ADVANCEDHMC.JL: A MODULAR IMPLEMENTATION OF STAN’S NO-U-TURN SAMPLER IN JULIA

Kai Xul, Hong Ge?2, Will Tebbutt2, Mohamed Tarek3, Martin Trapp* and Zoubin Ghahramani?»
"Uber Al Labs

IUniversity of Edinburgh

Abstract

The No-U-Turn Sampler (NUTS) in Stan (Hoffman and Gelman, 2014; Carpenter et al., 2017) has
demonstrated remarkable sampling robustness and efficiency in a wide range of Bayesian inference
problems, due to the use of dynamic Hamiltonian trajectory, and a fine-tuned joint adaptation of
step-size and mass matrix. Motivated by these successes, we present AdvancedHMC. j1 (AHMC), a pure
Julia implementation of Stan’s built-in NUTS algorithm and related adaptation methods. We hope
AdvancedHMC. j1 can help expose Stan’s NUTS to a wider range of users, e.g. those who want to
write their models by hand, or using a different probabilistic programming language (e.g. Turing,
Soss). In our package, NUTS is defined as a combination of individual components with abstractions
partially inspired by (Betancourt, 2017).

Hamiltonian Monte Carlo Components

Hamiltonian Monte Carlo (HMC) simulates Hamiltonian dynamics to make proposals for a Markov
chain (Neal et al., 2011). AdvancedHMC. j1 supports various HMC samplers below.

(StaticHMC U DynamicHMC) x Adaptor.

Here StaticHMC are HMC with fixed-length trajectories and DynamicHMC are HMC with adaptive
trajectory length which can be created by composing NUTS components as follows

Metric X Integrator X TrajectorySampler X TerminationCriterion,

where

Metric = {UnitEuclidean,DiagEuclidean,DenseEuclidean}
Integrator = {Leapfrog}
TrajectorySampler = {Slice,Multinomial}
TerminationCriterion = {ClassicNoUTurn, GeneralisedNoUTurn}

Adaptor can be composed from base adaptors
BaseAdaptor € {Preconditioner,NesterovDualAveraging}.

Note 1: Preconditioner behaves differently based on the choice of metric spaces.
Note 2: StanHMCAdaptor, a specific composition of base adaptors that is equivalent to Stan’s
windowed adaptor, is provided. This adaptor has been proved to be robust in practice.

Benchmark Models

We use five models from MCMCBenchmarks. j1 to compare NUTS between AdvancedHMC. j1 and Stan.

Gaussian Model (Gaussian) is a simple two parameter Gaussian distribution.

p~N(0,1), o~ Truncated(Cauchy(0,5),0,00), vy, ~N(u,0)(n=1,...,N)

Signal Detection Model (SDT) is a model used in psychophysics and signal processing, which
decomposes performance in terms of discriminability and bias.

1 1

\/§>7 c~ N(07 ﬁ)a

Linear Regression Model (LR) is a linear regression with truncated Cauchy prior on the weights.

d ~ N(0, x ~ SDT(d, ¢)

By ~ N(0,10), 0 ~ Truncated(Cauchy(0,5),0,00), y, ~ N (jn, o),
where p = By+ B'X,d=1,...,Dandn=1,...,N.

Hierarchical Poisson Regression (HPR)

ag ~ N(0,10), ay ~ N(0,1), b, ~ Truncated(Cauchy(0,1),0,00), bg ~ N(0,bs), y, ~ Poi(log\,),

where log A\, = ap+ 0., + a1z, d=1,... , Nyandn=1,... .

Linear Ballistic Accumulator (LBA) is a cognitive model of perception and simple decision
making.
T ~ Truncated(N(0.4,0.1),0, mn),

k ~ Truncated(N(0.2,0.3),0,00), vg~ Truncated(N(0,3),0,00),

where mn = min; x;2,d =1,...,Noandn=1,..., N.

A ~ Truncated(N(0.8,0.4),0, c0),
x, ~ LBA(v, 7, A k)

O 00 N O O ~» W N =—

—_
w NN =,

2University of Cambridge 3UNSW Canberra

4Graz University of Technology

Example Code of Building Stan’s NUTS using AHMC

using AdvancedHMC
n_samples, n_adapts, target = 10_000, 2_000, 0.8
g_init = randn(D)

metric = DiagEuclideanMetric(D)

h = Hamiltonian(metric, logdensity_f, grad_f)
eps_init = find_good_eps(h, qg_init)

int = Leapfrog(eps_init)

traj = NUTS{Multinomial,GeneralisedNoUTurn}(int)
adaptor = StanHMCAdaptor(

n_adapts, Preconditioner(metric), NesterovDualAveraging(target, eps_init)

)

samples, stats = sample(h, traj, q_init, n_samples, adaptor, n_adapts)

Sampling Efficiency: Stan’s NUTS v.s. AHMC

To compare the sampling efficiency between Stan and AHMC, we run multiple runs of NUTS with target acceptance
rate 0.8 for 2,000 runs with 1,000 adaptation steps, where the warm-up samples dropped. Below are figures of
distributions of step size and tree depth, and the mean effective sample size (ESS) for different variables.

0.9 2.0 2.5
epsilon tree_depth

N

ESS
i

o

Stan
AHMC
Stan
AHMC
Stan
AHMC

10
10
100
100
1000
1000

513.163 466.577
503.535 447.722
786.531 782.231
786.531 796.628
864.010 876.660
832.255 844.452

Fig. 1: Gaussian (50 runs); left to right: step size, tree depth, ESS

0.9 1.0 1.1 1.2 . . 2.00 2.25
epsilon tree_depth

N

ESS
d

C

Stan
AHMC
Stan
AHMC
Stan
AHMC

10
10
100
100
1000
1000

710.762 703.327
802.236 815.929
820.741 823.152
814.308 846.357
844.478 872.961
829.792 859.018

Fig. 2: SDT (100 runs); left to right: step size, tree depth, ESS

N

bo

ESS

o

by by

Stan
AHMC
s Stan
° epsion ° °* :i * P e depth * AHMC
st Stan
AHMC

10 413.939
10 354.946
100 621.796
100 473.005
1000 668.524
1000 485.988

266.476 381.219 423.441
263.894 411.769 399.420
729.812 465.990 608.608
734.189 606.996 621.543
789.987 464.459 648.201
786.577 676.097 689.344

.20 0.25 0.30 . 3.5 4.0
epsilon tree_depth

Fig. 3: LR (50 runs); left to right: step size, tree depth, ESS

N

ap

ESS
a1

bo

tree_depth

Stan 10
AHMC 10
Stan 20
AHMC 20
Stan 50
AHMC 50

221.485 215.013
216.491 214.459
208.286 207.041
206.458 200.469
172.484 172.982
200.755 201.548

266.900
258.638
241.080
236.546
216.586
24'7.384

8
tree_depth

Fig. 4: HPR (25 runs); left to right: step size, tree depth, ESS (of some variables)

N

T

ESS
A

141 Vo

Stan
AHMC
Stan
AHMC
Stan
AHMC

10 226.463
10 340.722
o0 212.838
50 248.249
200 244.926
200 256.638

282.656 305.614 276.557
304.523 337.610 336.357
238.003 235.009 232.667
238.979 248.331 255.421
264.967 268.793 270.36
263.098 270.978 266.769

. . . . 4.2 4.4 4.6
epsilon tree_depth

Fig. 5: LBA (50 runs); left to right: step size, tree depth, ESS (of some variables)

O 00 N o o1 o W N =

Computational Efficiency: Stan v.s. Turing

Turing. jl is a probabilistic programming language (PPL) in Julia that uses AdvancedHMC. j1 as its
HMC backend. All the benchmark models are written in Turing and AdvancedHMC. j1 is called by
Turing. jl to run the NUTS. Below is an example of running NUTS on the LR model using Turing.

@model LR(x, y, Nd, Nc) = begin

B ~ MvNormal(zeros(Nc), 10)
BO ~ Normal(@, 10)
sigma ~ Truncated(Cauchy(@, 5), 0, Inf)
mu = B0 .+ x * B
y ~ MvNormal(mu, sigma)
end
X, Yy, Nd, Nc = ...
chain = sample(LR(x, y, Nd, Nc), NUTS(2_000, 1_000, 0.8))

The time to run the five benchmark models in Stan and Turing are reported in the table below.

Gaussian 2 SDT 3 LR ? HPR ! LLBA 2

N seconds N seconds N seconds N seconds N seconds
Stan 10 0.8039 10 0.7759 10 0.8669 10 2.4870 10 1.9179
AHMC 10 0.3361 10 0.3285 10 1.1356 10 19.4587 10 2.6906
Stan 100 0.7561 100 0.7261 100 0.9824 20 3.5025 50 7.8471
AHMC 100 0.3303 100 0.3201 100 1.3202 20 28.2982 50 11.0270
Stan 1000 0.7614 1000 0.7089 1000 2.2600 50 5.8954 200 31.3762
AHMC 1000 0.5081 1000 0.3179 1000 3.8326 50 40.0322 200 33.6125

Table. 1: Time comparisons between Stan and Turing (AHMC) for five models using ! 25 runs, 2 50 runs or 3 100 runs.

Easy Integration of Other Julia Packages

Bijectors. jl is used inside Turing.jl to do automatic transformations of constrained variables
to run HMC. E.g. a random variable from Truncated(Cauchy(0,5),0,00) is constrained to be
positive and will be transformed to the real space by the log function automatically.

CuArrays. jl could be used with AdvancedHMC. j1 to run NUTS on GPUs. In order to run NUTS
using CUDA, one only needs to change Line 3 of the demo code from g_init = randn(D) to
g_init = CuArray(randn(D)), assuming logdensity_f and grad_f in Line 6 are GPU friendly:
if it is written in pure Julia, it probably supports GPUs acceleration automatically.

How does 1t work? All arrays in AdvancedHMC. j1 are abstractly typed, meaning that the concrete
type is deduced at compile time from q_init. That is to say, if gq_init is on the GPU ie. is a
CuArray, all the internal arrays in the NUTS will be too.

SoSS. jlis another PPL in Julia that uses AdvancedHMC. j1 asits backend. It is easy for PPLs in Julia
with different domain specific languages (DSLs) to use the HMC implementation in AdvancedHMC. j1.

DifferentialEquations. jl is the state-of-the-art numerical differential equations solver package,
implemented in pure Julia. As such, its solvers can be employed in Turing models, thus enabling
AHMC to perform Bayesian inference in the parameters of differential equation models.

Flux. jl is a deep learning packages in Julia. Neural models defined by Flux. j1 can be directly used

in Turing models. E.g. one can implement a Bayesian neural network in Turing by defining priors on
the weights of a Flux-based neural network, and NUTS can be used to draw samples of the weights.

Acknowledgements

We would like to thank the developers of MCMCBenchmarks. jl, Rob Goedman and Christopher
Fisher. With this package we ran all benchmarks and generated all plots presented in this poster.

References

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434.

Carpenter, B., Gelman, A., Hoffman, M. D.; Lee, D.; Goodrich, B., Betancourt, M., ... Riddell, A. (2017). Stan: a
probabilistic programming language. Journal of statistical software, 76(1).

Hoffman, M. D. & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte
Carlo. Journal of Machine Learning Research, 15(1), 1593-1623.

Neal. R. M. et al. (2011). MCMC using Hamiltonian dvnamics. Handbook of Markov chain Monte Carlo. 2(11). 2.

