Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
AIF360/aif360/algorithms/preprocessing/reweighing.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
executable file
123 lines (99 sloc)
4.8 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from aif360.algorithms import Transformer | |
from aif360.metrics import utils | |
class Reweighing(Transformer): | |
"""Reweighing is a preprocessing technique that Weights the examples in each | |
(group, label) combination differently to ensure fairness before | |
classification [4]_. | |
References: | |
.. [4] F. Kamiran and T. Calders, "Data Preprocessing Techniques for | |
Classification without Discrimination," Knowledge and Information | |
Systems, 2012. | |
""" | |
def __init__(self, unprivileged_groups, privileged_groups): | |
""" | |
Args: | |
unprivileged_groups (list(dict)): Representation for unprivileged | |
group. | |
privileged_groups (list(dict)): Representation for privileged group. | |
""" | |
super(Reweighing, self).__init__( | |
unprivileged_groups=unprivileged_groups, | |
privileged_groups=privileged_groups) | |
self.unprivileged_groups = unprivileged_groups | |
self.privileged_groups = privileged_groups | |
self.w_p_fav = 1. | |
self.w_p_unfav = 1. | |
self.w_up_fav = 1. | |
self.w_up_unfav = 1. | |
def fit(self, dataset): | |
"""Compute the weights for reweighing the dataset. | |
Args: | |
dataset (BinaryLabelDataset): Dataset containing true labels. | |
Returns: | |
Reweighing: Returns self. | |
""" | |
(priv_cond, unpriv_cond, fav_cond, unfav_cond, | |
cond_p_fav, cond_p_unfav, cond_up_fav, cond_up_unfav) =\ | |
self._obtain_conditionings(dataset) | |
n = np.sum(dataset.instance_weights, dtype=np.float64) | |
n_p = np.sum(dataset.instance_weights[priv_cond], dtype=np.float64) | |
n_up = np.sum(dataset.instance_weights[unpriv_cond], dtype=np.float64) | |
n_fav = np.sum(dataset.instance_weights[fav_cond], dtype=np.float64) | |
n_unfav = np.sum(dataset.instance_weights[unfav_cond], dtype=np.float64) | |
n_p_fav = np.sum(dataset.instance_weights[cond_p_fav], dtype=np.float64) | |
n_p_unfav = np.sum(dataset.instance_weights[cond_p_unfav], | |
dtype=np.float64) | |
n_up_fav = np.sum(dataset.instance_weights[cond_up_fav], | |
dtype=np.float64) | |
n_up_unfav = np.sum(dataset.instance_weights[cond_up_unfav], | |
dtype=np.float64) | |
# reweighing weights | |
self.w_p_fav = n_fav*n_p / (n*n_p_fav) | |
self.w_p_unfav = n_unfav*n_p / (n*n_p_unfav) | |
self.w_up_fav = n_fav*n_up / (n*n_up_fav) | |
self.w_up_unfav = n_unfav*n_up / (n*n_up_unfav) | |
return self | |
def transform(self, dataset): | |
"""Transform the dataset to a new dataset based on the estimated | |
transformation. | |
Args: | |
dataset (BinaryLabelDataset): Dataset that needs to be transformed. | |
Returns: | |
dataset (BinaryLabelDataset): Dataset with transformed | |
instance_weights attribute. | |
""" | |
dataset_transformed = dataset.copy(deepcopy=True) | |
(_, _, _, _, cond_p_fav, cond_p_unfav, cond_up_fav, cond_up_unfav) =\ | |
self._obtain_conditionings(dataset) | |
# apply reweighing | |
dataset_transformed.instance_weights[cond_p_fav] *= self.w_p_fav | |
dataset_transformed.instance_weights[cond_p_unfav] *= self.w_p_unfav | |
dataset_transformed.instance_weights[cond_up_fav] *= self.w_up_fav | |
dataset_transformed.instance_weights[cond_up_unfav] *= self.w_up_unfav | |
return dataset_transformed | |
############################## | |
#### Supporting functions #### | |
############################## | |
def _obtain_conditionings(self, dataset): | |
"""Obtain the necessary conditioning boolean vectors to compute | |
instance level weights. | |
""" | |
# conditioning | |
priv_cond = utils.compute_boolean_conditioning_vector( | |
dataset.protected_attributes, | |
dataset.protected_attribute_names, | |
condition=self.privileged_groups) | |
unpriv_cond = utils.compute_boolean_conditioning_vector( | |
dataset.protected_attributes, | |
dataset.protected_attribute_names, | |
condition=self.unprivileged_groups) | |
fav_cond = dataset.labels.ravel() == dataset.favorable_label | |
unfav_cond = dataset.labels.ravel() == dataset.unfavorable_label | |
# combination of label and privileged/unpriv. groups | |
cond_p_fav = np.logical_and(fav_cond, priv_cond) | |
cond_p_unfav = np.logical_and(unfav_cond, priv_cond) | |
cond_up_fav = np.logical_and(fav_cond, unpriv_cond) | |
cond_up_unfav = np.logical_and(unfav_cond, unpriv_cond) | |
return (priv_cond, unpriv_cond, fav_cond, unfav_cond, | |
cond_p_fav, cond_p_unfav, cond_up_fav, cond_up_unfav) |