Skip to content
Permalink
master
Go to file
 
 
Cannot retrieve contributors at this time
244 lines (201 sloc) 11 KB
import numpy as np
from warnings import warn
from aif360.algorithms import Transformer
from aif360.metrics import utils
from aif360.metrics import BinaryLabelDatasetMetric, ClassificationMetric
class RejectOptionClassification(Transformer):
"""Reject option classification is a postprocessing technique that gives
favorable outcomes to unpriviliged groups and unfavorable outcomes to
priviliged groups in a confidence band around the decision boundary with the
highest uncertainty [10]_.
References:
.. [10] F. Kamiran, A. Karim, and X. Zhang, "Decision Theory for
Discrimination-Aware Classification," IEEE International Conference
on Data Mining, 2012.
"""
def __init__(self, unprivileged_groups, privileged_groups,
low_class_thresh=0.01, high_class_thresh=0.99,
num_class_thresh=100, num_ROC_margin=50,
metric_name="Statistical parity difference",
metric_ub=0.05, metric_lb=-0.05):
"""
Args:
unprivileged_groups (dict or list(dict)): Representation for
unprivileged group.
privileged_groups (dict or list(dict)): Representation for
privileged group.
low_class_thresh (float): Smallest classification threshold to use
in the optimization. Should be between 0. and 1.
high_class_thresh (float): Highest classification threshold to use
in the optimization. Should be between 0. and 1.
num_class_thresh (int): Number of classification thresholds between
low_class_thresh and high_class_thresh for the optimization
search. Should be > 0.
num_ROC_margin (int): Number of relevant ROC margins to be used in
the optimization search. Should be > 0.
metric_name (str): Name of the metric to use for the optimization.
Allowed options are "Statistical parity difference",
"Average odds difference", "Equal opportunity difference".
metric_ub (float): Upper bound of constraint on the metric value
metric_lb (float): Lower bound of constraint on the metric value
"""
super(RejectOptionClassification, self).__init__(
unprivileged_groups=unprivileged_groups,
privileged_groups=privileged_groups,
low_class_thresh=low_class_thresh, high_class_thresh=high_class_thresh,
num_class_thresh=num_class_thresh, num_ROC_margin=num_ROC_margin,
metric_name=metric_name)
allowed_metrics = ["Statistical parity difference",
"Average odds difference",
"Equal opportunity difference"]
self.unprivileged_groups = unprivileged_groups
self.privileged_groups = privileged_groups
self.low_class_thresh = low_class_thresh
self.high_class_thresh = high_class_thresh
self.num_class_thresh = num_class_thresh
self.num_ROC_margin = num_ROC_margin
self.metric_name = metric_name
self.metric_ub = metric_ub
self.metric_lb = metric_lb
self.classification_threshold = None
self.ROC_margin = None
if ((self.low_class_thresh < 0.0) or (self.low_class_thresh > 1.0) or\
(self.high_class_thresh < 0.0) or (self.high_class_thresh > 1.0) or\
(self.low_class_thresh >= self.high_class_thresh) or\
(self.num_class_thresh < 1) or (self.num_ROC_margin < 1)):
raise ValueError("Input parameter values out of bounds")
if metric_name not in allowed_metrics:
raise ValueError("metric name not in the list of allowed metrics")
def fit(self, dataset_true, dataset_pred):
"""Estimates the optimal classification threshold and margin for reject
option classification that optimizes the metric provided.
Note:
The `fit` function is a no-op for this algorithm.
Args:
dataset_true (BinaryLabelDataset): Dataset containing the true
`labels`.
dataset_pred (BinaryLabelDataset): Dataset containing the predicted
`scores`.
Returns:
RejectOptionClassification: Returns self.
"""
fair_metric_arr = np.zeros(self.num_class_thresh*self.num_ROC_margin)
balanced_acc_arr = np.zeros_like(fair_metric_arr)
ROC_margin_arr = np.zeros_like(fair_metric_arr)
class_thresh_arr = np.zeros_like(fair_metric_arr)
cnt = 0
# Iterate through class thresholds
for class_thresh in np.linspace(self.low_class_thresh,
self.high_class_thresh,
self.num_class_thresh):
self.classification_threshold = class_thresh
if class_thresh <= 0.5:
low_ROC_margin = 0.0
high_ROC_margin = class_thresh
else:
low_ROC_margin = 0.0
high_ROC_margin = (1.0-class_thresh)
# Iterate through ROC margins
for ROC_margin in np.linspace(
low_ROC_margin,
high_ROC_margin,
self.num_ROC_margin):
self.ROC_margin = ROC_margin
# Predict using the current threshold and margin
dataset_transf_pred = self.predict(dataset_pred)
dataset_transf_metric_pred = BinaryLabelDatasetMetric(
dataset_transf_pred,
unprivileged_groups=self.unprivileged_groups,
privileged_groups=self.privileged_groups)
classified_transf_metric = ClassificationMetric(
dataset_true,
dataset_transf_pred,
unprivileged_groups=self.unprivileged_groups,
privileged_groups=self.privileged_groups)
ROC_margin_arr[cnt] = self.ROC_margin
class_thresh_arr[cnt] = self.classification_threshold
# Balanced accuracy and fairness metric computations
balanced_acc_arr[cnt] = 0.5*(classified_transf_metric.true_positive_rate()\
+classified_transf_metric.true_negative_rate())
if self.metric_name == "Statistical parity difference":
fair_metric_arr[cnt] = dataset_transf_metric_pred.mean_difference()
elif self.metric_name == "Average odds difference":
fair_metric_arr[cnt] = classified_transf_metric.average_odds_difference()
elif self.metric_name == "Equal opportunity difference":
fair_metric_arr[cnt] = classified_transf_metric.equal_opportunity_difference()
cnt += 1
rel_inds = np.logical_and(fair_metric_arr >= self.metric_lb,
fair_metric_arr <= self.metric_ub)
if any(rel_inds):
best_ind = np.where(balanced_acc_arr[rel_inds]
== np.max(balanced_acc_arr[rel_inds]))[0][0]
else:
warn("Unable to satisy fairness constraints")
rel_inds = np.ones(len(fair_metric_arr), dtype=bool)
best_ind = np.where(fair_metric_arr[rel_inds]
== np.min(fair_metric_arr[rel_inds]))[0][0]
self.ROC_margin = ROC_margin_arr[rel_inds][best_ind]
self.classification_threshold = class_thresh_arr[rel_inds][best_ind]
return self
def predict(self, dataset):
"""Obtain fair predictions using the ROC method.
Args:
dataset (BinaryLabelDataset): Dataset containing scores that will
be used to compute predicted labels.
Returns:
dataset_pred (BinaryLabelDataset): Output dataset with potentially
fair predictions obtain using the ROC method.
"""
dataset_new = dataset.copy(deepcopy=False)
fav_pred_inds = (dataset.scores > self.classification_threshold)
unfav_pred_inds = ~fav_pred_inds
y_pred = np.zeros(dataset.scores.shape)
y_pred[fav_pred_inds] = dataset.favorable_label
y_pred[unfav_pred_inds] = dataset.unfavorable_label
# Indices of critical region around the classification boundary
crit_region_inds = np.logical_and(
dataset.scores <= self.classification_threshold+self.ROC_margin,
dataset.scores > self.classification_threshold-self.ROC_margin)
# Indices of privileged and unprivileged groups
cond_priv = utils.compute_boolean_conditioning_vector(
dataset.protected_attributes,
dataset.protected_attribute_names,
self.privileged_groups)
cond_unpriv = utils.compute_boolean_conditioning_vector(
dataset.protected_attributes,
dataset.protected_attribute_names,
self.unprivileged_groups)
# New, fairer labels
dataset_new.labels = y_pred
dataset_new.labels[np.logical_and(crit_region_inds,
cond_priv.reshape(-1,1))] = dataset.unfavorable_label
dataset_new.labels[np.logical_and(crit_region_inds,
cond_unpriv.reshape(-1,1))] = dataset.favorable_label
return dataset_new
def fit_predict(self, dataset_true, dataset_pred):
"""fit and predict methods sequentially."""
return self.fit(dataset_true, dataset_pred).predict(dataset_pred)
# Function to obtain the pareto frontier
def _get_pareto_frontier(costs, return_mask = True): # <- Fastest for many points
"""
:param costs: An (n_points, n_costs) array
:param return_mask: True to return a mask, False to return integer indices of efficient points.
:return: An array of indices of pareto-efficient points.
If return_mask is True, this will be an (n_points, ) boolean array
Otherwise it will be a (n_efficient_points, ) integer array of indices.
adapted from: https://stackoverflow.com/questions/32791911/fast-calculation-of-pareto-front-in-python
"""
is_efficient = np.arange(costs.shape[0])
n_points = costs.shape[0]
next_point_index = 0 # Next index in the is_efficient array to search for
while next_point_index<len(costs):
nondominated_point_mask = np.any(costs<=costs[next_point_index], axis=1)
is_efficient = is_efficient[nondominated_point_mask] # Remove dominated points
costs = costs[nondominated_point_mask]
next_point_index = np.sum(nondominated_point_mask[:next_point_index])+1
if return_mask:
is_efficient_mask = np.zeros(n_points, dtype = bool)
is_efficient_mask[is_efficient] = True
return is_efficient_mask
else:
return is_efficient
You can’t perform that action at this time.