

Rowan Rideshare Design Document

Wen Cao, Tyler Carberry, Benny Chen,
Benny Liang, Michael Matthews, Tapan Soni,

John Stranahan, Nicholas La Sala
10/26/18

Senior Project Fall 2018

Page 1 of 22

Table of Contents
High Level
Design……….3

Problem Solving Approaches………………………………………………………………………………………………..4

Screens………5

Screen
Navigation……..12

Technology Stack……...16

Backend…….….17

Authentication and
Security………………………………………………………………………………………………...18

Input and Output………19

Database Schema……20

Restful Endpoints…………………………………………………………………………….………………………………………..21

Page 2 of 22

High Level Description

The purpose of the application is to give users a way to easily find other
commuters and organize carpools to and from Rowan University by
matching them with other students who also go to Rowan University and are
looking for a carpool.

When the user creates an account they will then enter their general
weekly schedule along with an address that will be used to determine their
location relative to Rowan. Once the app has this information stored, the user
can then request a search of other users that are also looking to organize
carpools. The app will match people based on how similar their routes to and
from Rowan are, and from similar schedules. The app will also add the new
user to the pool of users that can be found as a potential match.

Once the user has found other students that are looking for carpools
they can then enter into a chat with them and work out any necessary
details. This includes pick up/drop off times, along with what kind of car they
should expect to pick them up.

Page 3 of 22

Problem Solving Approaches

The biggest problem facing the development of the app was how the
user’s schedule was to be handled. The two approaches that were
considered were a simple arriving and leaving time for each day of the week,
or allowing the user to create blocks of critical times they would need rides
that they could choose to search for. Ultimately the simpler arrival and
departure for each day was selected because it would provide users the
largest number of potential matches possible, which is invaluable to an app
with an inherently low maximum number of users. This would also allow for
each users schedule to be returned in a higher number of searches which
would improve overall visibility for the profile.

Page 4 of 22

Screens

Login Screen

The Login Screen will be the first screen that users who are not already
logged in will see when they start the app. Here the users will enter their
Rowan login credentials before being redirected to the home screen. If the
user launches the app and is already logged in then this screen will be
skipped.

Page 5 of 22

Home Screen

This is the primary screen available to the user, and it features a menu
to navigate the app. In the final version of the app it will feature buttons to
access the new ride, messages screen, profile edit screen, and setting.

Page 6 of 22

Map Screens

The user can select those whom they decide to start a carpool with and
view their location on a map screen. The user can then choose to load the
route from google maps if they wish to use that for navigation.

Page 7 of 22

Mock Ups

Profile Editor

This screen is where user can choose to change any information about
them that will be displayed on the app.

Page 8 of 22

Profile View

This screen allows the user to view other user’s profiles, and decide if
they want to begin a chat with them.

Page 9 of 22

Messenger Screen

This screen will allow the user to view all of their chats that they started
and open the chat screen with whomever they select.

Page 10 of 22

Chat Screen

This screen allows users will be able to send and receive messages with
the other users that they match with.

Page 11 of 22

Screen Navigation

When a new user opens the app for the first time they be presented a
disclaimer, followed by the login screen. The users login using their rowan
account credentials, and from there they are redirected to a profile edit
screen. This is screen allows the user verify their information and begin
creating a schedule. After the user has set up their profile for the first time
they will be redirected to the home screen which will be the default screen
on future app launches. The home screen will act as a hub that allows the
user to access any of the functions that the app provides them.

Since this is a new user that just adjusted their settings, the next thing
they would likely do is begin searching for people to form a carpool with. The
user would select the search option from the main menu that would bring
them to a screen that list all of the students that would be a potential match
for the user. The user can send ride requests to whomever they think would
be a good match from the students that are returned to them. Once the
other party has accepted the ride request, a chat between the users is
created.

Users can select the chat button from the home screen that bring
them to a screen that shows them all of their active chats sorted by the most
recently posted in, with any newly formed chats at the top of the list. Once a
user selects a chat that they want to post in the app will redirect to the chat
page where the user can type a message along with read old ones.

Other pages that can be selected from the home screen are the profile
edit screen, a settings screen. The profile edit screen is largely the same as
when the user first entered information when their profile was first created.
The user can choose to revisit this screen to adjust their profile whenever
needed. The settings screen is used to control any app related options such
as notifications, or accessibility settings.

Page 12 of 22

Flow Diagram

Page 13 of 22

Page 14 of 22

Page 15 of 22

Technology Stack

The frontend for the app is being developed in Android Studio. The user
interface is developed using Dart and the Flutter SDK from Google. Since the
app is intended to run on android phones, the app is test using emulated
hardware using the latest version of Android.

The app uses RESTful APIs such as Google Maps to determine whether
two users are an appropriate match based on their distance. Google Maps is
also used to provide the user with a visual of what to expect from an
upcoming route. We utilize HTTP requests to pull info from the databases to
compares users schedules to see if they are suitable.

The application has a Java-based backend that utilizes the Spring Boot
framework. We chose Java because of its robustness and the development
team’s familiarity with the language. Spring Boot was chosen due to its
dependency injection capabilities and integration with Hibernate.

The database for the application is hosted on an AWS server. We
decided to use MySQL as our database over other alternatives (Apache
Cassandra, MongoDB, etc.) due to its simplicity and our expected user count.
If the number of users increase to an amount where a relational database is
not desirable, we plan to migrate to Cassandra (which is known for
scalability). The database schema includes tables for profiles, addresses,
schedules, groups and messages. The app uses Hibernate as an ORM and to
communicate with MySQL.

Page 16 of 22

Backend Information

The backend is created using Spring Boot and will handle the flow of
data that is required to use the app. The backend will communicate with the
apps database on AWS, and be responsible for query the database for
information that is presented to the user on the front end. It will also need to
take information that the user enters into the GUI and store it in the
appropriate table on the database.

The backend will also handle the user matching that is integral to the
functionality of the app. Any calculations that are performed by the app to
determine which users would be strong carpool candidates will performed
from the back end.

Page 17 of 22

Authentication and Security

The app’s user authentication will be performed using OAuth, and the
user will be using their normal Rowan account logins to use the app. Doing
so, we don’t need to store a user’s login or password. Additionally, this app is
not intended for those who are not students at Rowan, so there is no need for
users to create their accounts from within the app.

Page 18 of 22

Input and Output

Input: The primary method of user input is using buttons to navigate
the app’s menus. The app also receives text inputs when the user is typing a
message in the chat screen or adding information their profile .

Output: The output provided to the user is a list of other users that are
a good match to start a carpool with. The user will also be able to view
relevant locations from the map screen, along with a suggested route that
could be loaded into google maps.

Page 19 of 22

Database Schema

For schedule, ProfileID and Day form a composite primary key. The Enums for
Day are Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and
Sunday.

There are two relationships between chatroom and message: a 1-to-1
relationship to track the last message sent for a chatroom and a 1-to-Many
since a chatroom can have many messages.

The chatroomProfile table exists as a bridging table for the Many-to-Many
relationship between profile and chatroom.

Page 20 of 22

Restful Endpoints
The endpoints are labeled in the form of REQUEST TYPE /endpoint/url/.
Inputs to an endpoint are denoted by brackets. For example, {user_id}
expects an integer. Additional parameters will be handled in through query
strings and/or form data (for post requests).

GET /profile/{profile_id}
Returns information about the profile corresponding to the profile_id in the
form of JSON.

GET /address/{profile_id}
Returns the address for the specified profile in the form of JSON.

GET /profile/{profile_id}/schedule
Returns the current schedule for the profile in the form of JSON.

GET /profile/{profile_id}/matches
Returns a list of potential matches for the specified profile in the form of
JSON. Profiles are matched based on distance and proximity.

GET /chat/{chatroom_id}/messages
Returns a list of messages in the chat conversation that corresponds to the
chatroom_id. Output is in form of JSON.

GET /chat/{chatroom_id}
Returns the profiles that are in the chatroom in the form of JSON.

POST /profile/{profile_id}
Updates the current user information. No output.

POST /profile/{profile_id}/schedule
Updates the current schedule for the user. No output.

POST /chat/{chatroom_id}/messages
Adds a new message for the specific chatroom. No output.

POST /chat/{group_id}/{profile_id}

Page 21 of 22

Adds a new profile to the group. No output.

POST /address/{profile_id}
Updates the address for the specified profile_id. No output.

Page 22 of 22

