightful owners of music. This problem is
even more significant as there is no incentive for the major labels and major streaming services to improve
this situation. These companies deliberately obfuscate royalty processing, or use outdated and unnecessarily
complex systems.

2.5. Profit-driven recommendation engines
The Big Tech music companies recommend content that best fits their business model, which may be con-
trary to what is most useful to their customer. The companies can promote or dis-promote content by their
choosing. This shows “curatorial power”: the ability to advance own interests by organizing and prioritizing
content (Prey, 2020).

Musicians and record labels are increasingly dependent on landing on Spotify-curated playlists. For ex-
ample, a study done by the European Commission shows that, for a track to land on the Spotify-curated
playlist ‘Today’s Top Hits’, it will see an increase of $163,000 in revenue (Aguiar & Waldfogel, 2018). 99 of
the top 100 playlists are curated by the streaming company. So its recommendation algorithms and playlist
curation systems are highly influential.

A major problem with this situation is that the inner workings of the recommendation algorithms are
opaque to the user. These algorithms, fed by user interaction data, are in some extend also a black box to
the company, as they are built using machine learning technologies. However, as noted by Gillespie (2014),
the impression that algorithms are objective is a “carefully crafted fiction”. Namely, they are altered based on
company strategies. Pelly (2017) describes that “[the Spotify front page] is tightly controlled by Spotify’s staff
and dictated by the interests of major labels, brands, and other cash-rich businesses who have gamed the
system”.

Companies are not obliged to explain their algorithms. In the context of recommendations, this leads to
a “threat of invisibility": the problem of content regularly disappearing (Bucher, 2018), a phenomenon which
is out of the hands of the artist, because the artist lacks knowledge in the algorithm workings. Frustrating
for artists and labels is also the vagueness of getting playlisted: it is unclear why “[...] a particular track was
placed, or replaced, on a playlist” (Prey, 2020).

On the other hand, if the playlist curation is performed by a person or company, we run into another
issue. This is depicted in a recent book by Heuvelings (2020). The author had the job of maintaining several
high-demand playlists on Spotify, with millions of monthly listeners. This gave her substantial power but also
huge (financial) pressure from artists and labels, demanding their work to be visible on her playlists. This
makes the music industry even more unfair for smaller artists with less power.

2.6. Research question
All in all, the main issue is as follows. The music industry is imbalanced: it suffers from centralized power
that is in the hand of a few labels and Big Tech corporations. Our research question thus follows:

How can we design and implement a music streaming service that distributes the power from one authority
to its users?

3
State of the Art

In this chapter we describe existing algorithms, protocols and applications in computer science, which try
to solve, or give an alternative for, the centralized power in Big Tech, and more specifically in digital audio
streaming. We inspect full solutions in the form of distributed applications, and techniques which solve
subproblems, such as decentralized file sharing protocols.

For an application to evolve in a fully distributed network, without a company or a single point of re-
sponsibility, decisions need to be made on protocol or feature additions and changes. We inspect the state-
of-the-art technologies and organizational theories which enable autonomous communities to solve these
problems by organizing themselves.

3.1. Decentralized Autonomous Organizations
As an alternative organizational framework for distributing money and music, we examine a recent concept
and technology: Decentralized Autonomous Organizations (DAO). A DAO is “an entity that lives on the in-
ternet and exists autonomously, but also heavily relies on hiring individuals to perform certain tasks that the
automaton itself cannot do” (Buterin, 2014). It is not owned by a single person or legal entity. It should also
not require a specifically specified party to operate. For example, it should not depend on a single server
or database, but rather have flexibility in adopting resources. As such we say it lives autonomously. Buterin
(2014) also notes that a DAO should have internal capital: ‘some kind of internal property that is valuable in
some way, and it has the ability to use that property as a mechanism for rewarding certain activities’. A DAO
is non-profit by nature, as there is no legal owner of the system.

Important groundwork on the theory and implementation of a DAO has been done by Jentzsch (2016). He
notes that corporations originally work through people only, and this has two flaws: “People do not always
follow the rules, and they do not always agree what the rules require”. His paper illustrates a method that
allows creating and maintaining organizations in which “(1) participants maintain direct real-time control of
contributed funds and (2) governance rules are formalized, automated and enforced using software”.

3.2. AI and DAO
The combination of intelligent agents and DAO technologies allows building an autonomous, decentralized
and self-evolving software system. This may present the first ingredients towards a robot economy in soft-
ware. In a system on the boundary of DAO and AI technologies, humans are still involved with performing
some tasks and governing, but intelligent agents can perform other decision making tasks on their own. De-
cision making by robots can be done using a wide range of state-of-the-art algorithms and techniques shown
in fig. 3.1.

One implementation of intelligent agents acting autonomously is CloudOMate (Jaspers Focks, van Vel-
tom, Wigmore, & Nguyen, 2018). This is a software system that runs autonomously and is self-replicating: it
can extend its network infrastructure on its own by contacting hosting companies. This can be connected
to an AI algorithm which learns when an expansion of network resources is necessary. It has internal capital
that is used to pay service fees to hosting providers.

In our context, we envision human tasks to be e.g. (1) creating music and giving feedback on music
(through e.g. donations), (2) making decisions on the subscription protocol and the payouts to artists, or

11

12 3. State of the Art

Figure 3.1: Intelligent techniques in decision making (source: Das (2016))

Figure 3.2: Decentralized Autonomous Organization, in comparison to other organizational structures. In a DAO, activity is performed
by humans at the edges, automation at the center. It is an interplay in which robots and humans perform tasks. Source: Buterin (2014)

(3) governing evolution of the software. ’Robot tasks’ could be e.g. (1) processing an automatic subscription
payment system, in which all user money is divided fairly over the artists every time iteration; Or (2) tracking
connectivity stats of other users; Or (3) determining trust of authenticity and identity of artists.

3.3. Decentralized music distribution technologies
Multiple decentralized audio distribution and streaming applications exist. Examples are Audius (Rumburg,
Sethi, & Nagaraj, 2018), Musicoin 1 and Opus Audio (Jia et al., 2016).

Audius (Rumburg et al., 2018) presents a decentralized protocol for audio content, which aims to improve
payouts to artists and its transparency. It contains a token economy with a transparent payout system for
the artists, and a user-operated, distributed network for metadata and content. Its monetary infrastructure is
displayed in fig. 3.3. In addition, it has a governance system like a DAO, in which users can decide on changes
to the protocol by democratic voting. Its protocol is established around the ideology of disintermediation:
“Intermediaries should be removed when possible; when necessary, they should be algorithmic, transpar-
ent, and verifiably accurate” (Rumburg et al., 2018). It uses IPFS (Benet, 2014) for storage of audio content,
meaning it relies on voluntarily-hosted high-performant servers.

Opus Audio (Jia et al., 2016) is a decentralized music-sharing platform and proposes a solution for music
ownership registration on a blockchain structure. It has a running distributed audio file sharing system using
the Inter-Planetary FileSystem designed by Benet (2014) (see 3.6). It contains a decentralized and fully auto-
mated system for purchasing access to music, which works as follows. Opus stores encrypted audio files on
a swarm of connected nodes. The decryption keys and files hashes are stored in a smart contract (see 3.4).
Using cryptocurrency, users spend their funds on these smart contracts, to unlock access to audio files, and
to cooperate in its permissionless DAO (see fig. 3.4).

Musicoin is a blockchain platform without intermediaries that focuses on income for independent artists.

1http://musicoin.org/

http://musicoin.org/

3.4. Financial transparency in the music industry 13

Figure 3.3: Monetary flow in Audius (source: Rumburg
et al. (2018))

Figure 3.4: Effect of DAO governance system on revenue streams in
Opus (source: (Jia et al., 2016))

It uses smart contracts and cryptocurrency to show transparency in payments (see 3.4). This payment struc-
ture ensures that each contributor in the network is rewarded, and that artists receive a stable income based
on the Universal Basic Income ideology. Not all of their architecture is decentralized; they use centralized
registration system for artists and listeners. They pay artists using their $MUSIC currency, of which the value
may be higlhy volatile.

None of the state-of-the-art decentralized audio streaming technologies show a running, fully decen-
tralized infrastructure with stable income for artists. All of these systems have in common that they save
metadata and identifiers of audio files on a blockchain, and save the audio files in an off-chain database us-
ing IPFS (Benet, 2014). This makes these solutions reliant on people voluntarily running IPFS content nodes
(servers hosting the audio files). In a fully decentralized network, every participant should have the same
role, meaning that every node both uploads and downloads content, and it should not be reliant on external
servers. Most decentralized systems use their homebrew cryptocurrency to pay artists, instead of a stable
currency.

3.4. Financial transparency in the music industry
As described in sec. 2.4, there is a serious issue in the music industry affecting artists globally: the (by design)
inaccurate, complex and slow royalty payments. There are existing decentralized frameworks and protocols
to solve this problem.

Payments of royalties to artists can be described in transparent, public and immutable records on a
blockchain. In addition, smart contracts can be used to automate payments (Buterin et al., 2014). Smart
contracts are self-executing (non-ambiguous) and self-verifying (guaranteeing its statements). In the music
industry context, a smart contract can be used for transparent, immutable and automatic payment distribu-
tion of royalties. This technique was shown in practice in 2017, when Imogen Heap released the song ‘Tiny
Human’ (Heap, 2017). Its distribution of payments to the makers and recorders was written in a smart con-
tract, in the form of a record on the Ethereum blockchain. When a user downloads the corresponding track
and makes the payment using cryptocurrency, the forwarding details of the payment are located within the
blockchain, and executed as declared on the smart contract, on a distributed virtual machine (VM) such as
the Ethereum VM.

3.5. Decentralized application frameworks
The TrustChain Superapp (Skala, 2020) is a framework for implementing mobile Android decentralized appli-
cations. It allows for storing append-only immutable data on TrustChain (Otte, de Vos, & Pouwelse, 2017) and
spreading this data in a phone-to-phone network without servers. It follows the concept of super apps (Huang,

14 3. State of the Art

Figure 3.5: Trustchain-Superapp
overview

Figure 3.6: Tribler desktop interface, showing the bandwidth incentive system overview

2019), meaning that it contains many mini-apps which use the same networking interface. The Superapp is
an Android app as seen in fig. 3.5. Its mini-apps implement decentralized democratic voting and has bitcoin
payment integration, among other features.

In the context of DAO, the TrustChain Superapp contains a mini-app for decentralized governance using
voting (see fig. 3.7). In this voting app, any participant of the organization can create a proposal for the
community to vote on. Once a preset voting threshold is reached, the proposal is automatically accepted or
denied. Bookkeeping of these proposals and votes is done using the TrustChain DLT (Otte et al., 2017). This
voting app is an important basis for democratic decision making. It could be extended to include continuous,
automated code evolution: by voting on code patches or changes, the community can decide on new features
of the application. This protocol is based on proof-of-identity instead of proof-of-stake, as no tokens are
involved.

3.6. Decentralized content delivery networks
A fully decentralized audio streaming service requires sharing and streaming audio files over a network of
nodes in which any participant can start and run a node. Well-established examples of such technologies are
BitTorrent and IPFS.

3.6.1. BitTorrent
BitTorrent (Cohen, 2002) is an open peer-to-peer file sharing protocol. It invented by Bram Cohen, and has
generated a massive influence on network traffic on the Internet since its release. Today, it is still the most
popular peer-to-peer protocol for sharing data. In 2019, BitTorrent was measured to generate 2.5% of all
download and 24.6% of all upload bandwidth (Marozzo, Talia, & Trunfio, 2020). It went through many it-
erations and improvements. It has a large community, with over 3K repositories on GitHub related to the
technology. Furthermore there are a few companies maintaining clients (such as https://bittorrent.com
and https://www.utorrent.com).

In essence, BitTorrent makes use of seeding while downloading: this means that when multiple clients
download a file, they simultaneously share pieces of this file with the other downloaders. This results, with
well connected and performing peers, in fast downloads. BitTorrent originally relied on trackers to perform
peer discovery, and trackers can become a central point of failure. However, since the introduction of the
DHT protocol (Loewenstern & Norberg, 2008), finding peers in the network can be done by querying any
known peer, which makes the network more decentralized.

https://bittorrent.com
https://www.utorrent.com

3.7. File hosting incentive algorithms 15

Figure 3.7: Distributed democracy voting mini-app, showing proposals

There are no differences between hosters and downloaders. All participants have the same capabilities, so
every user of the network can both download and upload content. It uses tit-for-tat as a method of efficiently
downloading files. However, a challenge in BitTorrent is incentivizing participants to host files. There are
multiple proposed solutions for this, discussed in 3.7.

3.6.2. IPFS
The Inter-Planetary FileSystem (IFPS), introduced by Benet (2014), is a distributed peer-to-peer file sharing
system in which any person can start a node and start uploading and downloading files. Protocol Labs2, the
team behind this technology, was founded in 2014 by Juan Benet. As of 2020, the team has grown globally to
members from 19 countries, with substantial investments. However, there has not been large-scale adoption
of this technology yet.

At its core, IPFS maintains a global key-value store for all files (and file parts). This is in contrast to BitTor-
rent, which works with torrent swarms and trackers. IPFS uses an efficient content addressing mechanism.
Another feature is built-in file de-duplication. Additionally it supports public file history bookkeeping. // //
End-users of content stored on IPFS can access content without supporting the network, so there is the pos-
sibility of free-riding. In addition, there are no direct (financial) incentives to run an IPFS node, other than to
help the network and to host content. When comparing IPFS and BitTorrent, a notable difference between
IPFS and BitTorrent is that IPFS makes a distinction between file-hosting nodes and end-users (which only
download files). BitTorrent does not make a distinction between these actors. In BitTorrent, every participant
of the network has the capabilities to both upload and download content. Therefore a BitTorrent network
using DHT is typically more decentralized than IPFS.

IPFS uses a global file index using a hash tree, which means that every two file that produce the same hash
are stored on the same index. This leads to de-duplication, which may result in better use of disk space, in
comparison to BitTorrent.

3.7. File hosting incentive algorithms
In a DAO, the party responsible for hosting and spreading of files is not well-defined. To tackle the tragedy
of the commons, participants should have an incentive to contribute their computational and bandwidth

2https://protocol.ai/

https://protocol.ai/

16 3. State of the Art

resources for the network to be sustainable and responsive. One example incentive system is bandwidth
tokens (de Vos & Pouwelse, 2018) as part of the Tribler system. Another is the FileCoin

Tribler (J. A. Pouwelse et al., 2008) is a peer-to-peer system to share, download and stream multimedia. It
has implementations for desktop environments and an Android prototype. It makes use of BitTorrent for file
transfer and adds anonymization techniques on top of it. In addition, it makes use of its bandwidth tokens:
an incentive system to increase cooperation between users, in order to achieve high availability of downloads.
In essence, it subtracts tokens for downloading content from peers and rewards tokens for helping peers. An
overview of the Tribler desktop interface can be seen in fig. 3.6.

FileCoin (Benet & Greco, 2018) is an addition on top of the distributed file storage system IPFS. It is a
distributed incentive protocol which rewards users for hosting files in the network. In essence, there is a
decentralized market over which cryptocurrency (FileCoin) is transacted. Supply and demand of files in the
network determine the reward value in terms of FileCoin. The mechanism for obtaining these coins is some-
what similar to the mining protocol in Bitcoin, but uses proof-of-storage instead of proof-of-work as a way to
determine block rewards.

4
Design

In this section we present the design of our software application MusicDAO. MusicDAO is a mobile music
streaming and discovery application, with peer-to-peer payment to artists in the form of donations and sub-
scriptions. It implements a few key components (see table 4.1) of our framework for the robot economy
presented in fig. 1.1. The MusicDAO is fully decentralized by design. This means there are no intermediaries,
third parties or proprietary servers needed. It is a first step towards a fully autonomous and zero-cost music
streaming industry. It is non-profit by design, as there is no single leader or company controlling it. Instead,
its users determine its future. All users of the app form a community to share audio tracks and transfer money
using mobile devices. Any user can join this community, publish their musical works and receive money from
its listeners. All participants cooperate in the network, which makes it self-scaling by design.

The overall design of the system can be seen in fig. 4.1. This describes the interaction between the dif-
ferent components, libraries and frameworks. The following sections explain the designed features, compo-
nents and design choices.

The main goal of MusicDAO is: Distributing the power in the music industry, from central-
ized platforms to listeners and artists. Meaning: liberating artists from their dependence
on money-grabbing platforms, so that they receive 100% of the subscription/donation
money from their listeners.

Main goal of our system

We build upon the theory of a Decentralized Autonomous Organization (DAO) (see sec. 3.1). This is a piece
of software that lives autonomously but also heavily relies on humans to do certain tasks. A DAO has internal
capital: some kind of value that is used internally to pay humans or robots to complete tasks.

Robot Economy component Focus in MusicDAO
Peer-to-peer leaderless infrastructure X
Resilient communication X
Trustless content sharing and exploration X
Trustless monetary system X
Democratic user engagement ×
AI for decision making (robot tasks) ×
Continuous code evolution and distribution ×

Table 4.1: The main components to achieve a robot economy in software (repeated)

4.1. Zero-cost autonomous music industry
We design a system that takes important steps towards a zero-cost autonomous music streaming indus-
try, with no intermediaries. In this utopia, intermediaries that add no real value to the industry receive no

17

18 4. Design

Figure 4.1: Architecture overview, with in green the external libraries. MusicService is the central component in our system

money. Artists receive near-100% of all income as they are the core contributors to the industry. Anyone
in the community of artists and listeners can create and share music without contacting a party for a con-
tract or allowance. An open protocol over which money and music is exchanged, can be used with different
applications, so that users have a choice of user interface.

Real-world thriving examples such as Linux or Wikipedia are driven by community and effort instead of
profit. Consensus is reached through discussion instead of through pyramid schemes. We envision a similar
transition for the digital music industry. The next sections will explain the design of our proof-of-concept of
MusicDAO, which aims to be the first piece for reaching a fair music industry.

4.2. Zero-server phone-to-phone application
Traditional Internet services are built around a single server or a set of servers (fig. 4.2). We design a network
which only consists of mobile phones (fig. 4.3). Every phone cooperates by storing, sharing and validating
content. Each mobile phone has access to the same functionalities. The reason for this topology is to have no
single, powerful party or centralized server, and that scales naturally. With the latter is meant: the computa-
tional power and bandwidth capacity grows with the amount of devices requiring these resources.

A proof-of-concept will show an important step towards mobile infrastructure for the common good: a
system in which participants do not lose money and power to greedy intermediaries. Instead, they will benefit
from cooperation. This concept aims for absolute fairness, controlled by the community from the ground up
instead of dictated top-down. All money going into the system is divided over the participants, following rules
written in code that are defined by the community.

A key attribute of the network is censorship-resiliency. That means that no single authority (company, in-
stitution or government) can remove tracks, or prevent devices from participating in the network. Censorship-
resiliency is an important requirement for the system because of the issues described in 2.2. Attempting
to build a resilient system while using Internet technologies results in a few key challenges as identified by
J. Pouwelse (2012) and et al. (2014). To articulate these challenges, we specify a powerful adversary which
has the goal to reduce the freedom of a user of the system. The adversary is known to manage the following
attacks:

4.3. Phone-to-phone connectivity
MusicDAO is designed to have a network consisting of only mobile phones (fig. 4.3). Key challenges to estab-
lishing and maintaining such a network are: discovering other devices, network connectivity, longevity and
scalability.

Every device that wants to participate, will try to find other devices to join the network. Every device
also keeps track of a routing table, containing public IP addresses of connected and connectable peers, in-
cluding latency for each peer. This routing table is inspired by the routing table implemented by BitTorrent
DHT (Loewenstern & Norberg, 2008). To discover an initial list of devices, we use a bootstrap server, which
keeps track of other devices on the network to connect with. A bootstrap server should not be necessary when
there are devices on the same Local Area Network that can introduce a new device to the network. However,
the network of MusicDAO will be sparse at the start. After a few devices are discovered, the bootstrap server

4.4. Open protocol and artist freedom 19

Figure 4.2: Traditional (centralized) Internet service
infrastructure

Figure 4.3: Peer-to-peer network of phones, as in Mu-
sicDAO

can be disregarded, as new devices are then trivially found via neighbor search.
As there will be no central server, each device acts as both a client and server. As devices may be behind

routers or other Network Address Translators (NATs), establishing a direct connection between devices is not
trivial. To achieve this, we use network address translation (NAT) traversal. NAT traversal is a set of methods
used to establish a connection between devices which have no static, public IP address.

To support a healthy evolution of the network, every device will maintain a list of connected devices.
Devices will send periodic keepalive messages to its connected peers to track which are alive and reachable.
By doing this, devices can decide which peers are healthy connections. This list should grow to a few dozen,
so that there are always connectable peers.

4.4. Open protocol and artist freedom
The design of our system contains both an open protocol and an application for the end-user. This is inspired
by the ideas from Masnick (2019), who describes that the Internet should go back to open protocols instead
of platforms, and that there should be a clear distinction between applications and protocols, so that users
have the choice between different applications. Then, every application can have its own strategy of content
moderation. This should result in more competition to “[...] provide better services that minimize the impact
of those with malicious intent, without cutting off their ability to speak entirely” (Masnick, 2019).

In our context, we envision a wide range of applications to emerge, all using the same streaming, discovery
and payment protocol, but with various different user interfaces and strategies for content filtering. This
way, music can not be censored in a centralized manner. Moderation of content happens on the side of the
application, so that the user is in control of the settings of moderation and we do not lose freedom of speech
or data resiliency.

4.5. End-to-end music delivery model
In contrary to the current music publishing situation, dominated by IT gatekeeping and oligarchs as visual-
ized in fig. 2.1, we present the desired situation in fig. 4.4. This shows the liberation for artists in publishing
their content, and the reduction of single-point-of-failure risks. In this system, artists are free in what they
upload. In addition, their content can not be taken down by any authority unless there are no participants in
the network. The discovery of content is done using open source, transparent systems and listening data is
saved and processed locally.

To achieve this situation, a main component of our system is the storage of metadata and audio files for
playlists. We design an abstract model for the structure of this metadata, so that the artist is free in the way
to release music content. The artist may publish tracks as part of a single, an EP, an album or any other
structured list of tracks, as a Release object.

A Release object contains a list of tracks that are published by a clearly identifiable artist or group of artists.
It is modeled as shown in fig. 4.5. Release objects are shared between peers in the network. By discovering
many of those objects, a user can see and browse through them to select a track to play. A Release object
merely contains metadata of the tracks. We design the network to have a separate channel for downloading
the track files. This is to enable fast discovery and searching of Releases, as Release objects have a small byte
size.

20 4. Design

Figure 4.4: Desired music publishing flow using a distributed network

Figure 4.5: Release blocks structure as seen on
TrustChain

Figure 4.6: KeywordSearchMessage object sent over
IPv8 in MusicCommunity

4.6. Identification of participants
The MusicDAO allows any person to participate, and start publishing or listening to music. It requires a per-
missionless infrastructure, in which artists can be identified. As we design a system that is fully decentralized,
we cannot use a central database to record user identities. Therefore every user generates a unique identity
to be used in the network, and must be able to give proof of this identity. We use a public key infrastructure
(PKI) which achieve these goals. Every user stores their private and public key on their device, and only share
their public key. The keypair has a mathematical property that allows verification of messages that are signed
with a private key. By comparing the public key of a peer with their signed message, anyone can verify the
authenticity of the message.

In the context of MusicDAO we use this PKI to proof ownership of Release objects. All Release objects are
signed using the owner’s private key and the signature is added to the object. Using these signatures, any user
receiving this object can verify its authenticity.

We choose to use the public key infrastructure as implemented in the TrustChain-Superapp (Skala, 2020).
This abstracts network identifiers such as IP addresses, which may change over time; so it provides a unique
identity per Android phone.

4.7. Establishing trust and reducing sybil attacks
In a centralized system, a single entity (such as a corporation) performs moderation of the authenticity of
users and content. In a permissionless infrastructure, maintaining a record of legitimate parties is chal-
lenging. Reaching consensus is non-trivial. To still establish trust in the legitimacy of artists, we use the
TrustChain DLT (Otte et al., 2017).

Using this technology, we record the history of uploaded tracks in an immutable and transparent way.
In essence, every artist adds Release blocks to its personal chain, and due to the interlinking mechanism of
TrustChain, it is not possible to hide parts of this history. Every participant can view this timestamped history,
as it is public by design. This way, an application can inspect the legitimacy of an artist. For example, if an
application finds a song X, published by both participant A and B, but the song published by participant A
was published later, it can be concluded that A is more trustworthy than B, as B may have copied the song.
This is a simple implementation of the Trust on First Use (TOFU) model (Toth & Vlieg, 2013).

4.8. Distributed storage 21

This system can also be extended trivially to user ratings, or other interactions between parties, to achieve
better measurements of trust. This distributed datastore of immutable and transparent histories then be-
comes a measure against Sybil attacks (Douceur, 2002) and artist impersonation.

4.8. Distributed storage
Central to our system is sharing downloading and storage of audio files and Release objects (see 4.5). To de-
sign a system which has no middlemen or regulators for publishing Releases, and has no central control, a
distributed storage system is required. This storage system should have the following properties: immutabil-
ity (data cannot be tampered with), resiliency (data should be available as long as users want it) and rigorous
duplication (all objects should be saved on multiple machines). Distributed ledger technology (DLT) allows
for these properties, so we design our system with a DLT as a major component.

One implementation of this technology is TrustChain (Otte et al., 2017) which allows for recording trans-
actions between peers in a linearly scaling public ledger. Every peer has its own immutable and public
blockchain which shows its history of transactions with others. This way we can establish trust in a cer-
tain party. In our context, we can use this mechanism to estimate trust in artists by inspecting their public
history of uploads. We choose TrustChain because of its scalability, its trust mechanism, and because it has
a native implementation for Android, as described in 3.5. In addition, this implementation allows for offline
communication, so users can download and explore new content using Bluetooth or LAN.

4.9. Peer-to-peer music sharing
In order to minimize latency for discovering and playing music tracks, while using no central nor high-
throughput servers, the network demands participants to upload content continuously.

The peer-to-peer file sharing protocol BitTorrent is suitable to share audio files in MusicDAO. We make
BitTorrent a design choice as it does not require synchronizing with a global data store, in contrary to IPFS.
This means we can build a metadata store independently from BitTorrent (for example, using TrustChain as
explained in 4.8). BitTorrent also has stable implementations for Android.

We design the app to, by default, seed the content of ≤ k Releases, which are sorted in descending order on
publication date. This means that the seeding protocol uses a first-in-first-out strategy. This simple heuristic
is used because of ease of implementation, because it requires no communication between devices. However,
it could lead to unhealthy BitTorrent swarms for music released long ago. A peer-to-peer load balancing
mechanism could prevent this but is out of scope for this thesis because of complexity.

Seeding of content should be done as a background process on the phone, so that it is still running when
the app is not in use, and therefore maximize the availability of content. However, this is constrained by
networking hardware, data subscription plans and other software running on the phone. The effectiveness of
this approach should be evaluated with through experimentation.

4.10. Distributed search
For searching content we use introduce our simple distributed algorithm. Pseudocode of this algorithm is
shown in alg. 1. It asks peers around for content tagged with some keyword. When a peer finds a match on
their local database, it sends this Release object to the original asking peer. Otherwise it forwards the query
to their neighbours, after reducing the time-to-live property by 1. The messages stop being forwarded once
their time-to-live property hits below 1. The structure of search messages are shown in fig. 4.6.

This algorithm is inspired by the more general Gnutella search and retrieval protocol (Kronfol, 2002).
Gnutella is widely used and has over a million users.

Fig. 4.7 shows a visualization of execution of the algorithm in a small network. Participant A wishes to
find a set of results R for query q , so it initiates a search query. Firstly it inspects its local database. Because
there are |R| = 0 results, it sends a query to its neighboring peers (B and C). The peers depicted in grey finds
|R|1 results; they send their result back directly to A and do no other action. Other peers forward q to its
neighbors, reducing qt t l by 1. Time-to-live hits 1 when arriving in F,G,H so the search terminates.

4.11. Transparent money flow
Figures 4.8 and 4.9 visualize the difference of money flow in the current situation and in MusicDAO. It shows
that, when intermediaries are cut from the flow, artists will have a higher income for the same fees from the
listener. Streaming services and record holders introduce many overhead costs. Our system allows artists

22 4. Design

Algorithm 1 Distributed algorithm for remote search

function DISTRIBUTEDSEARCH(query, ttl, maxPeers, minResults) .Device initiates the search
results← localSearch(query) . Filter local database
if |results| ≥minResults then

return results
end if
origin ← myAddress() . Address of the device initiating the search
for i ← 1, maxPeers do

peer ← peers[i] . Select a random neighbor
sendQuery(origin, peer, query, ttl)

end for
end function
function ONQUERY(origin, peer, query, ttl) . This is called when a query is received

if t t l ≤ 0 then
return

end if
t t l ← t t l −1
results← localSearch(query)
if |results| ≤ 1 then

return sendResults(origin, results) . Send the results back directly to the origin
end if
for i ← 1, maxPeers do

peer ← peers[i]
sendQuery(origin, peer, query, ttl)

end for
end function

Figure 4.7: Search algorithm execution example: node A initiates a search query

4.12. Artist income division algorithm 23

Figure 4.8: Money flow: current situation (simplified)

Figure 4.9: Money flow: desired situation

to publish their songs without the need to contact a label. The biggest difference in income will be seen for
independent artists, as streaming services gives particularly low payouts for unsigned artists.

As we are designing a system with no intermediaries, it should be possible to give money directly to artists.
Cryptocurrency allows for peer-to-peer payments which achieve this goal, so we use this in the MusicDAO.
Cryptocurrency payments will be used for two different functionalities: a user can send a donation to an
artist, or a user can pay artists using a monthly subscription system. This subscription system pays artists
that the user listened to, using the Artist Income Division Algorithm (see 4.12).

Fig. 4.9 shows another component: an automated and transparent payment division system. Currently,
record holders have the task of paying artists, but the contracts and systems are often opaque and result in
slow and low payouts. Automating this process should reduce these problems. We design the transparent
payment system to be an immutable record on a distributed ledger, on which a specification of the exact
shares per artists are written down.

We choose to use Bitcoin as a cryptocurrency as it has shown to be a fully peer-to-peer, secure and popular
payment system, and it does not rely on any third parties to run. It also allows for making a experimentation
environment without any high-throughput external servers.

Cryptocurrency implementations allow for private/public key-pairs which can be interpreted as a kind
of wallet; the funds can only be unlocked by a holder of the private key. In the case of MusicDAO we design
the app to include a wallet for every user. To receive money, every artist should share their public key to all
of their listeners. To achieve this, the public key of their cryptocurrency wallet is included as a property of
the Release objects (see 4.5). As there are no institutions or banks involved in storing money, users will be
required to keep their private key safe.

4.12. Artist income division algorithm
To provide a stable income for artists, in the form of reoccurring payments, we design the Artist Income Divi-
sion Algorithm. This algorithm calculates how subscription money is split into payments to artists. The user
can enable a periodic payment. This money is then divided over the artists the user listens to, in proportion
to the amount of interaction with each artist.

The algorithm is flexible in the way of measuring interaction. It could be measured in e.g. time listened,
plays, feedback in the form of likes or any linear combination of such. These parameters could be voted on
by the community. The details of this division is shown in pseudocode, in alg. 2. We choose to only create
transactions to the first k artists in order to have a constant message complexity for each iteration: O(k) =
O(1). This means that artists falling outside of this value of k do not receive money from the corresponding
listener, so the value of k becomes a trade-off between network bandwidth usage to process the payments
and fairness for artists.

4.13. Content popularity algorithm
In order to present users with content that is reachable (downloadable), we track content healthiness. Content
healthiness is the amount of peers that have and upload some specific piece of content. In the context of
music this is the amount of uploaders for a music release (see fig. 4.5). This idea is heavily influenced by the
swarm health terminology as part of BitTorrent, which interprets the number of seeders and leechers.

24 4. Design

Algorithm 2 Artist Income Division Algorithm (AIDA)

artistInteraction←Map(key: walletID, value: amount)
function SUBSCRIBE(artistInteraction, fee, k) .User registers for subscription . Artist interaction map:

repeat Every time interval t
artistInteraction←orderDesc(artistInteraction) .Order artist interaction descending
topArtists←pickFirst(k, artistInteraction) . Pick the top k artists
total←0
for (walletID, value) in topArtists do

total←total+value
end for
for (walletID, value) in topArtists do

amount← f ee · value
tot al

TRANSACT(amount, walletID) . Peer-to-peer monetary transaction
end for

until unsubscription
end function

Our gossip-based algorithm used for spreading information about content healthiness is presented in
alg. 3. Gossip-based algorithms are suitable in distributed systems because of their simplicity and flexibil-
ity (Kermarrec & Van Steen, 2007). Our algorithm is influenced by previous work present in the Tribler appli-
cation (J. A. Pouwelse et al., 2008).

In essence, the algorithm works as follows: every peer in the network communicates with a few random
neighboring peers periodically. The sending peer sends one message to each of its selected peers containing
information about how well content (e.g. a musical Release) is available, measured by the amount of devices
that have this piece of content. Every peer in the network has a local registration of content popularity, and
updates this periodically. All messages are timestamped, so outdated information is removed after time.

Algorithm 3 Gossiping algorithm for content popularity

localDatabase ← Map(key: item, value: health)
function GOSSIP(localDatabase, peers, t, margin)

repeat Every t ms
for healthItem in localDatabase do

if timestamp ≤ timestampNow − margin then
localDatabase->remove(healthItem)

end if
end for
healthItem←pickRandom(localDatabase) . Pick a random item
orderDesc(localDatabase) .Order based on health
healthItem2←pickFirst(localDatabase)
peer←pickRandom(peers)
sendGossipMessage(peer, list(healthItem, healthItem2))

until end
end function
function ONGOSSIPMESSAGE(items) .

localDatabase->overwrite(item)
end function

5
Implementation

We implemented our system on a network of phones, with no servers. Every mobile phone cooperates by
sharing music and establishing trust. This means that the computational capacity grows with the amount of
users, as does the demand on such capacity. The system is built along the ideologies of a DAO: there is no
single party, server or database that the system requires to operate. As such, it is a non-profit system, where
the artists keep all revenues. In MusicDAO, mobile phones are able to transfer money and music. In this trust-
less system, trust in other parties is established through proofs of identity using cryptography, and publicly
verified append-only history data. It is resilient against censorship-attacks: it cannot be taken down by any
government or institution. MusicDAO runs on Android 5.1.1 and above, meaning there are 13,734 Android
devices supported1.

Features overview

• Defining digital musical releases using metadata, and sharing those with peers;

• Immutable storage of music metadata and cryptographic identification of artists;

• Peer-to-peer music streaming over BitTorrent; Prioritization algorithm to minimize streaming latency;
Caching of audio files and metadata.

• Browsing playlists; Local and remote keyword search for music.

• Mobile Bitcoin wallet implementation; Peer-to-peer donations to artists using Bitcoin.

• Content popularity gossip-based algorithm; Content sorting algorithm based on content popularity.

The following was not implemented:

• Artist Income Division Algorithm.

Apart from the Android SDK and the TrustChain Superapp, the main libraries that are used are shown in 5.1.
In the following sections we explain the details of implementing the aforementioned features in a top-down
overview, starting with the interfaces.

The Artist Income Division Algorithm, presented in the Design chapter, is not implemented in MusicDAO
at the time of writing. The implementation does contain the central component of this algorithm: an integra-
tion with peer-to-peer direct donations without intermediaries. For this reason, AIDA could be implemented
trivially by another reasearcher or developer.

5.1. Zero-server infrastructure Android application
The system described in chap. 4 is implemented on a network of phones, with no servers. This results in
a fully distributed, leaderless organization. Every mobile phone cooperates by sharing music, transacting
money and establishing trust. This means that the computational capacity grows with the amount of users,

1According to Google Play Console, 17-02-2021.

25

26 5. Implementation

Name Version Usage
JLibtorrent 1.2.10 Peer-to-peer file distribution
TorrentStream-Android 2.7.0 Video streaming library
ExoPlayer 2.10.5 Android multimedia player
BitcoinJ 0.15.7 Java Bitcoin interface
XChange 5.0.1 Crypto/USD price conversion

Table 5.1: Notable libraries used

Figure 5.1: The playlist overview screen,
which is the entrance screen

Figure 5.2: Playlist fragment, showing all
tracks of one Release, streaming a track

Figure 5.3: Sending a tip to an artist or
band

as does the demand on such capacity. The system is built along the ideologies of a DAO: there is no single
party, server or database that the system requires to operate. As such, it is a non-profit system, where the
destination of money flow is decided by its users, instead of by a single organization. In MusicDAO, mobile
phones are able to transfer money and music. In this trust-less system, trust in other parties is established
through proofs of identity using cryptography, and publicly verified using append-only history data.

MusicDAO is an Android application which runs on any Android device running version 5.1.1 or above. It
is implemented as a ‘mini-app’ of the TrustChain Superapp (Skala, 2020). This follows the concept of super
apps (Huang, 2019). The app is published on the Android Play Store2 and runs on Android 5.1 and above.
Its code is publicly available3. As programming language Kotlin is selected, as it is the preferred language for
Android development4. Moreover the underlying technology stack is also written in Kotlin, so this allows for
neat integration. This section describes the implementation choices, usage of external libraries and presents
the user interface of MusicDAO. The main interfaces of the app can be seen below (figs. 5.1, 5.2 and 5.9). An
overview of the structure of the code can be seen in the package diagram in fig. 5.11.

5.2. Peer-to-peer content discovery
Peer-to-peer content metadata discovery is implemented by a push-based content spreading mechanism. All
devices have an internal clock. Every i seconds, they send a random block of music metadata to a random
peer. We analyze the impact of i on content discovery in chap. 6.

The entry point of the app is the playlist overview screen (see fig. 5.1). It is the screen that is first shown

2https://play.google.com/store/apps/details?id=nl.tudelft.trustchain
3https://github.com/Tim-W/trustchain-superapp
4https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build
-experiences-on-Android-Play.html

https://play.google.com/store/apps/details?id=nl.tudelft.trustchain
https://github.com/Tim-W/trustchain-superapp
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html

5.2. Peer-to-peer content discovery 27

Figure 5.4: Entering a search keyword Figure 5.5: Search results from peers, using keyword filtering

upon starting the MusicDAO. Here the user is presented a list of playlists, with title and author, loaded from
local disk and from peers. In our current implementation, each Playlist fragment corresponds to exactly one
Release block (see fig. 4.5). The playlists are rendered in real-time based on TrustChain data. This means:
during browsing, newly clickable playlists show up near-instantly once they are discovered from peers. The
playlists are sorted on their torrent swarm health in ascending order. Caching is used for fast browsing and
music playback. All torrent metadata and all track files received from peers are cached on the Android phone.

The cover art shown in fig. 5.1 is rendered using MP3 metadata processing, using its ID3 tags (when
available). The system does not contain a pre-fetching mechanism for obtaining cover art (as observed in
fig. 5.5). Instead, it is only shown after at least one of the MP3 metadata has finished transferring using the
BitTorrent stream.

5.2.1. Distributed keyword search algorithm
The app allows users to search for music content remotely using keyword search. The search function tries
to find matches locally, and if there are only a few found, it will try to ask for content from peers. We imple-
mented alg. 1 for this functionality. The current implementation uses only a simple filter, which checks if the
keyword is contained in the metadata of the music release.

When the user performs a search, the local database is filtered first to find matches. If there are unsat-
isfactory results, it sends a search message (see 4.6) to a few random peers. This asks neighbors to inspect
their local database to find matches for the same query. If the peer finds a match, it sends the corresponding
results directly back to the original query initiator. To disallow packages from endlessly being forwarded on
the network we use a time-to-live property.

Algorithm 1 is implemented using the parameters t t l = 1 and maxPeer s = 20 so there is no recursive
searching throughout the network. A low value of t t l is chosen because any t t l > 1 results in an exponential
growth of search messages throughout the network.

5.2.2. Gossip-based algorithm for content popularity
The gossip-based algorithm used for communicating content popularity with peers is implemented as de-
scribed in alg. 3. Every peer in the network sends a content health message to a random peer every 3 seconds.
The content healthiness is displayed for every release as Peers: X (see fig. 5.1). Gossip messages older than
one hour were discarded (mar g i n = 3600). It is non-trivial to determine a good value for mar g i n as it is a
trade-off between amount of information and recentness of information.

28 5. Implementation

Figure 5.6: Music streaming mechanism

5.3. Music streaming algorithm
To achieve fast buffering of music, we implemented a priority system for tracks and for parts of tracks (chunks)
(see 5.6). In essence, the player prioritizes chunks that the user is currently interested in, by actively asking
peers to send the corresponding k chunks that are necessary to play the selected section of the track. In addi-
tion, the selected track is given a higher priority over other tracks in the playlist. This uses the piece priorities
system in libtorrent (see libtorrent Manual5). By default, the first couple of chunks of each track are given a
high priority, to reduce the chance of buffer underflow, so that the user can start streaming early.

Playing music is implemented using ExoPlayer (5.1). This music player library is suitable as it allows for
playing tracks that are partially loaded, which enables streaming. When the user selects a playlist to browse
and play, the fragment in fig. 5.2 is displayed. Here, the user can select a track to play. It presents its list of
tracks and other metadata, such as the title and artist(s). For each track the file size is displayed, and a loading
indicator on the right side. This shows, in real time, how much of the track is downloaded. In the example of
5.2, the first track is fully loaded. The track player, shown on the bottom, interacts directly with the tracklist
and the selected track. It shows which track is selected and whether it is currently playing or buffering.

5.4. Peer-to-peer financial infrastructure
Our system contains peer-to-peer payments where 100% of money goes to artists. We created a public Bitcoin
RegTest environment6 to test peer-to-peer Bitcoin donations and payments. This creates a new ‘clean slate’
Bitcoin blockchain and allows for full control over the chain and miners. This enables a test environment
that is useful for experiments, as we can tweak the block generation speed and keep track of all transactions
registered on the blockchain.

Each device participating in the MusicCommunity is given a private/public wallet identity upon installa-
tion of the MusicDAO. The wallet interface (fig. 5.7) shows synchronization status of the RegTest network (see
5.4). Once the wallet is fully synchronized with the blockchain, the private key and balance are displayed as
shown in fig. 5.8.

Each device must be synchronized with the network in order to make payments. A background thread
of MusicDAO establishes and maintains communication with bitcoin nodes, so that it does not interrupt the
user experience. The progression of synchronization can be seen in the wallet interface. Synchronization
with the RegTest network is done using a single bootstrap server, which is a hard-coded address in the app.
This is necessary for running on a test net, as it will take an infeasible amount of time to guess the address of
a running Bitcoin node, with only a few nodes. In a real-world situation, bitcoin nodes should be found by
querying peers for bitcoin node addresses.

Upon browsing a playlist, a donation button is displayed as shown in fig. 5.9. When pressing this button,
the user can select an amount and make a direct donation to the artist or band, in the form of a bitcoin
transaction from their wallet. After confirmation, the transaction is registered on the RegTest network (see
5.4). In the current software implementation, when a user makes a donation, this transaction is atomic and
can only go to one wallet. An automatic splitting system between different artists of one group or band has
not been implemented yet.

5.5. Permissionless publishing of music
We implement audio track uploading, downloading and streaming using JLibtorrent7, an implementation of
BitTorrent. Immutable and public storage of metadata is implemented with TrustChain (Otte et al., 2017).

5https://www.libtorrent.org/manual-ref.html#file-format
6https://developer.bitcoin.org/examples/testing.html#regtest-mode
7https://github.com/frostwire/frostwire-jlibtorrent

https://www.libtorrent.org/manual-ref.html#file-format
https://developer.bitcoin.org/examples/testing.html#regtest-mode
https://github.com/frostwire/frostwire-jlibtorrent

5.6. Identity and authenticity 29

Figure 5.7: Synchronizing with the Bit-
coin RegTest environment blockchain

Figure 5.8: Wallet overview and balance
after synchronizing

Figure 5.9: Sending a tip to an artist or
band

Peer-to-peer content discovery is implemented by a push-based content spreading mechanism. All devices
have an internal clock. Every i seconds, they send a random block of music metadata to a random peer.

To create and share music content, a user can create a Release object using the dialog shown in fig. 5.10.
There are two options for creation: the user either selects local audio tracks or pastes a magnet link. Af-
terwards, the user adds metadata describing the contents and submits the Release. In the background this
creates a torrent file, which is stored on the mobile device. Finally, by using the computed infohash and file
list, the magnet link of the torrent file is created and added to the magnet field of the Release block.

We run a bittorrent tracker, which maintains a list of seeders for the torrents that are created and shared
in MusicDAO. To keep the network decentralized, seeders may also be found using a distributed hash ta-
ble (Distributed Hash Table, 1981-2019). In addition, the app uses the local peer discovery (LPD) (8472, 2015)
functionality of BitTorrent. This allows for finding peers and transmitting torrent pieces over a LAN, resulting
in fast transmission and low latency. Seeding of content is implemented using a simple continuous mecha-
nism. The ContentSeeder class runs a background thread which seeds all local torrents, with an upper thresh-
old T . This is set to T = 10. The ContentSeeder uses a last-in-first-out heuristic: Only the top T most recently
created/received torrent files are seeded.

5.6. Identity and authenticity
Every device participating in MusicDAO has a unique identity. MusicDAO implements the public-key infras-
tructure as described in 4.6 using the identity system proposed by Skala (2020). This uses the widely used
industry standard Curve25519 cryptography system. Using this system, it is computationally infeasible to
obtain the private key from a public key. For simplicity in implementation, we assume that every device in
the network is an abstraction of a unique artist.

All immutable music release blocks are assigned an identity of the creator using a public key. Every device
running the MusicDAO will receive a public/private key-pair upon first launch.

Currently there is no multi-signature support implemented. This means that in the case of a group pub-
lishing a Release, there is only one public key representing the whole group. Every artist, and every unique
collaboration between artists should generate their own key-pair to describe ownership of the Release.

5.7. Quality assurance
As mentioned in the introduction, the goal of the implemented work is to be the first steps towards a full
robot economy. Aside from being a functional real-world application, MusicDAO also presents an DAO AI

30 5. Implementation

Figure 5.10: Dialog for creating and pub-
lishing a new Release

Figure 5.11: Package diagram showing the interaction with external libraries and
TrustChain Superapp packages

framework to create other robot economy applications, beyond the scope of music. Experimentation in other
domains allows to gain a further understanding of the developing science of the robot economy.

As the framework presented in MusicDAO is an important milestone towards the robot economy, the code
reusability is of great importance. Therefore we used best-practice code quality assurance approaches such
as continuous integration, code linting and pull request reviews. These best practices are widely used in the
software industry.

We use a continuous integration (CI) environment, run by Github Actions8. GitHub Actions is a mature
CI system, used by e.g. the Google Cloud Platform. Within our CI environment, we use automated tests and
code linting. Unit tests are written using JUnit 49 and the mocking library Mockk10. The code coverage of
these unit tests can be seen in 5.2. Code linting is performed using KtLint11.

Code coverage is measured by Android Studio 412. The majority of uncovered code contain user interface
interaction and networking callback logic. Code coverage could have been improved by introducing Android
instrumented tests. These are tests that run on an Android device or emulator so that user interaction flows
can be tested. However, we chose to not implement this as these type of tests can not be run in our continuous
integration environment, and tweaking the CI for support of this would be a non-trivial task.

MusicDAO runs on Android 5.1.1 and above, and as such supports 13,734 different Android devices13.
During the implementation phase we ensure that it runs well on different screen sizes and Android versions,
by running it on 20 different Android devices. To gain a further understanding of device compatibility and
bug hunting, we make use of an online crash reporter (fig. 5.12). Firebase Crashlytics registers app installs
and crashes in real-time, which we use during the experimentation of MusicDAO. It shows details of each
application crash for all users (see fig. 5.12). Using this, a full stack trace can be inspected remotely for each
crash. In addition it helps with gaining insight in various performance metrics for certain types of Android
devices.

8https://github.com/features/actions
9https://junit.org/junit4/
10https://mockk.io/
11https://github.com/pinterest/ktlint
12https://developer.android.com/studio
13According to Google Play Console, 17-02-2021.

https://github.com/features/actions
https://junit.org/junit4/
https://mockk.io/
https://github.com/pinterest/ktlint
https://developer.android.com/studio

5.7. Quality assurance 31

Package/class Line coverage
MusicService.kt 15% (15/95)
MusicBaseFragment.kt 50% (1/2)
catalog 24% (35/142)
dialog 20% (24/130)
ipv8 81% (57/70)
net 90% (27/30)
player 0% (0/50)
playlist 9% (19/203)
util 60% (42/70)
wallet 0% (0/100)

Table 5.2: Code coverage overview

Figure 5.12: Firebase Crashlytics crash reporter; this figure shows the crashes over time

6
Evaluation

We evaluated the viability of our DAO as a Big Tech alternative. An ideal evaluation would be by measuring
the impact of a large-scale (millions of users) and long term deployment of MusicDAO in terms of artist in-
come and artist happiness. However, the time and scale required is not feasible in the scope of this thesis.
Instead, we deploy MusicDAO on a smaller scale (20 Android devices, 11 users). We measure performance of
money transaction flow, music streaming and search latency in supervised and unsupervised experiments.
These measurements determine the responsiveness of our infrastructure in small network sizes. By com-
paring latency and throughput in several network sizes, we can make conclusions of the performance of our
infrastructure in larger networks.

In an unsupervised experiment, all test subjects are given the MusicDAO application and are asked to
stream music and send money to artists, but with no specific rules or guidelines. We have no control over the
actions of these test subjects.

In multiple supervised experiments, we use 10 Android devices that are under our control. we measure
latency and throughput of music data and money transfers, and analyze the impact of network size on these
measurements.

6.1. Unsupervised experiment: public release
MusicDAO was released publicly on the Google Play store and 11 test subjects were given the task to download
music and send donations to artists. Upon installation and first running MusicDAO, it sends a request in the
background to our Bitcoin node, asking for 10 coins in starter money. The responsiveness of our Bitcoin node
for transferring starter money is analyzed in 6.1.1.

6.1.1. Automated starter money transactions
We analyze the responsiveness of our bitcoin node by obtaining two datasets, and inspecting their correlation
in terms of timing of events.

The two datasets are:

1. App installations per day, as measured by the Google Play console.

2. Transactions from our Bitcoin node with a value of 10 coins, scraped from our blockchain.

When there are x app installations on some day, there should be y x transactions outgoing from our Bit-
coin faucet. In the graph shown in fig this is not always the case. On 19-01-2021 there was (at least) one
transaction missing. This was due to a server outage where the Bitcoin faucet was running. There are also
cases in which there are transactions but no installations. This may be due to multiple app installations from
one device on the same day (which is measured as one by the Google Play store console) or app installations
outside of the Play store.

6.1.2. Donation money flow
The datasets used to create the plots shown in figs. 6.2 and 6.3 are received by scraping blockchain block
data from our Bitcoin node. Fig. 6.2 shows the relation between created blocks and money transacted per

33

34 6. Evaluation

Figure 6.1: Graph showing the relationship between faucet transactions of 10BTC and app installations. Every app installation should
correspond to at least one faucet transaction.

Figure 6.2: Artist income (cumulative) over time and block creation

Figure 6.3: Transactions (cumulative) over time and block creation

6.2. Supervised experiments 35

Figure 6.4: Average time spent per download stage. Measured by 20 runs in total, in two different network configurations.

block (cumulative). We observe that, during the timeline of the release experiment, nearly 500 BTC has been
received by artists.

Note that the Bitcoin blockchain only contains timestamps for blocks, and no timestamps for individual
transactions. This means we could not analyze transaction confirmation time in our unsupervised experi-
ment, as this requires the timestamp of creating a transaction. However, prediction and analysis of confir-
mation times in Bitcoin have already been performed multiple times in recent literature (Kawase & Kasahara,
2017) (Koops, 2018).

6.2. Supervised experiments
During several supervised experiments, we were in control of a network of 10 Android devices, of which 5
virtual emulators and 5 real world devices. By performing several experiments, throughput and latency of
several actions in this network is analyzed. Performing measurements in different network sizes (2 up to 10
devices), enables making predictions of the scalability of MusicDAO.

6.2.1. Downloading and streaming
6.4 shows the download time of each stage in the bittorrent downloading process. By running 10 runs per
network configuration, we inspected the effects of a bittorrent tracker on throughput and handshake time.
The 4 different download stages marked in this figure are as follows.

1. Time to receive metadata (including establishing handshake)

2. Time to fill stream buffer

3. Time to download first track

4. Time to download full album

The measurements show that a BitTorrent tracker significantly reduces transfer times, for a small BitTor-
rent swarm with 5 seeders. The largest difference is in the fetching metadata stage, during which the device
under test must find and connect with seeders. Discovering seeders over DHT requires asking multiple peers,
and as such requires more time and messages before the download can start. Once the download starts, the
runs using a tracker also reach significantly higher throughput, as the tracker assists the device in finding
more seeders and healthier seeders. We found that the major factor slowing down download stages when us-
ing DHT only is the NAT puncturing stage, where devices try to connect to each other when there are one or
more NAT devices in between. As expected, finding peers over DHT is also slower than via a tracker, however

36 6. Evaluation

Figure 6.5: 5 traces of download throughput, downloading an album of around 38 Mbs. Measured with Nokia 7.

the time taken to create a handshake during NAT puncturing has a much larger effect on the peer-to-peer
connecting time (the time taken to create a reliable connection for data transfer).

6.5 shows 5 traces of downloading a 38 Megabyte album. The red line shows the moving average over
these 5 runs. The slow-start nature of BitTorrent can be observed here. Roughly the first 5 seconds are used
for fetching the BitTorrent metadata (see also 6.4).

The datasets used to create the plots shown in figs. 6.2 and 6.3 are received by scraping blockchain block
data from our Bitcoin node. Fig. 6.2 shows the relation between created blocks and money transacted per
block (cumulative). We observe that, during the timeline of the release experiment, nearly 500 BTC has been
received by artists.

Note that all devices evaluated in experiments 6.4 and 6.5 use Bittorrent Local Peer Discovery. This means
that some of the data transfers may be over local area network, which reaches considerably higher throughput
than regular transfers over TCP across NATs.

6.2.2. File headers and BitTorrent piece ordering
The streaming algorithm implemented and evaluated uses the BitTorrent priorities system. The first x = 5
pieces at the selected portion of the file (by default, the start of the file) have a higher priority than the other
pieces. However, even though some pieces A have higher priority than other pieces B , BitTorrent does not
guarantee that all a ∈ A are received earlier before any b ∈ B . Therefore, the actual ordering of the received
pieces is non-deterministic. The simple heuristic used in the streaming algorithm is: start playing the file
when 30% has been downloaded; but this does not always work and this leads to inconsistent stream buffer
times. Additionally, we use the assumption that the header of the audio file is at the first few bytes of the file,
but this is not always true.

There is significant ongoing research related to peer-to-peer streaming in literature that can be used to
improve our streaming algorithm (Erman, Vogeleer, & Popescu, 2008) (Akkanen, 2017).

6.2.3. Content discovery
Fig. 6.6 shows measurements of an Android device discovering content, after running MusicDAO for the first
time. More specifically, it is a measurement of music metadata, received as TrustChain blocks. All participat-
ing devices are configured as follows: Every device sends a random block to a random peer every 5 seconds.
A Nokia 7 Android device ran the MusicDAO in an idle state for 5 minutes. The app measured the amount of
content metadata discovered every 2 seconds.

Mathematical model
For evaluating content discovery over time, we compare three different experiments with a mathematical
model for expected discovered items over time.

• Gossip interval t = 5 seconds

• Total items to discover: R = 50

6.2. Supervised experiments 37

Figure 6.6: Measurements of content discovery: releases discovered after a fresh installation. n: network size (amount of Android devices)

Every time interval, all devices send one music block to a random neighbor. As such, the expected amount
of blocks received in one interval is 1. When receiving a music block, the chance that it is a block that has not
been received before is

R − r

R
with r ≤ R the amount of items received so far. It follows that the expected value for the cumulative amount
of unique items discovered after x iterations is

E [R] = R(1− (
R −1

R
)x)

where

x = 1

t
This expected value E [R] over time is plotted in 6.6 as Model.

As every device sends one item per time interval to a neighbor, the gossiped items per time interval is
equal to network size n. This means message complexity M is equal to network size:

M =O(n)

Every device participating in gossiping sends 1 message and receives, on average, 1 message back. So the
expected messages to process is E [M] = 2 per iteration. Therefore the message complexity for a single device
is

M =O(1)

This means that the network size does not affect the message processing workload of each device, and makes
the algorithm highly scalable.

In 6.6 we can see a correlation between model and experiment for network sizes n = 2 and n = 4. For n =
10 the experiment and model correlate until 3 minutes into the experiment. The reasons for this are for now
not clear. More investigation and more experiments on larger networks are necessary to make conclusions.

6.2.4. Random access latency
Random access latency of metadata is evaluated through measuring search latency. Search latency is the
round-trip time between initiating keyword search and receiving metadata for the release. During this exper-
iment, the content that was searched for was present in all devices except the one under test. The distributed
search algorithm (alg. 1) is used with the following parameters.

38 6. Evaluation

Figure 6.7: Search latency of performing keyword search

• maxPeer s = 20

• t t l = 1

This means that a maximum of 20 neighbors are contacted when performing a search, and that search is
not recursive; meaning only neighbors are contacted (not neighbors of neighbors). We expect that random
access latency does not increase in correspondence to relation to its network size.

For three different network sizes of 2, 6 and 10, 10 runs are done and the latency and average latency are
plotted in 6.7. We observe that for these 20 runs, latency is < 1s. Another observation is: increase in network
size (10 versus 2) does not negatively affect latency. Current music streaming systems have a search latency
of roughly < 2s in ideal situations.

It should be noted that message complexity of the search algorithm grows exponentially with the value
of time-to-live (ttl). For time-to-live T and the maximum number of neighboring peers to ask P , the amount
of messages for a single search is pT for p ≤ P . This leaves a message complexity of O(P T). This could be
improved by using a different distributed data structure that is optimized for search, such as a balance tree or
a distributed hash table.

6.3. Device connectivity and network bootstrapping
During experimentation, some of the Bittorrent traffic on Android devices were blocked by Network Address
Translators (NATs). MP3 transfers over Bittorrent were slowed down by this. The NAT Port Mapping Protocol
(NAT-PMP) was used to be able to establish connections between different devices. NAT-PMP establishes
connections using port scanning and port forwarding. However, this is a lengthy process: we observed that
establishing such a connection usually takes more than 2 minutes. Analyzing and improving this process
should be investigated in future distributed systems research.

Our goal, as described in the Design section, was to create a phone-only network. This is not fully accom-
plished as we use a bootstrap node to tackle the peer-to-peer bootstrap problem. As recognized by Wolinsky,
Juste, Boykin, and Figueiredo (2010), the peer-to-peer bootstrap problem is the problem of finding peers in a
P2P overlay network, when there are no connected peers to begin with. This is a widely known, yet unsolved
problem for any peer-to-peer network, and it is also relevant in MusicDAO.

It must be noted that a bootstrap node is not necessary when you can connect to a peer that is already on
the MusicDAO network, for example via a local area network or Bluetooth. Moreover, a bootstrap node can
be discarded once the bootstrapping procedure is successful.

6.4. Scalability 39

6.4. Scalability
We presented an infrastructureless network of phones that together form a fully operating application. Dur-
ing supervised experiments, a network size of up to 10 phones was used. Now we present our expectations of
scalability beyond 10 active devices.

As every device cooperates in the network by being both an uploader and downloader for content, the
network size should not affect download speeds for users. The bandwidth, processing power and storage
capacity of the application should naturally grow with the amount of users. An important note is that we
do not take into account free-riders (peers that use the network but do not deliver resources) or adversaries
(peers that perform attacks such as network flooding or sybil attack).

The system is scalable by using a scalable accounting system (see 4.8) and distributed file system (see 4.9).
Every device records its own history. When a device wants to publish music, it only transacts with one other
party, to sign the metadata record. As such, there is no global consensus, nor a global ordering of transactions,
so all records are processed in parallel.

In addition, by using BitTorrent as the streaming/content layer, any participant can publish a torrent with
music, without needing to interact with any other peer (in contrary to centralized streaming infrastructure).

The transaction system, Bitcoin, may become a bottleneck in scalability (Chauhan, Malviya, Verma, &
Mor, 2018). It has a single, global blockchain and blocks take on average 10 minutes to mine. There are other,
more scalable protocols for transacting cryptocurrency in active development (LeMahieu, 2018), but they are
not yet mature. However, our financial system of wallets using public-key cryptography is easily adaptable to
any other cryptocurrency. We do not consider centralized technologies as that would concentrate power, in
contrary to the aim of this thesis.

6.5. Bitcoin node and transaction fees
We made use of a bitcoin miner, running on a dedicated server continuously throughout the experimenta-
tion phase. At least one miner is necessary on our test network in order to process payments. The use of a
dedicated server contradicts our design of a zero-server software system, and creates a single point of fail-
ure. However, this situation could be improved by decentralizing the network: by running miners on each
device participating in the network, the resources become more balanced, and this would reduce the risk of
hardware failures.

We use Bitcoin as peer-to-peer electronic cash system. Bitcoin uses transaction fees for every transac-
tion. In our unsupervised experiments with MusicDAO, we observed an average transaction fee of 0.00003778
coins. As such we cannot say that artists receive 100% of the donation money from users, but rather roughly
99.9996%. This fee is calculated dynamically. It is based on the size of a transaction, and network conditions
such as congestion.

Our framework for the robot economy does not explicitly state the type of currency used. In MusicDAO,
Bitcoin can be trivially swapped for any other currency as long as that currency uses a digital peer-to-peer
public key infrastructure with public wallet addresses. As such, a different crypto-currency with lower trans-
action fees (such as Nano (LeMahieu, 2018)) can be used.

6.6. Battery usage
The challenge of any peer-to-peer mobile app is battery usage, as it should be connected and contribute to the
network as much as possible to optimally support other peers. To do this, TrustChain Superapp sends regular
keep-alive messages in order to track the status of peers. To do this, the Superapp runs in the background as
an Android service. Therefore it can still be used when the app is closed. The downside is that this appears
to have a major effect on battery usage, as found in previous experimentation by Skala (2020). He found that,
during a 10 hour experiment, when a Google Pixel phone runs the app in the background and is connected
to 20 peers, its battery consumption is roughly 10 times higher than normally.

Battery usage could be improved by adjusting the peer-to-peer connectivity protocol of IPv8, such as by
reducing the interval of keepalive messages. This requires further investigation and more research.

7
Conclusion and Future Work

This thesis presents a novel framework for building a robot economy in software. This framework allows for
designing and implementing software for the common good: software that (1) handles financial transactions
in a fair way (2) as decided by democratic engagement, (3) runs transparently and autonomously, (4) is open
to any participant (permissionless), (5) is decentralized and leaderless, (6) supports a self-evolving codebase,
and finally (7) can make intelligent decisions on its own using AI.

This thesis presents a music streaming alternative for the Big Tech industry: we implemented our frame-
work in order to build a fully working decentralized music streaming, publishing and discovery mobile app
with peer-to-peer donations. In this proof-of-concept called MusicDAO, we applied the theory of the robot
economy in software to an industry of which the core contributors (artists) suffer majorly from centralization
on the Internet: the music industry. Most music streaming platforms take a 20-40% cut of music revenue;
MusicDAO takes 0%. MusicDAO implements 1, 3, 4 and 5 of the key features of a robot economy in software
(see above).

MusicDAO is completely free of label and platform intermediaries taking large revenue cuts. It forwards
> 99.99% of all music revenue to artists. All money flow is public and transparent. Artists using our DAO
can be independent and self-publishing. Apart from the music platform oligarchy, it also surpasses the label
oligarchy as it requires no music label to publish music.

MusicDAO implements a peer-to-peer audio streaming algorithm, which is able to stream any BitTorrent
audio swarm. Its buffer loading time does not reach industry standards yet but this can be improved by more
optimized pre-fetching and piece ordering algorithms.

Our system is not yet resilient against free-riding, spam attacks or sybil attacks. Preventing such attacks is
an active developing area in distributed systems research.

7.1. Generality: beyond music
The framework presented in this thesis can be applied to many other domains beyond music. Most functions
of corporation-run centralized platforms are already automated, and handled by AI or robots. It can trans-
form Internet platforms, or even complete value chains that currently have unfair or opaque money flows.
One may think of a production and sales chain with no retail cut, or a video publishing network with a sub-
scription model without intermediaries. This thesis aims to be a step into an evolving research direction,
infrastructure for the common good: autonomous software that works in favor of its user community instead
of companies or profit.

7.2. Future research directions
In the MusicDAO proof-of-concept, there is no use of intelligent robots. Decision making based on AI is the
next key step to the robot economy in software. We envision a symbiotic interaction between humans and
robots: humans vote for the baselines and rules within which robots play, while robots use AI such as machine
learning or evolutionary algorithms to perform tasks and make decisions.

Content moderation is a key ingredient of any Internet platform. In MusicDAO, any music that is pub-
lished is automatically admitted to the network. Therefore the network does not automatically remove any
duplicates (copies), illegal remixes or other illegal audio. Using DAO and intelligent robots, a system can

41

42 7. Conclusion and Future Work

be created in which robots moderate content using AI, while humans democratically vote on the rules for
content.

Ongoing research into Self-Sovereign Identity (SSI) can fix part of this problem: SSI can create a certain
passport for content creators, with which creators can prove their identity and thus ownership of certain
content.

Streaming income is only a part of revenue from music. MusicDAO can be extended to include other
revenue flows to artists, to make also those incomes higher and more transparent for artists. Possibilities are
e.g. live concert tickets, merchanidise or physical audio sales.

A robot economy is highly susceptible for the problem of determining responsibility when things go wrong.
For example, a software bug may occur or a robot can make an unexpected monetary transaction. This chal-
lenge requires research into new theories and ideas in the context of law and philosophy for the robot econ-
omy.

Bibliography

8472, T. (2015). Bittorrent local service discovery. Retrieved September 14 2020, from http://www
.bittorrent.org/beps/bep_0014.html

aCooke, C. (2018). Dissecting the digital dollar. London.
Aguiar, L., & Waldfogel, J. (2018). Platforms, promotion, and product discovery: Evidence from spotify playlists

(Tech. Rep.). National Bureau of Economic Research.
Akkanen, J. (2017, September 19). Continuous scheduling for peer-to-peer streaming. Google Patents. (US

Patent 9,769,255)
Andersson Schwarz, J. (2016). Mastering one’s domain: some key principles of platform capitalism.
Arduengo, M., & Sentis, L. (2020). The robot economy: Here it comes. International Journal of Social Robotics,

1–11.
Bazinet, J. B., Singlehurst, T., May, M., Suva, J., Ezawa, K., & Yap, A. (2018). Putting the band back together:

Remastering the world of music (issue brief). Citi GPS.
BBC. (2019). Spotify sued over ’billions of eminem streams’. Retrieved October 25 2020, from https://

www.bbc.com/news/technology-49436077
Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561.
Benet, J., & Greco, N. (2018). Filecoin: A decentralized storage network. Protoc. Labs, 1–36.
Bucher, T. (2018). If... then: Algorithmic power and politics. Oxford University Press.
Buterin, V. (2014). Daos, dacs, das and more: An incomplete terminology guide. Ethereum Blog. Retrieved

November 4 2020, from https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an
-incomplete-terminology-guide/

Buterin, V., et al. (2014). A next-generation smart contract and decentralized application platform. white
paper, 3(37).

Chauhan, A., Malviya, O. P., Verma, M., & Mor, T. S. (2018). Blockchain and scalability. In 2018 ieee interna-
tional conference on software quality, reliability and security companion (qrs-c) (pp. 122–128).

Cohen, B. (2002). Bittorrent protocol specification v1.0. WWW, June.
Das, T. (2016). Intelligent techniques in decision making: a survey. Indian Journal of Science and Technology,

9(12), 1–6.
de Vos, M., & Pouwelse, J. (2018). A blockchain-based micro-economy of bandwidth tokens. CompSys 2018.
DigitalMusicNews. (2018). What streaming music services pay (updated for 2020). Retrieved 29 Octo-

ber 2020, from https://www.digitalmusicnews.com/2018/12/25/streaming-music-services
-pay-2019/

Distributed hash table. (1981-2019). Retrieved September 14 2020, from https://encyclopedia2
.thefreedictionary.com/Distributed+hash+table

Douceur, J. R. (2002). The sybil attack. In International workshop on peer-to-peer systems (pp. 251–260).
Ellis-Petersen, H. (2014). Amazon and hachette end dispute on ebooks. The Guardian. Retrieved from

https://www.theguardian.com/books/2014/nov/13/amazon-hachette-end-dispute-ebooks
Erman, D., Vogeleer, K. d., & Popescu, A. (2008). On piece selection for streaming bittorrent. In Fifth swedish

national computer networking worshop (sncnw2008).
et al., D. F. (2014). Bypassing censorship: A proven tool against the recent internet censorship in turkey. In

2014 ieee international symposium on software reliability engineering workshops (pp. 389–394).
Friedlander, J. P. (2020). Riaa 2019 year-end music industry revenue report. Recording Industry Association of

America. https://www.riaa.com/reports/riaa-releases-2019-year-end-music-industry-revenue-report/.
Gillespie, T. (2014). The relevance of algorithms. Media technologies: Essays on communication, materiality,

and society, 167(2014), 167.
Heap, I. (2017). Blockchain could help musicians make money again. Harvard Business Review, 5.
Heuvelings, D. (2020). Auxiety (1st ed., Vol. 1). The address: Das Mag Uitgeverij B.V.
Huang, A. (2019). Super app or super disruption? Retrieved September 21 2020, from https://home.kpmg/

xx/en/home/insights/2019/06/super-app-or-super-disruption.html
IFPI. (2018). Global music report 2018. International Federation of the Phonographic Industry London.

43

http://www.bittorrent.org/beps/bep_0014.html
http://www.bittorrent.org/beps/bep_0014.html
https://www.bbc.com/news/technology-49436077
https://www.bbc.com/news/technology-49436077
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://www.digitalmusicnews.com/2018/12/25/streaming-music-services-pay-2019/
https://www.digitalmusicnews.com/2018/12/25/streaming-music-services-pay-2019/
https://encyclopedia2.thefreedictionary.com/Distributed+hash+table
https://encyclopedia2.thefreedictionary.com/Distributed+hash+table
https://www.theguardian.com/books/2014/nov/13/amazon-hachette-end-dispute-ebooks
https://home.kpmg/xx/en/home/insights/2019/06/super-app-or-super-disruption.html
https://home.kpmg/xx/en/home/insights/2019/06/super-app-or-super-disruption.html

44 Bibliography

IFPI. (2020). Ifpi global music report 2020 - the industry in 2019. International Federation of the Phonographic
Industry London.

Ingham, T. (2018). The odds of an artist becoming a “top tier” earner on spotify today? less than 1%. Music
Business Worldwide, 25.

Innis, H. A. (2007). Empire and communications. Rowman & Littlefield.
Jaspers Focks, T., van Veltom, H., Wigmore, V., & Nguyen, W. (2018). Plebnet: A self-replicating botnet for

privacy protection.
Jentzsch, C. (2016). Decentralized autonomous organization to automate governance. White paper, Novem-

ber.
Jia, B., Xu, C., Gotla, R., Peeters, S., Abouelnasr, R., & Mach, M. (2016). Opus-decentralized music distribution

using interplanetary file systems (ipfs) on the ethereum blockchain v0. 8.3. Tech. Rep., 2016. Accessed:
Jan. 2017.[Online]. Available: https://icosbull

Kawase, Y., & Kasahara, S. (2017). Transaction-confirmation time for bitcoin: A queueing analytical approach
to blockchain mechanism. In International conference on queueing theory and network applications
(pp. 75–88).

Kermarrec, A.-M., & Van Steen, M. (2007). Gossiping in distributed systems. ACM SIGOPS operating systems
review, 41(5), 2–7.

Koops, D. (2018). Predicting the confirmation time of bitcoin transactions. arXiv preprint arXiv:1809.10596.
Kronfol, A. Z. (2002). Fasd: A fault-tolerant, adaptive scalable distributed search engine (Unpublished doctoral

dissertation). Master’s Thesis http://www. cs. princeton. edu/akronfol/fasd.
LeMahieu, C. (2018). Nano: A feeless distributed cryptocurrency network. Nano [Online resource]. URL:

https://nano. org/en/whitepaper (date of access: 24.03. 2018).
Loewenstern, A., & Norberg, A. (2008). Dht protocol. Retrieved October 21 2020, from http://www

.bittorrent.org/beps//bep_0005.html
Marozzo, F., Talia, D., & Trunfio, P. (2020). A sleep-and-wake technique for reducing energy consumption in

bittorrent networks. Concurrency and Computation: Practice and Experience, 32(14), e5723. Retrieved
from https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5723 doi: 10.1002/cpe.5723

Masnick, M. (2019). Protocols, not platforms..
Meier, L. M., & Manzerolle, V. R. (2019). Rising tides? data capture, platform accumulation, and new monop-

olies in the digital music economy. New Media & Society, 21(3), 543–561.
MidiaResearch. (2020). Music subscriber market shares q1 2020. Retrieved from https://www

.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020
Music, R. (2015). Fair music: Transparency and payment flows in the music industry. Rethink Music.
Otte, P., de Vos, M., & Pouwelse, J. (2017, 09). Trustchain: A sybil-resistant scalable blockchain. Future

Generation Computer Systems. doi: 10.1016/j.future.2017.08.048
Pelly, L. (2017). The problem with muzak. Retrieved 09 November 2020, from https://thebaffler.com/

salvos/the-problem-with-muzak-pelly
Pouwelse, J. (2012). Media without censorship (censorfree) scenarios. Retrieved 09 November 2020, from

https://tools.ietf.org/html/draft-pouwelse-censorfree-scenarios-02
Pouwelse, J. A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., . . . Sips, H. J. (2008). Tribler: a social-based

peer-to-peer system. Concurrency and computation: Practice and experience, 20(2), 127–138.
Prey, R. (2020). Locating power in platformization: Music streaming playlists and curatorial power. Social

Media+ Society, 6(2), 2056305120933291.
Rayna, T., & Striukova, L. (2009). Monometapoly or the economics of the music industry. Prometheus, 27(3),

211–222.
ReCode. (2015). Here’s what happens to your $10 after you pay for a month of apple music.
Rumburg, R., Sethi, S., & Nagaraj, H. (2018). Audius: A decentralized protocol for audio content.
Skala, M. (2020). Technology stack for decentralized mobile services (Unpublished master’s thesis).
Srnicek, N. (2017). Platform capitalism. John Wiley & Sons.
Stiglitz, J. (2019). Market concentration is threatening the us economy. Project Syndicate.
Toth, G. X., & Vlieg, T. (2013). Public key pinning for tls using a trust on first use model (Tech. Rep.). Technical

report, University of Amsterdam.
Trichordist, T. (2014). The streaming price bible – spotify, youtube and what 1 million plays means to you! Re-

trieved 22 October 2020, from https://thetrichordist.com/2014/11/12/the-streaming-price
-bible-spotify-youtube-and-what-1-million-plays-means-to-you/

Wolinsky, D. I., Juste, P. S., Boykin, P. O., & Figueiredo, R. (2010). Addressing the p2p bootstrap problem for

http://www.bittorrent.org/beps//bep_0005.html
http://www.bittorrent.org/beps//bep_0005.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5723
https://www.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020
https://www.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020
https://thebaffler.com/salvos/the-problem-with-muzak-pelly
https://thebaffler.com/salvos/the-problem-with-muzak-pelly
https://tools.ietf.org/html/draft-pouwelse-censorfree-scenarios-02
https://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/
https://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/

Bibliography 45

small overlay networks. In 2010 ieee tenth international conference on peer-to-peer computing (p2p)
(pp. 1–10).

	Introduction
	Monopolization on the Internet
	Towards a robot economy
	Centralization of power in the music industry
	Proposed solution: MusicDAO

	Problem description
	History in the industry: centralization of power
	Monopoly power of centralized platforms
	Intermediaries take a large share
	Financial transparency
	Profit-driven recommendation engines
	Research question

	State of the Art
	Decentralized Autonomous Organizations
	AI and DAO
	Decentralized music distribution technologies
	Financial transparency in the music industry
	Decentralized application frameworks
	Decentralized content delivery networks
	BitTorrent
	IPFS

	File hosting incentive algorithms

	Design
	Zero-cost autonomous music industry
	Zero-server phone-to-phone application
	Phone-to-phone connectivity
	Open protocol and artist freedom
	End-to-end music delivery model
	Identification of participants
	Establishing trust and reducing sybil attacks
	Distributed storage
	Peer-to-peer music sharing
	Distributed search
	Transparent money flow
	Artist income division algorithm
	Content popularity algorithm

	Implementation
	Zero-server infrastructure Android application
	Peer-to-peer content discovery
	Distributed keyword search algorithm
	Gossip-based algorithm for content popularity

	Music streaming algorithm
	Peer-to-peer financial infrastructure
	Permissionless publishing of music
	Identity and authenticity
	Quality assurance

	Evaluation
	Unsupervised experiment: public release
	Automated starter money transactions
	Donation money flow

	Supervised experiments
	Downloading and streaming
	File headers and BitTorrent piece ordering
	Content discovery
	Random access latency

	Device connectivity and network bootstrapping
	Scalability
	Bitcoin node and transaction fees
	Battery usage

	Conclusion and Future Work
	Generality: beyond music
	Future research directions

	Bibliography

