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Abstract— Despite years of research yielding systems and guidelines to aid visualization design, practitioners still face the challenge
of identifying the best visualization for a given dataset and task. One promising approach to circumvent this problem is to leverage
perceptual laws to quantitatively evaluate the effectiveness of a visualization design. Following previously established methodologies,
we conduct a large scale (n=1687) crowdsourced experiment to investigate whether the perception of correlation in nine commonly
used visualizations can be modeled using Weber’s law. The results of this experiment contribute to our understanding of information
visualization by establishing that: 1) for all tested visualizations, the precision of correlation judgment could be modeled by Weber’s
law, 2) correlation judgment precision showed striking variation between negatively and positively correlated data, and 3) Weber
models provide a concise means to quantify, compare, and rank the perceptual precision afforded by a visualization.

Index Terms—Perception, Visualization, Evaluation.

1 INTRODUCTION

The theory and design of information visualization has come a long
way since Bertin’s seminal work on the Semiology of Graphics [1].
Years of visualization research has led to systems [17, 18] and guide-
lines [5, 24] that aid the designer in choosing visual representations
based on general data characteristics such as dimensionality and data-
type. Unfortunately, many aspects of visualization design still remain
more art than science. For example, given a set of a data character-
istics, there are almost always multiple visualizations (forms) that are
theoretically valid and therefore difficult to choose from [18]. In addi-
tion, beyond selecting a visualization form, the designer must also take
into account many other aspects of the visualization. Examples in-
clude design elements such as color, shape, glyph size, as well as usage
considerations such as context, and user profile. With so many options,
it is tremendously difficult for even experienced designers to identify
the most accurate and appropriate visualization given a dataset.

One method for objectively identifying the “best” visualization is
to conduct multi-factor human-subject experiments. In these experi-
ments, each design or usage consideration is incorporated as an exper-
imental factor, often resulting in a large number of conditions. While
these experiments produce actionable results, they are difficult to gen-
eralize beyond the scope of the experiment and provide limited ex-
planation as to why one visualization is better than another. As vi-
sualization becomes more widely adopted and diversified, it is clear
that exhaustive comparative experimentation cannot fully address the
growing needs of the infovis community.

What is needed then are quantitative and robust models for vi-
sualizations that are generalizable beyond one-off comparative stud-
ies while still providing designers with actionable information about
tradeoffs between “valid” visualization forms. Although such mod-
els challenge conventional wisdom in information visualization design
[13], recent research has suggested that the use of perceptual laws from
psychology and cognitive science [12, 3] can be applied to model how
humans perceive certain data properties given a visualization. In par-
ticular, Rensink et al. successfully demonstrated that the perception of
positive correlation in scatterplots can be modeled using Weber’s law
[22], which indicates that the human perception of differences in cor-
relation and the objective differences in data correlation has a linear
relationship:
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d p = k
dS
S

(1)

where d p is the differential change in perception, dS is the differ-
ential increase in the data correlation (change in stimulus), and S is
the overall correlation in the data (stimulus). k is known as the Weber
fraction, and is derived experimentally. Taken together, this equation
and experimentally-inferred parameter k form a Weber model for the
perception of positive correlation in scatterplots.

What is significant about this finding by Rensink et al. is that it de-
scribes the perception of correlation in a concise, quantitative manner
via the derived Weber model. The authors hypothesize that if other
visualizations of correlation could be shown to follow Weber’s law,
then it might be possible to compare them without exhaustive empiri-
cal testing [22]. Another significant benefit of establishing perceptual
models for visualization is that it provides a predictive and falsifiable
baseline to investigate the effect of design elements within a visual
form. For example, in followup studies Rensink et al. used the original
Weber model to study whether the effectiveness of scatterplots was im-
pacted by changes in design elements such as point color, brightness,
size, canvas aspect ratio, and others [21]. With the Weber model for
scatterplots as a baseline, the authors demonstrated that it was possible
to determine when the perception of positive correlation in scatterplots
was invariant to design elements, and did so without resorting exhaus-
tive multi-factor testing. Therefore, if the perception of correlation in
commonly used visualizations can be shown to follow Weber’s law,
we gain the ability to quantitatively compare and rank the effective-
ness of visualizations, as well as a baseline to explore the effect of
design elements on the basis of perceptual laws.

In this paper, we confirm the hypothesis of Rensink et al. by demon-
strating that nine commonly used visualizations also follow Weber’s
law, and that the perception of correlation across multiple valid vi-
sual forms can be quantified, compared, and ranked using the derived
Weber models. After adapting the experimental methodology used
by Rensink et al. for a crowdsourcing environment, we first validate
our approach by replicating their original findings with scatterplots
on Amazon’s Mechanical Turk. We then apply this methodology to
eight other visualizations commonly used in the infovis community
and commercial software, including parallel coordinates plots, stacked
area charts, stacked bar charts, stacked line charts, line charts, ordered
line charts, radar charts, and donut charts (see Figure 3).

The results of this experiment contribute to our understanding of
information visualization in several ways:

• We demonstrate that the perception of correlation in several com-
monly used visualizations can be modeled using Weber’s law.

• We provide evidence that the effectiveness of most visualizations
tested depends significantly on whether it depicts positively or



negatively correlated data (asymmetric performance), implying
that many visualizations may require two Weber models to be
described completely.

• Using the derived Weber models, we rank the effectiveness of
visualizations for representing correlation.

In the following section, we discuss related work including per-
ceptual studies for visualization and recent advances in evaluation
methodologies. We then describe our first experiment, where we adapt
the methodology of Rensink et al. for a crowdsourced environment and
replicate their original findings. Following the replication, we present
our full experiment evaluating eight other visualizations, including the
resulting analyses and models. Our discussion highlights the impli-
cations of our findings, such as how our results make it possible to
quantify, compare, and rank the effectiveness of visualizations for de-
picting correlation on the basis of a perceptual law. We also point
out several surprising differences and similarities in the visualizations
tested, offering possible explanations based on recent work in vision
science.

2 RELATED WORK

A key component of modeling a perceptual process using Weber’s law
is the need to experimentally determine how much a given stimulus
must increase/decrease before humans can reliably detect changes,
a quantity called the just-noticeable difference (JND) [6]. Although
they are a key part of the methodology we use in this paper, the no-
tion of using JNDs to advance visualization design is not entirely
new. Color models that approach perceptual-uniformity, such as the
CIELAB space, are the result of years of experiments that examine
perceptual distances between colors [23]. In these color spaces, two
colors that have different RGB values but are perceived as being the
same are said to be within one JND of each other. Perceptually-driven
color models have led to important advances in infovis, for example
the popular ColorBrewer tools [9], and more recently the development
of algorithms that automatically select effective color schemes for vi-
sualization [15]. Motivated by the success of these approaches, which
quantify the perceptual space of color, our work similarly seeks to ex-
plore and quantify the perceptual space of visualization forms.

Many perceptual studies have examined the perception of correla-
tion in scatterplots. Early work from Cleveland et al. suggested that
subjective estimations of correlation could be biased by increasing the
scale of the axes in a scatterplot [4]. Combining perceptual studies
of scatterplots and visualization design, Fink et al. integrated partici-
pant preferences to develop an automatic method for selecting effec-
tive aspect-ratios for scatterplots [8]. Li and van Wijk examined dif-
ferences in the subjective judgments of correlation in scatterplots and
parallel coordinates, finding scatterplots to perform better [14]. The
key difference between these approaches and ours is that they do not
explicitly link their results to underlying perceptual laws, limiting the
generalizability of their results.

One of the primary goals of this work is to provide a means to eval-
uate and compare visualization effectiveness on the basis of perceptual
laws. It is useful, therefore, to situate our contributions in the context
of existing approaches to visualization evaluation. To better bridge the
gap between design goals and evaluation methodologies, Munzner’s
Nested Model arranges the design and evaluation space into four in-
terrelated levels [20]. More recently, Lam et al. conducted an exten-
sive survey of infovis publications, distilling them into seven evalu-
ation scenarios [13]. Subsuming both qualitative and quantitative ap-
proaches, these evaluation models allows researchers and practitioners
to better identify the appropriate level(s) at which a given visualization
should be evaluated. Carpendale has pointed out, however, that an in-
herent limitation of many evaluation approaches is that they are dif-
ficult to generalize to different usage contexts [2]. A recent proposal
from Demiralp et al. seeks to address these limitations by developing
visualization generation and evaluation methods that map perceptual
distances between visual elements to similar structures in data [7]. Our
work contributes to these evaluation research directions in two ways.

(a)

(b)
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Fig. 1: a) A sample starting comparison from the experiment: r =
0.7 on the left and r = 0.6 on the right. Participants were asked to
choose which of the two appeared to be more highly correlated. b)
The staircase procedure hones in on the just-noticeable difference by
gradually making comparisons more difficult: r = 0.7 on the left and
r = 0.65 on the right.

First, we demonstrate that visualization effectiveness can be quantified
and evaluated using perceptual laws. Additionally, we provide Weber
models describing the perception of correlation in several commonly
used visualizations, which can be used as a baseline to investigate the
impact of individual design elements.

3 EXPERIMENT 1: REPLICATION AND CROWDSOURCING VAL-
IDATION

Given our goal of testing a wide range of visualizations, we turn to
a crowdsourcing platform to recruit the necessary number of partici-
pants. However, since our goal is to leverage experiment methodolo-
gies from vision science, which have not been previously validated for
crowdsourcing [16], it is necessary to first replicate the original experi-
ment by Rensink and Baldridge on modeling the perception of positive
correlation in scatterplots using Weber’s law [22].

In particular, our experiment seeks to confirm the “precision” por-
tion of Rensink and Baldridge’s original experiment. As the authors
note in their paper, “precision” and “accuracy” are examined through
different experiment methodologies. Precision, in their experiment,
refers to the ability of participants to detect differences between two
correlations, even if they are blind to the actual numerical correla-
tion values. Accuracy, on the other hand, corresponds to participants’
bias towards systematically over- or under-estimating correlation val-
ues (see [22] for more on these differences). The results of their ex-
periments demonstrated, however, that precision and accuracy for the
perception of correlation in scatterplots are “systematically linked” via
Weber’s law. Given this result, we restrict the scope of our experi-
ment to investigate whether in-lab results for inferring precision can
be replicated using crowdsourcing.

3.1 Materials

Following the experimental design of Rensink and Baldridge [22],
scatterplots in this experiment were all 300×300 pixels, contained 100
normally distributed points along the 45 degree line, used the same
point size of 2 pixels, and displayed both the left and bottom axes.

To generate correlated data for a target correlation value r, n = 100
data points were first taken a standard normal distribution within 2



r
0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
06

0.
12

0.
18

0.
24

r
0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
06

0.
12

0.
18

0.
24

rA
0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
06

0.
12

0.
18

0.
24

(d) regression comparison

rA
0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
06

0.
12

0.
18

0.
24

rplot
r●

from above
from below

JN
D

Fig. 2: Experiment 1 replicated the results from [22] on Amazon’s Mechanical Turk, validating the platform for our larger experiment. (a)
shows the raw data from previous studies [22]. (b) shows the raw data in Experiment 1. (c) shows the data after adjustment, where JNDs are
drawn as functions of adjusted correlation rA. (d) compares previous regression results [22] and the regression from Experiment 1.

standard deviations of the mean and normalized. The correlation coef-
ficient of this starting dataset is then computed and noted as rz. Then,
each point (xi,yi) is transformed using the same transformation in
[22]:

y′i =
λxi +(1−λ )yi√

λ 2 +(1−λ )2
(2)

where λ is defined as follows:

λ =
(rz−1)(r2 + rz)+

√
r2(r2

z −1)(r2−1)

(rz−1)(2r2 + rz−1)
(3)

Note that our equation for λ differs from that of Rensink and
Baldridge [22]. Specifically, rather than using an estimation approach
for computing λ , we instead incorporate the correlation value of the
starting dataset rz. Our extension of this method uses the same trans-
formation and parameters but a) converges more quickly, and b) elimi-
nates error in the original approach (target r±0.005). After the dataset
is generated, it is re-normalized and transformed to have a mean of 0.5
and standard deviation of 0.2 (following [22]).

3.2 Methodology
Following Rensink and Baldridge [22], we use the same adaptive psy-
chophysical method, a staircase procedure, to infer just-noticeable dif-
ferences (JNDs) for the perception of correlation. This experimental
procedure has a 6 × 2 design in that there are six correlation r values
(0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) and two approach conditions (above
and below).

In the staircase procedure, given a target value for correlation, r,
participants are given two visualization stimuli side-by-side (two scat-
terplots in this case) and asked to choose which they perceive to have a
higher correlation (see Figure 1). With an “above” approach, the par-
ticipant is given one visualization with the target r, and another with
an r value higher than the target. For example, if the target r is 0.7,
then the second r value would be 0.8 (assuming a starting distance of
0.1). Conversely, with an “below” approach, the participant would be
given a visualization with the target r, and another that has an r value
lower than the target.

In both cases, if a participant chooses correctly, the distance in cor-
relation between the two visualizations is decreased by 0.01 while
keeping the target r constant (e.g. 0.7 versus 0.79 in the “above” con-
dition, or 0.7 versus 0.61 in the “below” condition). If a participant
chooses incorrectly, the distance in correlation between two visualiza-
tions is increased by 0.03, making the next judgment easier. The stair-
case procedure “hones in” on the JND by penalizing incorrect choices
more than correct choices. These distance changes (0.01, 0.03) cor-
respond to inferring “75%” JNDs, or the minimum difference in cor-
relation required to be reliably discriminated 75% of the time. After

each selection is made, the position of the target and variable visual-
ization is randomized (i.e., whether the target appears as the left vs.
right visualization), and new datasets are generated for both stimuli.

The staircase procedure ends when either 50 individual judgments
are reached or when a convergence criteria is met. Following [22], the
convergence condition is determined based on the last 24 user judg-
ments, and is designed to determine if the user’s ability to discriminate
between the two correlation values depicted has stabilized. Specifi-
cally, the 24 user judgments are divided into 3 subgroups, and conver-
gence is reached when there is no significant difference between these
three subgroups via an F-test (F(2,21); α = 0.1). Finally, after the
staircase procedure ends, the average distance in correlation value in
these subgroups is used as the JND for the tested r values and approach
(above/below).

There are two important limitations to the staircase procedure that
we include when reporting results: ceiling effects and the “chance”
boundary.

A ceiling effect occurs when the participant fails to perceive corre-
lation reliably and the adaptive algorithm reaches an upper limit for
correlation (r = 1.0). For example, if the base r value is 0.7 and the r
value of the second stimuli reaches 1.0, yet the participant still answers
randomly for the remainder of the judgments (roughly 50% accuracy),
the resulting JND for r = 0.7 will be 0.3. This upper limit (0.1 for 0.9,
0.2 for 0.8, etc.) will be illustrated in our results.

The chance boundary is defined by the parameters of the staircase
procedure (convergence criteria, starting distance, number trials, etc.)
To obtain this boundary, we ran a simulation of the staircase proce-
dure 10,000 times, simulating a participant guessing at chance (50%
accuracy). The resulting boundary in our procedure was JND = 0.45,
meaning that any resulting JNDs at or above this boundary would indi-
cate that the participant did not reliably perceive correlation. There are
two possible cases where a participant performs at chance throughout
an experiment. The first is when a participant is simply making ran-
dom choices, which is possible given that we are using a crowdsourc-
ing platform [11, 19]. The second possibility occurs when the actual
JNDs for a given stimuli are at or near 0.45, forcing the participant
to guess throughout most of the judgments. This chance boundary
(JND = 0.45) is illustrated all of our results figures, and will be used
to establish an exclusion criteria for poorly performing visualizations.

3.3 Procedure
The conditions in this experiment include the six correlation value
tested, and whether the target correlations were approached from
above or below. Informed by early pilot testing, participants were ran-
domly assigned to two correlation values: one from [0.3, 0.4, 0.5], and
one from [0.6, 0.7, 0.8]. These groups roughly correspond to “hard”
and “easy”, since high correlations are more easily discriminated than
low correlations. For the two correlation values chosen, participants
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Fig. 3: The nine visualizations tested in our experiment, at several correlation values. Because many of these visualizations appear differently
when depicting negatively versus positively correlated data, we test both in our experiment. The visualizations were larger (300×300 pixels)
when presented to participants. The color scheme used is colorblind-safe, chosen from ColorBrewer.



complete both the above and below approach, resulting in a total of
four trials (easy×above, easy×below, hard×above and hard×below).
This corresponds to collecting up to 200 individual judgments for each
participant.

Since participants on Amazon’s Mechanical Turk (AMT) come
from diverse educational/statistical backgrounds [19], both a training
and practice session were added before the main trials began. The
training session consisted of a short definition of correlation, includ-
ing a grid of ten scatterplots showing correlations ranging from 0.1 to
1.0. After the training session, participants were given a practice ses-
sion consisting of 30 individual judgments. In the first 15 judgments,
participants were shown the “easy” (high) correlation they would be
working with; in the second 15 they were shown the “hard” (low) cor-
relation condition. After each judgment, participants were given feed-
back on whether they chose correctly.

After completing the training and practice sessions, participants be-
gan the four main trials. The order of the correlation-approach pairs
was randomized in this session. Upon completing a trial set (either by
reaching the convergence criteria or 50 individual judgments), partic-
ipants were given the option to take a short break, and notified as to
how many experiment trials remained. Following the completion of all
four trials, a demographics questionnaire was given, which included a
question that asked participants to describe the strategy they used to
assess correlation. Finally, participants were given a short debrief ex-
plaining the purpose of the experiment.

3.4 Results
We recruited n = 88 participants (36 female) for this experiment via
Amazon’s Mechanical Turk (AMT). It took approximately two days
to gather all responses. Participants were paid $2.10 for their time,
commensurate with the UṠ˙ minimum wage. To avoid possible con-
founds from participants using mobile devices or tablets, such devices
were programmatically blocked from accessing the experiment. This
experiment adhered to a between-subjects design, since participants
were randomly assigned to complete two correlation values (out of
six) for both above and below approaches. While there were n = 20
participants for each correlation-approach in [22], in our experiment
we recruited approximately n = 30 for each pair in order to account
for the inherent variability in AMT worker responses [11, 19].

Our results indicate that crowdsourcing effectively replicates mea-
surements obtained in-lab. Individual JND and error data were not
published in [22], eliminating the possibility for direct statistical com-
parison. However, we estimated JNDs and errors from figures, and
compare them with our results in Figure 2. The general trends be-
tween results obtained in-lab and via crowdsourcing are similar, in-
cluding both the higher error-bars for lower correlation values, and
small JNDs for higher correlations.

To determine if our results also can be modeled using Weber’s law,
we follow the model-fitting procedure in [22]. Specifically, each cor-
relation value r was moved by half of the average JND from the above
and below approach. For the above approach, the correlation r was
moved towards r = 1, while the r from the below approach was moved
towards r = 0. Specifically, correlation r is transformed into adjusted-
correlation rA by:

rA = r±0.5 jnd(r) (4)

Figure 2 illustrates this intermediate step, showing all points in our
data after adjustment. Linear models were then fit to the data, and
errors were computed based on the square root of the mean squares of
the residuals (RMS error).

Following this procedure, we find the model to be a good fit (r2 =
0.98), indicating that our crowdsourcing results also follow Weber’s
law. The resulting regression lines are shown in Figure 2. Although
our results have a slightly lower intercept (0.21 cf. 0.25), indicat-
ing better performance overall, the slopes are also similar (−0.17 cf.
−0.22). Given the similarity in both the JND and regression results,
we find this to be evidence that the AMT crowdsourcing platform is
appropriate for our experiments.

4 EXPERIMENT 2: EXTENSION TO OTHER VISUALIZATIONS

Experiment 1 established that results obtained via crowdsourcing
replicate Rensink and Baldridge’s original experiment that modeled
the perception of positive correlation in scatterplots using Weber’s law.
In Experiment 2, we extend this experiment to investigate whether the
perception of correlation in other commonly used visualizations can
also be modeled using Weber’s law.

4.1 Materials

We chose nine visualizations for this experiment based on two main
criteria: a) they must be commonly used in either infovis or commer-
cial software (external validity), and b) they must be viable within the
constraints of the experiment methodology. The nine visualizations
chosen include: scatterplots, parallel coordinates plots, stacked area
charts, stacked bar charts, stacked line charts, line charts, ordered line
charts, radar charts, and donut charts.

Scatterplots were included both because of their widespread use in
the scientific community, and to serve as a baseline for replicating
the results of Rensink and Baldridge [22]. Parallel coordinates plots
were included because of their continued widespread use in the infovis
community.

Line charts, stacked line charts, stacked area charts, and stacked bar
charts were included based on the top recommendations when viewing
one of our datasets (100 points, 2 dimensions) in Microsoft Excel.
Despite their similarities, all of the stacked charts (line, area, bar) were
included since any significant differences in these charts might shed
light on the underlying perceptual processes people use when judging
correlation.

Donut charts and radar charts were included since they are essen-
tially radial transforms of stacked bar charts and line charts, respec-
tively. Comparing these may allow us to understand the effect of co-
ordinate transforms on the perception of correlation.

Note that, of all the visualizations tested, scatterplots and parallel
coordinates plots are the only two that are truly bivariate, in that the
two quantitative variables in the data displayed (X, Y) determine the
exact position of the graphical elements. In contrast, all of the other
visualizations contain an additional explicit variable order. In other
words, scatterplots and parallel coordinates plots are ordered by de-
fault, while any of the other visualizations can be ordered in different
ways. To test the effect that manipulating order may have on the per-
ception of correlation, ordered line charts (sorted on the X-axis) were
also added to the experiment.

Finally, we hypothesize that the performance of these visualizations
may be impacted by the fact that many of them appear very differently
when depicting positively versus negatively correlated data (see Fig-
ure 3). To test this hypothesis, we test each of these nine visualizations
were twice: once with positively correlated data, and once with nega-
tively correlated data.

As in experiment 1, all visualizations were 300×300 pixels, con-
tained 100 data points and displayed datasets generated from same
algorithm. For visualizations that required more than one color, we
chose a single color scheme from ColorBrewer [9] 1. All visualiza-
tions used in this experiment are illustrated for several correlation val-
ues in Figure 3.

4.2 Procedure

The procedure for this experiment follows that of Experiment 1, except
for the following two changes. To mitigate possible confounds from
exposing some participants to negative (versus positive) correlations
in the training session, we label the correlation grid (0.1 to 1.0) with
the same labels regardless of the correlation direction, and provide
a short disclaimer explaining the change for participants familiar with
correlation. Secondly, since early pilot testing showed that many of the
visualizations had higher JNDs than scatterplots for low correlations,
we allow the staircase procedure to move above or below r = 0.0 if
necessary.

1http://colorbrewer2.org/?type=qualitative&scheme=Set2&n=3



scatterplot − positive

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

● ●
●

●
●

scatterplot − negative

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

● ●

●
● ●

parallel coordinates − positive

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

● ●
●

●

●

●

parallel coordinates − negative

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

● ●
●

● ● ●

stackedarea − positive

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●
●

● ●

●

stackedarea − negative

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●

●

●
●

●

stackedline − positive

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●
● ● ● ●

●

stackedline − negative

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●
●

●

●
●

●

stackedbar − positive

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●

●
●

●

●

stackedbar − negative

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

● ●

● ●

●

donut − positive

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

● ●

●
●

●

donut − negative

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●
●

●
●

●
●

line − positive

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●
●

● ● ●

●

line − negative

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●

●
●

●

●

radar − positive

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

● ●
●

● ●

●

radar − negative

r

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●
●

●

● ● ●

ordered line − positive

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●
●

●
●

●

●

ordered line − negative

jn
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●

●

●

●

●

JN
D

r

JN
D

JN
D

JN
D

JN
D

r r r

r r r r

r r r r

r r r r

r r

Fig. 4: JND plotted as a function of correlation r for both above (light points) and below (dark points) approaches. Error bars show the standard-
error of the mean (SEM). Broken lines show the chance and ceiling boundaries defined in Section 3.2. The x-axis is correlation value r, the
y-axis is JND.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ordered line−positive
ordered line−negative
line−positive

jn
d

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

line−positive
radar−positive

jn
d

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

stackedline−negative
stackedarea−negative
stackedbar−negative

jn
d

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

stackedbar−negative
donut−negative

jn
d

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

parallel coordinates
scatterplot

JN
D

rA rA rA rA rA

(e) ordered line and line(d) line and radar
(b) stackedarea, 

stackedline and stackedbar (c) stackedbar and donut
(a) scatterplots 

and parallel coordinates

positive
negative

Fig. 5: Regression results for several paired comparisons. JNDs are modeled as functions of adjusted correlation rA. The x-axis is adjusted
correlation value rA, the y-axis is JND.



Table 1: Mann-Whitney-Wilcoxon Tests Results for condition pairs. Significant values denoted by * with α = 0.0036.

visualization - direction 1 visualization - direction 2 W p-value
scatterplot - negative scatterplot - positive 51165.5 0.54
scatterplot - negative parallel coordinates - positive 10885.5 < 0.001?

scatterplot - positive parallel coordinates - positive 8623 < 0.001?

parallel coordinates - negative scatterplot - negative 51291 0.42
parallel coordinates - negative scatterplot - positive 51491 0.16
parallel coordinates - negative parallel coordinates - positive 8641.5 < 0.001?

stacked bar - negative stacked line - negative 34421 < 0.001?

stacked bar - negative stacked area - negative 33348.5 < 0.001?

stacked bar - negative donut - negative 43361 0.037
stacked line - negative stacked area - negative 66646 0.014

line - positive radar - positive 73775.5 0.0017?

line - positive ordered line - positive 104163.5 < 0.001?

line - positive ordered line - negative 101883 < 0.001?

ordered line - negative ordered line - positive 66292 0.0075

Table 2: Intercepts, Slopes, Correlation Coefficients r, r2, and RMS for JNDs modeled as functions of adjusted correlation rA.

visualization - direction intercept-b slope-k correlation-r r2 RMS
scatterplot - positive 0.17 -0.17 -0.99 0.98 0.0041
scatterplot - negative 0.21 -0.22 -0.95 0.90 0.013

parallel coordinates - positive 0.37 -0.27 -0.86 0.74 0.032
parallel coordinates - negative 0.16 -0.14 -0.95 0.90 0.0085

stacked line - negative 0.35 -0.32 -0.92 0.84 0.027
stacked area - negative 0.27 -0.22 -0.93 0.86 0.016
stacked bar - negative 0.22 -0.19 -0.95 0.90 0.011

donut - negative 0.26 -0.23 -0.96 0.93 0.012
line - positive 0.46 -0.32 -0.86 0.74 0.043

radar - positive 0.44 -0.36 -0.95 0.91 0.024
ordered line - positive 0.26 -0.24 -0.95 0.91 0.014
ordered line - negative 0.32 -0.31 -0.88 0.78 0.031

4.3 Results

We recruited 1,687 participants through AMT (834 female) for this
experiment. It took approximately two weeks to gather all responses.
Our study used a total of nine visualizations, two correlation direc-
tions (positive/negative), and six correlation values (0.3 to 0.8) yield-
ing 54 main groups. Since each participant was assigned to one
visualization, one correlation direction, and two correlation values
(above and below), roughly 30 participants were assigned to each
visualization×direction×r-value group.

The resulting data were non-normally distributed, so to mitigate the
effect of outliers, JNDs that fell outside 3 median-absolute deviations
from the median (within one of the 54 groups) were excluded from the
following analyses. Because the staircase methodology penalizes in-
correct responses and controls for guessing by defining a convergence
criteria (see Section 3.2), this exclusion criteria also mitigates the ef-
fect of ”click-through” responses that often impact crowdsourced ex-
periments [11, 19]. Figure 4 shows average JNDs for all visualizations,
correlation values, and approaches tested after filtering.

An exlusion criteria was also enforced for visualization×direction
pairs that exceeded 20% of values falling on or outside the “chance”
boundary of JND = 0.45 established previously. Six of the eigh-
teen pairs met this exclusion criteria: stacked area-positive, stacked
bar-positive, stacked line-positive, donut-positive, radar-negative, and
line-negative (see Section 5.2 for more details on the exclusion
criteria). The following analyses include the remaining twelve
visualization×direction pairs.

4.4 Weber Model Fit

Following the same model fitting procedure as Experiment 1 (and
[22]), slopes, intercepts, correlation coefficients and root-mean-square
errors (RMS) were computed. These statistics are included in Table 2
and corresponding regression lines illustrated in Figure 6. All visual-

izations follow a linear relationship between JNDs and adjusted cor-
relation rA, based on the high correlation coefficient and small RMS
for each. Regression lines for the following statistical comparisons are
shown in Figure 5.

4.5 Statistical Analyses
Examining the JND data alone, there appear to be large differences
in performance between many of the visualizations, as well as asym-
metries between many of the positive/negative pairs. In order to
confirm these observations, an overall Kruskal-Wallis test was con-
ducted on the raw JNDs to evaluate whether there is an interaction
between visualization and correlation direction conditions. This test
confirmed there was an overall effect for visualization×correlation di-
rection (χ2(17) = 3147.70, p < 0.001,α = 0.05).

To explore further, several visualization×direction pairs were com-
pared via Mann-Whitney-Wilcoxon tests. Rather than compare all
possible pairs, we instead investigate 14 pairings reflecting the original
motivations for choosing the visualizations tested (see the Materials
section 4.1). We use Bonferonni correction to address the problem of
multiple comparisons, resulting in an α = 0.0036 required for reject-
ing the null hypothesis. All tests results and parameters are reported
in Table 1. To aid visual comparisons, we provide regression lines
corresponding to these comparisons in Figure 5.

Examining the comparison results for scatterplots in Table 1, we
find no significant difference between scatterplots depicting positively
and negatively correlated data (p = 0.54, see Figure 5.a). In addition
to their symmetric performance, scatterplots appear to be among the
best performing visualizations (see Figure 6).

We find clear evidence of asymmetry in parallel coordinates plots,
with those depicting negatively correlated data significantly outper-
forming those depicting positively correlated data (p < 0.001, see Fig-
ure 5.a). Futhermore, we find that parallel coordinates plots depicting
negatively correlated data were not significantly different from scatter-
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plots depicting either positively (p = 0.16) and negatively (p = 0.42)
correlated data.

Between the stacked chart variants (stacked bar, stacked area,
stacked line) depicting negatively correlated data, we find that stacked
bar charts significantly outperform both stacked area and stacked
line charts (both p < 0.001, see Figure 5.b), and that there was no
significant difference between stacked area and stacked line charts
(p= 0.014). We also find no significant difference between the stacked
bar chart and the donut chart (p = 0.037, see Figure 5.c).

Between the line chart variants (line chart, radar, ordered line) de-
picting positively correlated data, the ordered line chart significantly
outperformed both the line chart (p < 0.001) and the radar chart
(p < 0.001), (see Figure 5.d and 5.e). In fact, the ordered line chart

is the only other chart besides scatterplots to show symmetric perfor-
mance (positive and negative difference p = 0.0075). The radar chart
also performed significantly better than the line chart (p = 0.0017).

5 DISCUSSION

Our results demonstrate that there are significant differences in the
perception of correlation across visualizations, and that these results
often vary significantly when depicting positively versus negatively
correlated data.

Between scatterplots and parallel coordinates, we find that using
scatterplots to depict correlation results in better performance over-
all. However, this performance difference only occurs when depicting
positively correlated data. In fact, parallel coordinates depicting neg-
atively correlated data appear to perform as well as scatterplots (see
Figure 5.a).

Among the stacked chart variants (stacked bar charts, stacked area
charts, and stacked line charts), the stacked bar significantly outper-
formed both the stacked area and stacked line (see Figure 5.b). This
finding suggests that although these visualizations appear to be similar,
the underlying perceptual processes that participants use when judging
correlation in them may differ substantially (for more discussion, see
Section 5.3).

While there was no difference between the stacked bar chart and the
donut chart, the radar chart significantly outperformed the line chart,
indicating that coordinate transforms may yield inconsistent perfor-
mance implications.

Some of these findings can be directly applied to inform visualiza-
tion design. For example, because parallel coordinates plots depict-
ing negatively correlated data significantly outperform those depicting
positively correlated data, new layout algorithms could be developed
to maximize the number of negative correlations depicted by flipping
and re-arranging axes. However, since our experiment results estab-
lish that the perception of correlation in these visualizations can be
modeled using Weber’s law, it also becomes possible to rank the ef-
fectiveness of the tested visualizations.

5.1 Ranking

One of the primary questions this experiment sought to explore is
whether the effectiveness of visualizations for depicting correlation
can be quantified, compared, and ranked on the basis of a perceptual



law. Since we have inferred Weber models for each of the nine visual-
izations tested, this ranking becomes possible.

Recall that we tested each of the nine visualizations with both
positively and negatively correlated data, for a total of eighteen
visualization×correlation-direction pairs. However, since six of the
eighteen pairs met our exclusion criteria, we include the remaining
twelve models in our ranking.

Using the inferred Weber models, we produce a ranking for six cor-
relation values (see Figure 7). Each of the visualization×correlation-
direction pairs is ordered by performance, with the best in the top row,
and the worst in the bottom row. Note that using Weber’s law allows us
to make predictions for the perception of correlation r values that were
not explicitly tested in the experiment (e.g. 0.1 and 0.9). The ranking
order for each of correlation value varies due to crossings in the Weber
models (see Figure 6). While ranking visualizations within individual
correlation values can be useful for design, an overall “best” ranking
is also desirable. One straightforward way to obtain an overall ranking
is to identify the visualization which has the lowest JND on average.
This can be computed by calculating the area of the regions between
the regression lines and the rA-axis [10] (see the rightmost column in
Figure 7).

This ranking has many potential applications. One possible direc-
tion is to define a “tolerable” range of effectiveness, in order to restrict
the possible design space to fewer visualizations. For example, if a de-
signer needs to reliably communicate correlation for a given dataset,
they can refer to this model and obtain a precise ranking based on the
correlation values in their dataset. Another possible application is in
visualization system design, where it may be helpful to use either the
overall ranking, or to obtain a custom ranking based on a range of cor-
relation values (e.g. a scientific application may require identifying
the most effective visualizations for correlations above 0.6).

5.2 Limitations of the Methodology
Although we were able to demonstrate that each of the
nine visualizations followed Weber’s law, we found that six
visualization×correlation-direction pairs produced unreliable results
and therefore were excluded from the rest of the analyses. Specif-
ically, the six pairs excluded were: stacked area-positive, stacked
bar-positive, stacked line-positive, donut-positive, radar-negative, and
line-negative charts.

The exclusion criteria was based on the upper limit (“chance”)
boundary defined in Section 3.2. Recall that this boundary
(JND = 0.45) is a function of the staircase procedure parameters
such as the starting distance (0.1) and correct/incorrect penalties
(0.01 and 0.03 respectively). Since the JNDs for the excluded
visualization×correlation-direction pairs frequently met the upper
limit of our staircase procedure, it is possible that either correlation
is not reliably perceived in these visualization×correlation-direction
pairs, or that a larger starting distance (and corresponding penalties) is
required to infer reliable JND results for these visualizations.

While each visualization tested was shown to follow Weber’s law
for least one correlation-direction (positive and/or negative), we can-
not say for sure whether the six excluded visualization×correlation-
direction pairs also follow Weber’s law. Examining the underlying
perceptual processes involved in judging correlation for each of these
visualizations, however, may allow us to identify the reasons for the
observed performance variations.

5.3 Visual Features
Reviewing Figure 3, we observe that many of the visualizations tested
vary significantly when depicting positively versus negatively corre-
lated data. In most cases, the visualizations appear to have different
visual forms for the two correlation directions but the same absolute
correlation value (|r|). For example, in parallel coordinates, when
r = 1, the visualization depicts a set of parallel lines and has the shape
of a square; whereas when r =−1, the set of lines intersect at a single
point and appear as two triangles.

One exception to this asymmetric relationship in visual forms is the
scatterplot. For both positive and negatively correlated data, the visual

form of a scatterplot converges to a single line when |r| approaches
1. In fact, past studies have hypothesized that the visual feature view-
ers attend to when making correlation judgments in scatterplots is the
width of the bounding box (or ellipse) that surrounds the points [4, 14].
For example, when |r| = 1, the width of this bounding box is essen-
tially 0. While further testing is needed to confirm exactly what visual
features are perceived in scatterplots, it has long been established that
perceptual judgments of line length follow Weber’s law [12]. Based
on these observations, our results suggest that the reason the percep-
tion of correlation in scatterplots follows Weber’s law is because
the underlying visual features that vary with correlation follow
Weber’s law.

Reasoning about the underlying visual features of visualizations
may also explain the significant performance differences between the
stacked chart variations. Our results demonstrate that, for negative
correlations, stacked bar charts significantly outperform both stacked
area charts and stacked line charts. This finding is surprising since
the visual forms of these three charts are similar. However, based on
participant feedback, we see that the visual features employed when
judging correlation in these charts might in fact be different:

“I looked for which average value of the orange line was
higher, also taking into account which orange line had
fewer peaks/valleys. . . ”

“It seemed like the less-spiky charts were more correlated.”

In contrast, a participant in the stacked bar condition noted:

“I mostly compared how much white and orange were com-
pared to the blue on each chart. Usually the one with less
white was more correlated.”

While the visual forms for the stacked charts variants are similar
(see Figure 3), the visual features that convey correlation differ. Since
visual features (rather than visual forms) may be the underlying cause
that significantly impacts the effectiveness of visualizations, we be-
lieve there are several important areas for future work. These include
comparing visual features produced by visualizations, identifying how
perceptual laws apply to other common visualization tasks, and in-
vestigating these findings with real-world datasets and datasets with
different characteristics and distributions2.

6 CONCLUSION

In this paper, we described a large scale (n=1687) crowdsourced ex-
periment to investigate whether the perception of correlation in nine
commonly used visualizations can be modeled using Weber’s law. The
results of this experiment indicate that all visualizations tested can be
modeled using Weber’s law, but that the effectiveness of many visual-
izations varies when depicting negatively or positively correlated data.
Furthermore, using the learned Weber models, we rank the effective-
ness of the tested visualizations on the basis of a perceptual law. We
also introduce the notion of perceptual symmetries (or asymmetries)
that emerged from observing significant performance differences in vi-
sualizations depicting positively versus negatively correlated data, and
suggest that these symmetries might be related to the visual features
participants attend to when judging correlation.
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