AdvancedHMC.JL: A modular implementation of Stan's NO-U-Turn sampler in Julia Kai Xu¹, Hong Ge², Will Tebbutt², Mohamed Tarek³, Martin Trapp⁴ and Zoubin Ghahramani^{2,5} ¹University of Edinburgh ²University of Cambridge ³UNSW Canberra ⁴Graz University of Technology ⁵Uber AI Labs

Abstract Example Code of Building Stan's NUTS using AHMC 1 **using** AdvancedHMC $_{2}$ n_samples, n_adapts, target = 10_000, 2_000, 0.8 # set up sampling parameters 3 q_init = randn(D) # draw a random starting point 4 ### Building up NUTS 5 metric = DiagEuclideanMetric(D) # diagonal Euclidean metric space 6 h = Hamiltonian(metric, logdensity_f, grad_f) # Hamiltonian on the target distribution 7 eps_init = find_good_eps(h, q_init) # initial step size 8 int = Leapfrog(eps_init) # leapfrog integrator 9 traj = NUTS{Multinomial,GeneralisedNoUTurn}(int) # multinomial sampling with generalised no U-turn 10 adaptor = StanHMCAdaptor(# Stan's windowed adaptor n_adapts, Preconditioner(metric), NesterovDualAveraging(target, eps_init) Hamiltonian Monte Carlo Components 12) 13 samples, stats = sample(h, traj, q_init, n_samples, adaptor, n_adapts) # draw samples Sampling Efficiency: Stan's NUTS v.s. AHMC $(StaticHMC \cup DynamicHMC) \times Adaptor.$ To compare the sampling efficiency between **Stan** and **AHMC**, we run multiple runs of NUTS with target acceptance rate 0.8 for 2,000 runs with 1,000 adaptation steps, where the warm-up samples dropped. Below are figures of distributions of step size and tree depth, and the mean effective sample size (ESS) for different variables. Metric × Integrator × TrajectorySampler × TerminationCriterion, ESS 10 513.163 466.577 Stan $Metric = \{UnitEuclidean, DiagEuclidean, DenseEuclidean\}$ 10 503.535 447.722 AHMCNUTS 100 CmdStanNUTS 100 AHMCNUTS 100 CmdStanNUTS 100 2.5 2.0 2.0 1.5 1.5 Stan 100 786.531 782.231 Integrator = $\{Leapfrog\}$ AHMC 100 786.531 796.628 TrajectorySampler = {Slice, Multinomial} AHMCNUTS 1000 AHMCNUTS 1000 CmdStanNUTS 1000
2.5
2.0
2.0
1.5 Stan 1000 864.010 876.660 TerminationCriterion = {ClassicNoUTurn, GeneralisedNoUTurn} AHMC 1000 832.255 844.452 Fig. 1: Gaussian (50 runs); left to right: step size, tree depth, ESS BaseAdaptor \in {Preconditioner, NesterovDualAveraging}. ESS AHMCNUTS 10 CmdStanNUTS 10 Stan 10 710.762 703.327 10 802.236 815.929

The No-U-Turn Sampler (NUTS) in Stan (Hoffman and Gelman, 2014; Carpenter et al., 2017) has demonstrated remarkable sampling robustness and efficiency in a wide range of Bayesian inference problems, due to the use of dynamic Hamiltonian trajectory, and a fine-tuned joint adaptation of step-size and mass matrix. Motivated by these successes, we present AdvancedHMC.jl (AHMC), a pure Julia implementation of **Stan**'s built-in NUTS algorithm and related adaptation methods. We hope AdvancedHMC.jl can help expose Stan's NUTS to a wider range of users, e.g. those who want to write their models by hand, or using a different probabilistic programming language (e.g. Turing, Soss). In our package, NUTS is defined as a combination of individual components with abstractions partially inspired by (Betancourt, 2017). Hamiltonian Monte Carlo (HMC) simulates Hamiltonian dynamics to make proposals for a Markov chain (Neal et al., 2011). AdvancedHMC.jl supports various HMC samplers below. Here StaticHMC are HMC with fixed-length trajectories and DynamicHMC are HMC with adaptive trajectory length which can be created by composing NUTS components as follows where Adaptor can be composed from base adaptors **Note 1**: **Preconditioner** behaves differently based on the choice of metric spaces.

Note 2: StanHMCAdaptor, a specific composition of base adaptors that is equivalent to Stan's AHMCNUTS 100 CmdStanNUTS 100 AHMCNUTS 100 Stan 100 820.741 823.152 windowed adaptor, is provided. This adaptor has been proved to be robust in practice. AHMC 100 814.308 846.357 2.5 △ AHMCNUTS 1000 △ CmdStanNUTS 1000 2.5 2.0 2.0 5 1.5 AHMCNUTS 1000

Benchmark Models

We use five models from MCMCBenchmarks.jl to compare NUTS between AdvancedHMC.jl and Stan.

Gaussian Model (Gaussian) is a simple two parameter Gaussian distribution.

 $\mu \sim \mathcal{N}(0,1), \quad \sigma \sim \mathcal{T}runcated(\mathcal{C}auchy(0,5),0,\infty), \quad y_n \sim \mathcal{N}(\mu,\sigma) \ (n=1,\ldots,N)$

Signal Detection Model (SDT) is a model used in psychophysics and signal processing, which decomposes performance in terms of discriminability and bias.

$$d \sim \mathcal{N}(0, \frac{1}{\sqrt{2}}), \quad c \sim \mathcal{N}(0, \frac{1}{\sqrt{2}}), \quad x \sim \text{SDT}(d, c)$$

Linear Regression Model (LR) is a linear regression with truncated Cauchy prior on the weights.

 $B_d \sim \mathcal{N}(0, 10), \ \sigma \sim \mathcal{T}runcated(\mathcal{C}auchy(0, 5), 0, \infty), \ y_n \sim \mathcal{N}(\mu_n, \sigma),$

where $\mu = B_0 + B^T X, d = 1, ..., D$ and n = 1, ..., N.

Hierarchical Poisson Regression (HPR)

 $a_0 \sim \mathcal{N}(0, 10), \ a_1 \sim \mathcal{N}(0, 1), \ b_\sigma \sim \mathcal{T}runcated(\mathcal{C}auchy(0, 1), 0, \infty), \ b_d \sim \mathcal{N}(0, b_\sigma), \ y_n \sim \mathcal{P}oi(\log \lambda_n),$ where $\log \lambda_n = a_0 + b_{z_n} + a_1 x_n, d = 1, ..., N_b$ and $n = 1, ..., N_b$.

Linear Ballistic Accumulator (LBA) is a cognitive model of perception and simple decision making.

 $\tau \sim \mathcal{T}runcated(\mathcal{N}(0.4, 0.1), 0, mn), \quad A \sim \mathcal{T}runcated(\mathcal{N}(0.8, 0.4), 0, \infty),$

 $k \sim \mathcal{T}runcated(\mathcal{N}(0.2, 0.3), 0, \infty), \quad \nu_d \sim \mathcal{T}runcated(\mathcal{N}(0, 3), 0, \infty), \quad x_n \sim \text{LBA}(\nu, \tau, A, k)$ where $mn = \min_{i} x_{i,2}, d = 1, ..., N_{c}$ and $n = 1, ..., N_{c}$.

Fig. 2: SDT (100 runs); left to right: step size, tree depth, ESS

1			1			ΛT			JL
Density		AHMCNUTS 10 CmdStanNUTS 10	Oensity	AHMCNUTS 10 CmdStanNUTS 10		1 V	b_0	σ	
	0.1 0.2 epsilon	0.3	0.0	3.0 3.5 4.0 4.5 5.0 5.5 tree_depth	Stan	10	413.939	266.476	3
≥ 10.0 7.5		AHMCNUTS 100 CmdStanNUTS 100	1.5 1.0	AHMCNUTS 100	AHMC	10	354.946	263.894	4
5.0 - 2.5 -			0.5 -		Stan	100	621.796	729.812	4
0.0	0.15 0.20 0.25 epsilon	0.30 0.35	0.0	3.0 3.5 4.0 4.5 tree_depth	AHMC	100	473.005	734.189	6
12 10 10 10		AHMCNUTS 1000	2.0 - 1.5 - 1.0 -	AHMCNUTS 1000 CmdStanNUTS 1000	Stan	1000	668.524	789.987	4
			0.5 - 0.0 -		AHMC	1000	485.988	786.577	6

Fig. 3: LR (50 runs); left to right: step size, tree depth, ESS

- 100 - 25 - 22 - 25			λI			
	AHMCNUTS 1 CmdStanNUTS 1	2.0 AHMCNUTS 1 1.5 CmdStanNUTS 1 1.0 CmdStanNUTS 1	IV	a_0	a_1	b_{σ}
	0.005 0.010 0.015 0.020 0.025 0.030 0.03 epsilon	0.0 6.0 6.5 7.0 7.5 8.0 tree depth	Stan 10	221.485	215.013	266.900
80 E	AHMCNUTS 2	2.0.8 AHMCNUTS 2 CmdStanNUTS 2	AHMC 10	216.491	214.459	258.638
40 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -			Stan 20	208.286	207.041	241.080
0 =_=	0.00 0.01 0.02 0.03 epsilon	6 7 8 9 tree_depth	AHMC 20	206.458	200.469	236.546
120 100 80	AHMCNUTS 5	1.00 AHMCNUTS 5	Stan 50	172.484	172.982	216.586
U 60 - 40 - 20 -			AHMC 50	200.755	201.548	247.384
	0.00 0.01 0.02 0.03	tree denth				

Fig. 4: HPR (25 runs); left to right: step size, tree depth, ESS (of some variables)

		$\overline{\Lambda t}$	ESS			
AHMCNUTS 10 7.5 5.0 CmdStanNUTS 10 CmdStanNUTS 10 CmdStanNUTS 10 CmdStanNUTS 10		ĨN	au	A	$ u_1$	ν_2
2.5 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Stan	10	226.463	282.656	305.614	276.557
$\begin{array}{c} 15\\ \end{array}$	AHMC	10	340.722	304.523	337.610	336.357
Stad Decision of the second seco	Stan	50	212.838	238.003	235.009	232.667
0 0.05 0.10 0.15 0.20 0.25 0.0 4.0 4.5 5.0 5.5 epsilon tree_depth	AHMC	50	248.249	238.979	248.331	255.421
25- 20- 15- 20- 15- 20- CmdStanNUTS 200 20- CmdStanNUTS 200 20- CmdStanNUTS 200 20- CmdStanNUTS 200	Stan	200	244.926	264.967	268.793	270.36
$ = \begin{bmatrix} 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	AHMC	200	256.638	263.098	270.978	266.769
epsilon tree depth						

Fig. 5: LBA (50 runs); left to right: step size, tree depth, ESS (of some variables)

ESS 381.219 423.441 11.769 399.420 65.990 608.608 606.996 621.543 464.459 648.201 676.097 689.344

Computational Efficiency: Stan v.s. Turing

Turing.jl is a probabilistic programming language (PPL) in Julia that uses AdvancedHMC.jl as its HMC backend. All the benchmark models are written in **Turing** and **AdvancedHMC.jl** is called by Turing.jl to run the NUTS. Below is an example of running NUTS on the LR model using Turing.

- **@model** LR(x, y, Nd, Nc) = **begin**
- $B \sim MvNormal(zeros(Nc), 10)$
- B0 ~ Normal(0, 10)
- sigma ~ Truncated(Cauchy(0, 5), 0, Inf)
- mu = B0 . + x * B
- y ~ MvNormal(mu, sigma)
- 7 **end**
- $8 x, y, Nd, Nc = \dots \# load data$
- 9 chain = sample(LR(x, y, Nd, Nc), NUTS(2_000, 1_000, 0.8))
- The time to run the five benchmark models in **Stan** and **Turing** are reported in the table below.

	Gaussian 2		SDT ³		LR 2		HPR 1		$\overline{\text{LBA}^2}$	
	N	seconds	N	seconds	N	seconds	N	seconds	N	seconds
Stan	10	0.8039	10	0.7759	10	0.8669	10	2.4870	10	1.9179
AHMC	10	0.3361	10	0.3285	10	1.1356	10	19.4587	10	2.6906
Stan	100	0.7561	100	0.7261	100	0.9824	20	3.5025	50	7.8471
AHMC	100	0.3303	100	0.3201	100	1.3202	20	28.2982	50	11.0270
Stan	1000	0.7614	1000	0.7089	1000	2.2600	50	5.8954	200	31.3762
AHMC	1000	0.5081	1000	0.3179	1000	3.8326	50	40.0322	200	33.6125

Table. 1: Time comparisons between Stan and Turing (AHMC) for five models using ¹ 25 runs, ² 50 runs or ³ 100 runs.

Easy Integration of Other Julia Packages

Bijectors.jl is used inside Turing.jl to do automatic transformations of constrained variables to run HMC. E.g. a random variable from $\mathcal{T}runcated(\mathcal{C}auchy(0,5),0,\infty)$ is constrained to be positive and will be transformed to the real space by the log function automatically.

CuArrays.jl could be used with AdvancedHMC.jl to run NUTS on GPUs. In order to run NUTS using CUDA, one only needs to change Line 3 of the demo code from q_init = randn(D) to **q_init = CuArray(randn(D))**, assuming **logdensity_f** and **grad_f** in Line 6 are GPU friendly; if it is written in pure Julia, it probably supports GPUs acceleration automatically. How does it work? All arrays in AdvancedHMC.jl are abstractly typed, meaning that the concrete type is deduced at compile time from **q_init**. That is to say, if **q_init** is on the GPU i.e. is a CuArray, all the internal arrays in the NUTS will be too.

SoSS.jl is another PPL in Julia that uses AdvancedHMC.jl as its backend. It is easy for PPLs in Julia with different domain specific languages (DSLs) to use the HMC implementation in AdvancedHMC.jl.

DifferentialEquations.jl is the state-of-the-art numerical differential equations solver package, implemented in pure Julia. As such, its solvers can be employed in Turing models, thus enabling AHMC to perform Bayesian inference in the parameters of differential equation models.

Flux.jl is a deep learning packages in Julia. Neural models defined by Flux.jl can be directly used in Turing models. E.g. one can implement a Bayesian neural network in Turing by defining priors on the weights of a Flux-based neural network, and NUTS can be used to draw samples of the weights.

Acknowledgements

We would like to thank the developers of MCMCBenchmarks.jl, Rob Goedman and Christopher Fisher. With this package we ran all benchmarks and generated all plots presented in this poster.

References

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434. Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... Riddell, A. (2017). Stan: a probabilistic programming language. Journal of statistical software, 76(1).

Hoffman, M. D. & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593–1623.

Neal, R. M. et al. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte Carlo, 2(11), 2.