
DRA
FTSpecification v1.0

Revision 2018.07.23

Overview
UAVCAN is an open lightweight protocol designed for
reliable communication in aerospace and robotic ap-
plications via CAN bus.
Features:
• Democratic network - no bus master, no single
point of failure.
• Publish/subscribe and request/response (RPC1)
exchange semantics.
• Efficient exchange of large data structures with au-
tomatic decomposition and reassembly.
• Lightweight, deterministic, easy to implement, and
easy to validate.
• Suitable for deeply embedded, resource
constrained, hard real-time systems.
• Doubly- or triply- redundant CAN bus support.
• Supports high-precision network-wide time
synchronization.
• The specification and high quality reference
implementations in popular programming languages
are free and open source.

1Remote procedure call

Support and feedback
Information, documentation, and discussions related
to UAVCAN are available via the official website at
uavcan.org.
Legal statement
UAVCAN is an interface standard open to everyone.
No licensing or approval of any kind is necessary for
its implementation, distribution, or use.
In no event shall the authors of the standard be liable
for any damage arising, directly or indirectly, from its
use.

© 2018 UAVCAN Development Team Support & feedback: uavcan.org

http://uavcan.org
http://uavcan.org
http://uavcan.org

DRA
FT

Specification v1.0 2018.07.23

Table of contents
1 Introduction 1

1.1 Core design goals 1
1.2 Specification update and approval

process. 1
1.3 Referenced sources 2

2 Basic concepts 3
2.1 Message broadcasting 4

2.1.1 Anonymous message broad-
casting 4

2.2 Service invocation 4
3 Data structure description language . . 6

3.1 File hierarchy 6
3.1.1 Service data types 7

3.2 Syntax 7
3.2.1 Attribute definition 8
3.2.2 Directives 10
3.2.3 Comments. 10
3.2.4 Service response marker . . . 10

3.3 Primitive data types 10
3.4 Naming rules 11

3.4.1 Mandatory 11
3.4.2 Optional 11
3.4.3 Advisory 11

3.5 Data serialization 11
3.5.1 General principles 11
3.5.2 Scalar values 12
3.5.3 Nested data structures. . . . 13
3.5.4 Fixed size arrays 13
3.5.5 Dynamic arrays 13
3.5.6 Unions 14

3.6 Data type compatibility and ver-
sioning 15
3.6.1 Rationale 15
3.6.2 Bit compatibility 15
3.6.3 Semantic compatibility. . . . 17
3.6.4 Data type versioning 17

3.7 Data type ID 20
3.8 Standard and vendor-specific data

types. 21
3.8.1 Standard data type repository . 21
3.8.2 Vendor-specific data types . . 21

4 CAN bus transport layer 22
5 Application layer 23

5.1 Application-level conventions . . . 23
5.2 Application-level functions 23

6 Hardware design recommendations. . . 24

ii Support & feedback: uavcan.org © 2018 UAVCAN Development Team

http://uavcan.org
http://uavcan.org

DRA
FT

2018.07.23 Specification v1.0

List of figures

2.1 UAVCAN architectural diagram. 3
3.1 DSDL serialization example. 12

List of tables

2.1 Broadcast message properties 4
2.2 Service request/response properties . . . 5
3.1 Primitive data types 11
3.2 Scalar value serialization 13
3.3 Variable-size data type compatibility exam-

ple. 17

© 2018 UAVCAN Development Team Support & feedback: uavcan.org iii

http://uavcan.org
http://uavcan.org

DRA
FT

2018.07.23 Specification v1.0

1 Introduction
This chapter covers the basic concepts that govern development and maintenance of the specifica-
tion. The actual specification is contained in the following chapters.
The reader should have a solid understanding of the main concepts and operating principles of the
CAN bus.

1.1 Core design goals
UAVCAN is designed to adhere to the following set of basic principles.
Democratic network - There should be no master node. All nodes in the network should have the
same communication rights; there should be no single point of failure.
Nodes can exchange long payloads - Nodes must be provided with a simple way to exchange large
data structures that cannot fit into a single CAN2 frame (such as GNSS solutions, 3D vectors, etc.).
UAVCAN should perform automatic transfer decomposition and reassembly at the protocol level,
hiding the related complexity from the application.
Support for redundant interfaces and redundant nodes - This is a common requirement for safety-
critical applications.
High throughput, low latency communication - Applications that are dependent on high-frequency,
hard real-time control loops, require a low-latency, high-throughput communication method.
Simple logic, low computational requirements - UAVCAN targets a wide variety of embedded
systems, from high-performance embedded on-board computers for intensive data processing
(e.g., a high-performance GNU/Linux-powered machine) to extremely resource-constrained
microcontrollers. The latter imposes severe restrictions on the amount of logic needed to
implement the protocol.
Common high-level functions should be clearly defined - UAVCAN defines standard services and
messages for common high-level functions, such as network discovery, node configuration, node
software update, node status monitoring (which naturally grows into a vehicle-wide health moni-
toring), network-wide time synchronization, dynamic node ID allocation (a.k.a. plug-and-play node
support), etc.
Open specification and reference implementations - The UAVCAN specification is open and freely
available; the reference implementations are distributed under the terms of the permissive MIT Li-
cense.

1.2 Specification update and approval process
TheUAVCANdevelopment team is chargedwith advancing the specification based on the input from
adopters. This feedback is gathered via the official discussion forum3, which is open to everyone.
The set of standard data type definitions is one of the cornerstone concepts of the specification (the
data structure description language (DSDL) and related concepts are described in section 3). Within
the same major version, the specification can be extended only in the following ways:

2Or CAN FD. Here and in the following parts of the specification, CAN also implies CAN FD, unless specifically noted otherwise.3Please refer to uavcan.org.

1. Introduction 1/24

http://uavcan.org

DRA
FT

Specification v1.0 2018.07.23

• A new data type can be added, possibly with default data type ID, as long as the default data type
ID doesn’t conflict with one of the existing data types.
• An existing data type can be modified, as long as the modification doesn’t break backward com-
patibility.
• A new version of an existing data type can be added.
• An existing data type can be declared deprecated.

• Once declared deprecated, the data type will be maintained for at least twomore years. After
this period its default data type ID may be reused for an incompatible data type.
• Deprecation will be announced via the discussion forum, and indicated in the form of a com-
ment in its DSDL definition.

A link to the repository containing the set of default DSDL definitions can be found on the official
website4.

1.3 Referenced sources
The UAVCAN specification contains references to the following sources:
• CiA 801 - Application note - Automatic bit rate detection.
• CiA 103 - Intrinsically safe capable physical layer.
• CiA 303 - Recommendation - Part 1: Cabling and connector pin assignment.
• IEEE 754 - Standard for binary floating-point arithmetic.
• ISO 11898-1 - Controller area network (CAN) - Part 1: Data link layer and physical signaling.
• ISO 11898-2 - Controller area network (CAN) - Part 2: High-speed medium access unit.
• ISO/IEC 10646 - Universal Coded Character Set (UCS).
• ISO/IEC 14882 - Programming Language C++.
• "Implementing a Distributed High-Resolution Real-Time Clock using the CAN-Bus", M. Gergeleit
and H. Streich.
• "In Search of an Understandable Consensus Algorithm (Extended Version)", Diego Ongaro and
John Ousterhout.
• semver.org - Semantic versioning specification.

4uavcan.org

2/24 1. Introduction

http://semver.org
http://uavcan.org

DRA
FT

2018.07.23 Specification v1.0

2 Basic concepts
UAVCAN is a lightweight protocol designed to provide a highly reliable communication method for
aerospace and robotic applications via the CAN bus. A UAVCAN network is a decentralized peer
network, where each peer (node) has a unique numeric identifier - node ID. Nodes of a UAVCAN
network can communicate using the following communication methods:
Message broadcasting - The primary method of data exchange with one-to-all publish/subscribe
semantics.
Service invocation - The communication method for peer-to-peer request/response interactions5.
For each type of communication, a predefined set of data structures is used, where each data struc-
ture has a unique identifier - the data type ID (DTID). Additionally, every data structure definition has a
pair ofmajor andminor semantic version numbers, which enable data type definitions to evolve in ar-
bitrary ways while ensuring a comprehensible migration path in the event of backward-incompatible
changes. Some data structures are standard and defined by the protocol specification; others may
be specific to a particular application or vendor.
Since every message or service data type has its own unique data type ID, and each node in the
network has its own unique node ID, a pair of data type ID and node ID can be used to support
redundant nodes with identical functionality inside the same network.
Message and service data structures are defined using the Data Structure Description Language
(DSDL) (chapter 3). A DSDL description can be used to automatically generate the serializa-
tion/deserialization code for every defined data structure in a particular programming language.
DSDL ensures that the worst case memory footprint and computational complexity per data type
are constant and easily predictable, which is paramount for hard real-time and safety-critical
applications.
On top of the standard data types, UAVCAN defines a set of standard high-level functions including:
node health monitoring, network discovery, time synchronization, firmware update, plug-and-play
node support, and more. For more information see chapter 5.
Serialized message and service data structures are exchanged by means of the CAN bus trans-
port layer (chapter 4), which implements automatic decomposition/reassembly of long transfers
into/from several CAN frames, allowing nodes to exchange data structures of arbitrary size.

Figure 2.1: UAVCAN architectural diagram.

5Like remote procedure call (RPC).

2. Basic concepts 3/24

DRA
FT

Specification v1.0 2018.07.23

2.1 Message broadcasting
Message broadcasting refers to the transmission of a serialized data structure over the CAN bus
to other nodes. This is the primary data exchange mechanism used in UAVCAN. Typical use cases
may include transfer of the following kinds of data (either cyclically or on an ad-hoc basis): sensor
measurements, actuator commands, equipment status information, and more.
Information contained in a broadcast message is summarized in the table 2.1.

Table 2.1: Broadcast message properties

Property Description

Payload The serialized message data structure
Data type ID Numerical identifier that indicates how the data structure should be in-

terpreted
Data type major version number Semantic major version number of the data type description
Source node ID The node ID of the transmitting node (excepting anonymous messages)
Transfer ID A small overflowing integer that increments with every transfer of this

type of message from a given node
2.1.1 Anonymous message broadcasting

Nodes that don’t have a unique node ID can publish anonymousmessages. An anonymousmessage
is different from a regular message in that it doesn’t contain a source node ID.
This kind of data exchange is useful during initial configuration of the node, particularly during the
dynamic node ID allocation procedure6.
Anonymous messages cannot be decomposed into multiple CAN frames, meaning that their pay-
load capacity is limited to that of a single CAN frame. More info is provided in the chapter 4.

2.2 Service invocation
Service invocation is a two-step data exchange operation between exactly two nodes: a client and
a server. The steps are:
1. The client sends a service request to the server.
2. The server takes appropriate actions and sends a response to the client.
Typical use cases for this type of communication include: node configuration parameter update,
firmware update, an ad-hoc action request, file transfer, and similar service tasks.
Information contained in service requests and responses is summarized in the table 2.2.

6This is an optional feature.

4/24 2. Basic concepts

DRA
FT

2018.07.23 Specification v1.0
Table 2.2: Service request/response properties

Property Description

Payload The serialized request/response data structure
Data type ID Numerical identifier that indicates how the data structure should be in-

terpreted
Data type major version number Semantic major version number of the data type description
Client node ID Source node ID during request transfer, destination node ID during re-

sponse transfer
Server node ID Destination node ID during request transfer, source node ID during re-

sponse transfer
Transfer ID A small overflowing integer that increments with every call to this service

from a given node
Both request and response contain exactly the same values for all fields except payload, where
the content is application-defined. Clients match responses with corresponding requests using the
following fields: data type ID, data type major version number, client node ID, server node ID, and
transfer ID.

2. Basic concepts 5/24

DRA
FT

Specification v1.0 2018.07.23

3 Data structure description language
The data structure description language (DSDL) is used to define data structures for exchange via
the CAN bus. DSDL definitions are used to automatically (or manually) generate the message or
service serialization/deserialization code in a particular programming language. A tool that auto-
matically generates source code from DSDL definition files is called a DSDL compiler.

3.1 File hierarchy
Each DSDL definition file specifies exactly one data structure that can be used for message broad-
casting, or a pair of structures that can be used for service invocation (request and response).
A DSDL source file is named using the short data type name, the semantic version number pair (major
and minor; see the section 3.6 for more information on data type versioning), and the default data
type ID (if needed) as shown below7:
[default DTID.]<short name>.<major version number>.<minor version number>.uavcan

Every defined data structure is contained in a namespace, whichmay in turn be nestedwithin another
namespace. A namespace that is not nested in another namespace is called a root namespace. For
example, all standard data types are contained in the root namespace uavcan, which contains nested
namespaces, such as protocol.
The namespace hierarchy is mapped directly to the file system directory structure, as shown in the
example below:
uavcan/ <- Root namespace

equipment/ <- Nested namespace

...

protocol/ <- Nested namespace

341.NodeStatus.1.0.uavcan <- Data type "uavcan.protocol.NodeStatus" v1.0 with default DTID 341

...

Timestamp.uavcan <- Data type "uavcan.Timestamp", default DTID is not assigned

Notes:
• It is not necessary to explicitly define a default data type ID for non-standard data types (i.e., for
vendor-specific or application-specific data types).

• If the default data type ID is not defined by the DSDL definition, it will need to be assigned by
the application at run time.
• All standard data types have default data type ID values defined.

• Data type names are case sensitive, i.e., names foo.Bar and foo.bar are considered different.
Names that differ only in case should be avoided, because it may cause problems on file systems
that are not case-sensitive.
• Data types may contain nested data structures.

• Some data structures may be designed for such nesting only, in which case they are not
required to have a dedicated data type ID at all (neither default nor runtime-assigned).

• Full data type name is a unique identifier of a data type constructed from the root namespace,
all nested namespaces (if any), and the short data type name, joined via the dot symbol (.), e.g.,
uavcan.protocol.file.Read.

7In this declaration, themandatory parts are surroundedwith angle brackets, and the optional parts are surroundedwith square brackets.

6/24 3. Data structure description language

DRA
FT

2018.07.23 Specification v1.0
• The total length of the full data type name must not exceed 80 characters.
• Refer to the naming rules below for the limitations imposed on the character set.

3.1.1 Service data types

Since a service invocation consists of two independent network data exchange operations, the DSDL
definition for a service must define two structures:
Request part - for the request transfer (client to server).
Response part - for the response transfer (server to client).
Both request and response structures are contained within the same DSDL definition file, separated
by a special statement as defined in the section 3.2.
Service invocation data structures cannot be nested into other structures.

3.2 Syntax
Adata structure definition is a collection of statements. Each statement is located on a separate line.
Lines are separated with the ASCII line feed character (\n, code 10), or with a sequence consisting
of the ASCII carriage return character followed by the ASCII line feed character (\r\n, code 13 and
10, respectively).
The following types of statements are defined:
Attribute - used to define entities of the data type, such as data fields and constants.
Directive - directives provide instructions to the DSDL compiler.
Service response marker - separates the request and response parts of a service data type defini-
tion.
An attribute can be either of the following:
Field - a variable that can be modified by the application and exchanged via the network.
Constant - an immutable value that does not participate in network exchange.
DSDL source files may also contain human-readable comments, which are ignored by the compiler.
A message data type definition may contain the following entities:
• Attribute definitions
• Directives
• Comments
A service data type definition may contain the following entities:
• Request part attribute definitions
• Response part attribute definitions
• Request part directives
• Response part directives
• Comments

3. Data structure description language 7/24

DRA
FT

Specification v1.0 2018.07.23

• Service response marker (always exactly one marker) (section 3.2.4)
Unless specifically stated otherwise, directives apply only to the part of the service type definition
where they are defined, not crossing the boundary of the service response marker.

3.2.1 Attribute definition

Field definitions follow one of the below specified declaration patterns:
• cast_mode field_type field_name

• cast_mode field_type[X] field_name

• cast_mode field_type[<X] field_name

• cast_mode field_type[<=X] field_name

• void_type

Constant definitions are formed using the following declaration patterns:
• cast_mode constant_type constant_name = constant_initializer

Each component of the specified patterns is reviewed in detail below.
3.2.1.1 Field type

A field type declaration can be either a primitive data type (primitive data types are defined in section
3.3) or a nested data structure.
A primitive data type is referred simply by its name, e.g., float16, bool.
A nested data structure is referred by its name and the version number, separated by the ASCII dot
(full stop) character. The name can be either the full name or the short name. The latter option is
permitted only if the referred data type is located in the same namespace as the referring data type.
The version number can be either themajor version number, or both themajor and theminor version
numbers separated by the ASCII dot (full stop) character. In the former case, the highest available
minor version number is implied. Consider the following examples, where all of the declarations refer
to the same nested data type, assuming that the referring definition is located in the namespace
uavcan.protocol:
NodeStatus.1

NodeStatus.1.0

uavcan.protocol.NodeStatus.1

uavcan.protocol.NodeStatus.1.0

A field type name can be appended with a statement in square brackets to define an array:
• Syntax [X] is used to define a static array of size exactly X items.
• Syntax [<X] is used to define a dynamic array of size from 0 to X-1 items, inclusively.
• Syntax [<=X] is used to define a dynamic array of size from 0 to X items, inclusively.
In the array definition statements above, Xmust be a valid integer literal according to the rules defined
in the section 3.2.1.4.
Observe that the maximum size of dynamic arrays is always bounded, this ensures that the worst
case memory footprint and associated computational complexity are predictable.

3.2.1.2 Field name and constant name

For a message data type, all attributes must have a unique name within the data type definition.

8/24 3. Data structure description language

DRA
FT

2018.07.23 Specification v1.0
For a service data type, all attributes must have a unique name within the same part (re-
quest/response) of the data type definition. In other words, service type attributes can have the
same name as long as they are separated by the service response marker (section 3.2.4).
Restrictions on the character set and further information are provided in the section 3.4.

3.2.1.3 Cast mode

Cast mode defines the rules of conversion from native values of a particular programming language
to serialized field values. Cast mode may be left undefined, in which case the default will be used.
The possible cast modes are defined below.
• saturated - this is the default cast mode, which will be used if the attribute definition does not
specify the cast mode explicitly. For integers, it prevents an integer overflow, replacing it with satu-
ration - for example, an attempt to write 0x44 to a 4-bit field will result in a bit field value of 0x0F. For
floating point values, it prevents overflow when casting to a lower precision floating point represen-
tation - for example, 65536.0 will be converted to a float16 as 65504.0; infinity will be preserved.
• truncated - for integers, discards the excessive most significant bits; for example, an attempt to
write 0x44 to a 4-bit field will produce 0x04. For floating point values, overflow during downcasting
will produce an infinity.

3.2.1.4 Constant definition

A constant must be of a primitive (section 3.3) scalar type. Arrays and nested data structures are
not allowed as constant types.
A constant must be assigned with a constant initializer, which must be one of the following:
• Integer zero (0).
• Integer literal in base 10, starting with a non-zero character. E.g., 123, -12.
• Integer literal in base 16 prefixed with 0x. E.g., 0x123, -0x12, +0x123.
• Integer literal in base 2 prefixed with 0b. E.g., 0b1101, -0b101101, +0b101101.
• Integer literal in base 8 prefixed with 0o. E.g., 0o123, -0o777, +0o777.
• Floating point literal. Fractional part with an optional exponent part, e.g., 15.75, 1.575E1, 1575e-2,
-2.5e-3, +25E-4. Not-a-number (NaN), positive infinity, and negative infinity are intentionally not
supported in order to maximize cross-platform compatibility.
• Boolean true or false.
• Single ASCII character, ASCII escape sequence, or ASCII hex literal in single quotes. E.g., 'a',
'\x61', '\n'.
The DSDL compiler must convert the initializer expression to its constant type if the target type
can allocate the value with no data loss. If a data loss occurs (e.g., integer overflow, floating point
number decays to infinity, etc.), the DSDL compiler must refuse to compile such data type.
Note that constants do not affect the serialized data layout as they are never exchanged via the
network.

3.2.1.5 Void type

Void type is a special field type that is intended for data alignment purposes. The specification
defines 64 distinct void types as follows:
• void1 - 1 padding bit;
• void2 - 2 padding bits;
• . . .

3. Data structure description language 9/24

DRA
FT

Specification v1.0 2018.07.23

• void63 - 63 padding bits;
• void64 - 64 padding bits.
A field of a void type does not have a name and its cast mode cannot be specified. During message
serialization, all void fields are filled with zero bits; during deserialization, the contents of void fields
should be ignored.

3.2.2 Directives

A directive is a single case-sensitive word starting with an ASCII "at sign" character (@), possibly
followed by space-separated arguments:
@directive

@directive arg1 arg2

All valid directives are documented in this section.
3.2.2.1 Union

Keyword: @union.
This directive instructs the DSDL compiler that the current message or the current part of a service
data type (request or response) is a tagged union. A tagged union is a data structure thatmay encode
any one of its fields at a time. Such a data structure contains one implicit field - the union tag - that
indicates which particular field the data structure is holding at the moment. Unions are required to
have at least two fields.
This directive must be placed before the first attribute definition.

3.2.3 Comments

A DSDL description may contain comments starting from the ASCII number sign (#) up until the end
of the current line. Comments are ignored by DSDL compilers.

3.2.4 Service response marker

A service response marker separates the request and response parts of a service data type defini-
tion. The marker consists of three ASCII minus symbols (-) in a row on a dedicated line:

The request part precedes the marker, and the response part follows the marker. The presence of a
service response marker indicates that the current definition is a service type definition rather than
a message type definition.

3.3 Primitive data types
These types are assumed to be built-in. They can be directly referenced from any data type of any
namespace. The DSDL compiler should implement these types using the native types of the target
programming language. An example mapping to native types is given here for C/C++.

10/24 3. Data structure description language

DRA
FT

2018.07.23 Specification v1.0
Table 3.1: Primitive data types

Name Bit length Possible representation in C/C++ Value range Binary format

bool 1 bool (can be optimized for bit arrays) {0, 1} One bit
intX 2 ≤ X ≤ 64 int8_t, int16_t, int32_t, int64_t [− 2X

2 ,
2X
2 − 1] Two’s complement

uintX 2 ≤ X ≤ 64 uint8_t, uint16_t, uint32_t, uint64_t [0, 2X − 1]

float16 16 float ±65504 IEEE 754 binary16
float32 32 float Approx. ±1039 IEEE 754 binary32
float64 64 double Approx. ±10308 IEEE 754 binary64
voidX 1 ≤ X ≤ 64 N/A N/A X zero/ignored bits

3.4 Naming rules

3.4.1 Mandatory

Field names, constant names, and type namesmust contain only ASCII alphanumeric characters and
underscores [A-Za-z0-9_], and must begin with an ASCII alphabetic character [A-Za-z]. Violation
of this rule must be detected by the DSDL compiler and treated as a fatal error.

3.4.2 Optional

The following rules should be checked by the DSDL compiler, but are not mandatory; their violation
should not be treated as a fatal error:
• Field and namespace names should be all-lowercase words separated with underscores, andmay
include numbers, (e.g.: field_name_123).
• Constant names should be all-uppercase words separated with underscores, and may include
numbers (e.g.: CONSTANT_NAME_123).
• Data type names should be in camel case (first letter of each word is uppercase), andmay include
numbers (e.g.: TypeName123).

3.4.3 Advisory

The following advisory rules should be considered by the data type designer:
• Message names should be nouns and/or adjectives (e.g., BatteryStatus); service names should
be imperatives (e.g., Restart, GetNodeInfo).
• The name of a message that carries a command should end with the word "Command"; the name
of a message that carries status information should end with the word "Status".
• The name of a service that is designed to obtain or to store data should begin with the word "Get"
or "Set", respectively.

3.5 Data serialization

3.5.1 General principles

A serialized data structure of type A is an ordered set of data fields joined together into a bit string
according to the DSDL definition of the data structure A. The ordering of the fields follows that of
the data structure definition.
Serialized bit strings do not have any implicit data entities such as padding or headers. Data type

3. Data structure description language 11/24

DRA
FT

Specification v1.0 2018.07.23

developers are advised8 tomanually align fields at byte boundaries using the void data types in order
to simplify data layouts and improve the performance of serialization and deserialization routines.
Serialized fields follow the little-endian byte order9. One byte is assumed to contain exactly eight
bits. Bits are filled from the most significant bit to the least significant bit, i.e., the most significant
bit has the index 0.
Serialized data structures must be padded upon completion to one byte, with the pad bits set to
zero. Lower layers of the protocol may also add additional padding as necessary10; however, the
rules and patterns of such padding fall out of the scope of the DSDL specification.

3.5.1.1 Example

Consider the following data type definition:
1 truncated uint12 first

2 truncated int3 second

3 truncated int4 third

4 truncated int2 fourth

5 truncated uint4 fifth

It can be seen that the bit layout is rather complicated because the field boundaries do not align
with byte boundaries, which makes it a good case study. Suppose that we were to encode the above
structure with the fields assigned the following values shown in the comments:

1 truncated uint12 first # = 0xBEDA (48858)

2 truncated int3 second # = -1

3 truncated int4 third # = -5

4 truncated int2 fourth # = -1

5 truncated uint4 fifth # = 0x88 (136)

The resulting encoded byte sequence is shown on the figure 3.1.

Figure 3.1: DSDL serialization example.

3.5.2 Scalar values

The table 3.2 lists the scalar value serialization rules.
8But not required.9Least-significant byte (LSB) first.10More on this in the chapter 4.

12/24 3. Data structure description language

DRA
FT

2018.07.23 Specification v1.0
Table 3.2: Scalar value serialization

Type Bit length Binary format

bool 1 Single bit
intX X Two’s complement signed integer
uintX X Plain bits
float16 16 IEEE 754 binary16
float32 32 IEEE 754 binary32
float64 64 IEEE 754 binary64
voidX X X zero bits; ignore when decoding

3.5.3 Nested data structures

Nested data structures are serialized directly in-place, as if their DSDL definition was pasted directly
in place of their reference. No additional prefixes, suffixes, or padding is provided.

3.5.4 Fixed size arrays

Fixed-size arrays are encoded as a plain sequence of items, with each item encoded independently
in place, with no alignment. No extra data is added.
Essentially, a fixed-size array of size X elements will be encoded exactly in the same way as a se-
quence of X fields of the same type in a row. Hence, the following two data type definitions will
have identical binary representation, the only actual difference being their representation for the
application if automatic code generation is used.

1 AnyType[3] array

1 AnyType item_0

2 AnyType item_1

3 AnyType item_2

3.5.5 Dynamic arrays

The following two array definitions are equivalent; the difference is their representation in the DSDL
definition for better readability:

1 AnyType[<42] a # Can contain from 0 to 41 elements

2 AnyType[<=41] b # Can contain from 0 to 41 elements

A dynamic array is encoded as a sequence of encoded items prepended with an unsigned integer
field representing the number of contained items - the length field. The bit width of the length field
is a function of the maximum number of items in the array:

d log2(X + 1)e

where X is the maximum number of items in the array. For example, if the maximum number of
items is 251, the length field bit width must be 8 bits; if the maximum number of items is 1, the
length field bit width will be just a single bit.
It is recommended to manually align dynamic arrays by prepending them with void fields so that the
first element is byte-aligned, as that enables more efficient serialization and deserialization. This
recommendation does not need to be followed if the size of the array elements is not a multiple of

3. Data structure description language 13/24

DRA
FT

Specification v1.0 2018.07.23

eight bits or if the array elements are of variable size themselves (e.g., a dynamic array of nested
types which contain dynamic arrays themselves).
Consider the following definition:

1 void2 # Padding - not required, provided as an example

2 AnyType[<42] array # The length field is 6 bits wide (see the formula)

If the array contained three elements, the resulting binary representation would be equivalent to that
of the following definition:

1 void2 # Padding - not required, provided as an example

2 uint6 array_length # Set to 3, because the array contains three elements

3 AnyType item_0

4 AnyType item_1

5 AnyType item_2

3.5.6 Unions

Similar to dynamic arrays, tagged unions are encoded as two subsequent entities: the union tag
followed by the selected field, with no additional data.
The union tag is an unsigned integer, the bit length of which is a function of the number of fields in
the union:

d log2 Ne

where N is the number of fields in the union. The value encoded in the union tag is the index of the
selected field. Field indexes are assigned according to the order in which they are defined in DSDL,
starting from zero; i.e. the first defined field has the index 0, the second defined field has the index
1, and so on.
Constants are not affected by the union tag.
It is recommended to manually align unions when they are nested into outer data types by prepend-
ing them with void fields so that the elements are byte-aligned, as that enables more efficient seri-
alization and deserialization.
Consider the following example:

1 @union # In this case, the union tag requires 2 bits

2 uint16 FOO = 42 # A regular constant attribute

3 uint16 a # Index 0

4 uint8 b # Index 1

5 float64 c # Index 2

6 uint32 BAR = 42 # Another regular constant

In order to encode the field b, which, according to the definition, has the data type uint8, the union
tag should be assigned the value 1. The following structure will have an identical layout:

1 uint2 tag # Set to 1

2 uint8 b # The actual data

If the value of b was 7, the resulting encoded byte sequence would be (in binary):
01︸︷︷︸tag

field b︷ ︸︸ ︷
000001 11 000000︸ ︷︷ ︸

padding

14/24 3. Data structure description language

DRA
FT

2018.07.23 Specification v1.0

3.6 Data type compatibility and versioning

3.6.1 Rationale

As can be seen from the preceding sections, the concept of data type is a cornerstone feature of
UAVCAN, which sets it apart from many competing solutions.
In order to be able to interoperate successfully, all nodes connected to the same bus must use
compatible definitions of all employed data types. This section is dedicated to the concepts of data
type compatibility and data type versioning.
A data type is a named set of data structures defined in DSDL. As has been explained above, in
the case of message data types, the set consists of just one data structure, whereas in the case of
service data types the set is a pair of request and response data structures.
Data type definitions may evolve over time as they are refined to better address the needs of their
applications. In order to formalize the data type evolution process with respect to the data type com-
patibility concerns, UAVCAN introduces two concepts: bit compatibility and semantic compatibility,
which are discussed below.

3.6.2 Bit compatibility

3.6.2.1 Definition

For the purposes of the definition that follows, an encoded representation ofA is a sequence of data
fields joined into a bit string according to the DSDL definition of the data structure A.
A structure definitionA is bit-compatible with a structure definitionB if any valid encoded represen-
tation of B is also a valid encoded representation of A. A and B are said to be mutually compatible
if the sets of all possible valid encoded representations of A and B are identical.

3.6.2.2 Example

A fixed-size data structure is a structure that does not contain dynamic arrays or other structures that
contain dynamic arrays within themselves. As such, the bit length of an encoded representation of
a fixed-size structure is constant, regardless of the data contained in the structure. Conversely, any
data structure that is not fixed-size is called a variable-size data structure.
It stands to reason that any data structure definition is compatible with itself. The following two
definitions are bit-compatible as well:

1 uint32 a

2 uint32 b

1 uint64 c

It should be observed that bit-compatibility is invariant to the complexity and the level of nesting of
the data structure. From the above provided definitions follows that two fixed-size data structures
are bit-compatible if the bit lengths of their respective encoded representations are equal.
Consider the following example data type definition; assume that its full data type name is
demo.Pair:

1 # demo.Pair

2 float16 first

3 float16 second

3. Data structure description language 15/24

DRA
FT

Specification v1.0 2018.07.23

Further, let the following be description of the data type demo.PairVector:
1 # demo.PairVector

2 demo.Pair[3] vector

Then the following two definitions are bit-compatible:
1 demo.PairVector pair_vector

1 float16 first_0 # pair_vector.vector[0].first

2 float16 second_0 # pair_vector.vector[0].second

3 float16 first_1 # pair_vector.vector[1].first

4 float16 second_1 # pair_vector.vector[1].second

5 float16 first_2 # pair_vector.vector[2].first

6 float16 second_2 # pair_vector.vector[2].second

The latter definition in the example above is a flattened unrolled form of the former definition. As
such, in that particular example, both definitions can be used interchangeably; data serialized using
one definition can still be meaningful if deserialized using the other definition. However, it is also
possible to construct bit-compatible definitions that are not interchangeable:

1 float16 a

2 float32 b

1 float32 a

2 float16 b

Even though the above definitions are bit-compatible, one cannot be substituted with the other. The
problem of functional equivalency is addressed by the concept of semantic compatibility, explored
in the section 3.6.3.
The examples above were focused on fixed-size structures. In the case of fixed-size structures, if
A is compatible with B, the reverse is also true. This does not hold for variable-size structures.
Consider the following example:

1 uint8[<=10] a

1 void1 # The maximum array length is twice lower, so the length prefix is one bit shorter.

2 uint16[<=5] a # The 1-bit void field is needed to ensure identical bit offset of the array.

For the first definition, it is evident that since it contains one dynamic array with 11 possible length
values11, and the array type is a fixed-size structure12, there are 11 possible bit length values for the
first definition.
Likewise, for the second definition, there are 6 possible bit length values.
Since both arrays have the same bit offset from the beginning of the bit string, and taking into ac-
count the fact that the element sizes differ by an integral factor, the set of valid encoded repre-
sentations of the second definition is a subset of those of the first definition. Possible encoded
representations are summarized in the table 3.3, where the columns labeled "First definition" and
"Second definition" contain the number of elements in the respective arrays.

11Which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.12Built-in types can be considered a special case of fixed-size data structures.

16/24 3. Data structure description language

DRA
FT

2018.07.23 Specification v1.0
Table 3.3: Variable-size data type compatibility example

Bit length First definition Second definition

4 0 0
12 1 invalid
20 2 1
28 3 invalid
36 4 2
44 5 invalid
52 6 3
60 7 invalid
68 8 4
76 9 invalid
84 10 5

The table illustrates the fact that the first definition is compatible with the second definition, but the
reverse is not true.

3.6.3 Semantic compatibility

3.6.3.1 Definition

A data structure definition A is semantically compatible with a data structure definition B if an ap-
plication that correctly uses A exhibits a functionally equivalent behavior to an application that cor-
rectly uses B, and A is bit-compatible with B.
Because of the dependency on bit compatibility, the property of semantic compatibility is
non-commutative.

3.6.3.2 Example

Despite using different binary layouts, the following two definitions are semantically compatible:
1 uint16 FLAG_A = 1

2 uint16 FLAG_B = 256

3 uint16 flags

1 uint8 FLAG_A = 1

2 uint8 FLAG_B = 1

3 uint8 flags_a

4 uint8 flags_b

Therefore, the definitions can be used interchangeably13.
3.6.4 Data type versioning

3.6.4.1 Principles

Every data type definition has a pair of version numbers - amajor version number and aminor version
number, following the principles of semantic versioning.

13It should be noted here that due to different set of fields and constants, the source code auto-generated from the provided defini-
tions may be not drop-in replaceable, requiring changes in the application. However, application compatibility is orthogonal to data type
compatibility.

3. Data structure description language 17/24

DRA
FT

Specification v1.0 2018.07.23

For the purposes of the following definitions, a release of a data type definition stands for the dis-
closure of the data type definition to the intended users or to the public, or for the commencement
of usage of the data type definition in a production system.
In order to ensure a deterministic application behavior and ensure a robust migration path as data
type definitions evolve, UAVCAN requires that all data types that share the samemajor version num-
ber greater than zero must be mutually semantically compatible with each other.
In order to ensure predictable and repeatable behavior of applications that leverage UAVCAN, the
standard requires that once a data type definition is released, it cannot undergo any modifications
to its attributes or directives anymore. Essentially, released data type definitions are to be considered
immutable excepting comments and whitespace formatting.
Therefore, substantial modifications of released data types are only possible by releasing new defi-
nitions of the same data type. If it is desired and possible to keep the same major version number
for a new definition of the data type, the minor version number shall be one greater than the newest
existing minor version number before the new definition is introduced. Otherwise, the major version
number shall be incremented by one and the minor version shall be set to zero.
An exception to the above rules applies when the major version number is zero. Data type defini-
tions bearing the major version number of zero are not subjected to any compatibility requirements.
Released data type definitions with themajor version number of zero are permitted to change in arbi-
trary ways without any regard for compatibility. It is recommended, however, to follow the principles
of immutability, releasing every subsequent definition with the minor version number one greater
than the newest existing definition.

3.6.4.2 Example

Suppose a vendor Sirius Cybernetics Corporation was contracted to design a cryopod management
data bus for a colonial spaceship Golgafrincham B-Ark. Having consulted with applicable specifica-
tions and standards, an engineer came up with the following definition of a cryopod statusmessage
type (named sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status):

1 # sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.0.1

2 float16 internal_temperature # [kelvin]

3 float16 coolant_temperature # [kelvin]

4 # Status flags in the low byte

5 uint16 FLAG_COOLING_SYSTEM_A_ACTIVE = 1

6 uint16 FLAG_COOLING_SYSTEM_B_ACTIVE = 2

7 # Error flags in the high byte

8 uint16 FLAG_PSU_MALFUNCTION = 8192

9 uint16 FLAG_OVERHEATING = 16384

10 uint16 FLAG_CRYOBOX_BREACH = 35768

11 # Storage for the above defined flags

12 uint16 flags

The definition has been deployed to the first prototype for initial lab tests. Since the definition was
experimental, the major version number was set to zero, to signify the tentative nature of the defini-
tion. Suppose that upon completion of the first trials it was identified that the units must track their
power consumption in real time, for each of the three redundant power supplies independently. The
definition has been amended appropriately.
It is easy to see that the amended definition shown below is neither semantically compatible nor bit-
compatible with the original definition; however, it shares the same major version number of zero,

18/24 3. Data structure description language

DRA
FT

2018.07.23 Specification v1.0
because the backward compatibility rules do not apply to zero-versioned data types to allow for
low-overhead experimentation before the system is fully deployed and fielded.

1 # sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.0.2

2 float16 internal_temperature # [kelvin]

3 float16 coolant_temperature # [kelvin]

4 float32 power_consumption_0 # Power consumption by the redundant PSU 0 [watt]

5 float32 power_consumption_1 # likewise for PSU 1

6 float32 power_consumption_2 # likewise for PSU 2

7 # Status flags in the low byte

8 uint16 FLAG_COOLING_SYSTEM_A_ACTIVE = 1

9 uint16 FLAG_COOLING_SYSTEM_B_ACTIVE = 2

10 # Error flags in the high byte

11 uint16 FLAG_PSU_MALFUNCTION = 8192

12 uint16 FLAG_OVERHEATING = 16384

13 uint16 FLAG_CRYOBOX_BREACH = 35768

14 # Storage for the above defined flags

15 uint16 flags

The last definition was deemed sufficient and deployed to the production system under the version
number of 1.0: sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.1.0.
Having collected empirical data from the fielded systems, the Sirius Cybernetics Corporation has
identified a shortcoming in the v1.0 definition, which was corrected in an updated definition. Since
the updated definition, which is shown below, is mutually semantically compatible14 with v1.0, the
major version number was kept the same and the minor version number was incremented by one:

1 # sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.1.1

2 float16 internal_temperature # [kelvin]

3 float16 coolant_temperature # [kelvin]

4 float32[3] power_consumption # Power consumption by the PSU

5 # Status flags

6 uint8 STATUS_FLAG_COOLING_SYSTEM_A_ACTIVE = 1

7 uint8 STATUS_FLAG_COOLING_SYSTEM_B_ACTIVE = 2

8 uint8 status_flags

9 # Error flags

10 uint8 ERROR_FLAG_PSU_MALFUNCTION = 5

11 uint8 ERROR_FLAG_OVERHEATING = 6

12 uint8 ERROR_FLAG_CRYOBOX_BREACH = 7

13 uint8 error_flags

Since the definitions v1.0 and v1.1 aremutually semantically compatible, UAVCAN nodes using either
of them can successfully interoperate on the same bus.
Suppose further that at some point a newer version of the cryopodmodule was released, with higher
precision temperature sensors. The definition has to be updated accordingly to use float32 for the
temperature fields instead of float16. Seeing as that change breaks the binary compatibility, the
major version number has to be incremented by one, and the minor version number has to be reset
back to zero:

14The topic of data serialization is explored in detail in the section 3.5.

3. Data structure description language 19/24

DRA
FT

Specification v1.0 2018.07.23

1 # sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.2.0

2 float32 internal_temperature # [kelvin]

3 float32 coolant_temperature # [kelvin]

4 float32[3] power_consumption # Power consumption by the PSU

5 # Status flags

6 uint8 STATUS_FLAG_COOLING_SYSTEM_A_ACTIVE = 1

7 uint8 STATUS_FLAG_COOLING_SYSTEM_B_ACTIVE = 2

8 uint8 status_flags

9 # Error flags

10 uint8 ERROR_FLAG_PSU_MALFUNCTION = 5

11 uint8 ERROR_FLAG_OVERHEATING = 6

12 uint8 ERROR_FLAG_CRYOBOX_BREACH = 7

13 uint8 error_flags

Now, nodes using v1.0, v1.1, and v2.0 definitions can still coexist on the same network, but they are
not guaranteed to understand each other unless they support all of the used data type definitions.
In practice, nodes that need to maximize their compatibility are likely to employ all existing major
versions of each used data type. If there are more than one minor versions available, the highest
minor version within the major version should be used, to take advantage of the latest changes
in the data type definition. It is also expected that in certain scenarios some nodes may resort
to publishing the same message type using different major versions concurrently to circumvent
compatibility issues (in the example reviewed here that would be v1.1 and v2.0).

3.7 Data type ID
Whenever a data structure is transferred over the bus, it is accompanied by a non-negative integer
- a data type ID. The data type ID (together with the major version number, which is also exchanged
over the bus together with the data type ID) is used by receiving nodes to determine which data type
definition to use to process the received data structure. The data type ID value does not affect data
type compatibility.
It stands to reason that in order to be able to interoperate successfully, every node connected to the
bus must use identical mapping between data types and their identifiers.
There are two independent sets of data type identifiers: one for message data types and the other
for service data types. Each has a reserved subset which is used for standard data type definitions,
and a dedicated subset for vendor-specific data type definitions. More info on the reserved subsets
is provided in the chapter 5.
All UAVCAN nodes must use the same data type ID mapping for the standard data types, as defined
by the default data type ID values provided for each of the standard data types. Since the standard
data type ID mapping is immutable, all standard-compliant nodes can always use standard data
types conflict-free.
Vendor-specific data types, however, do not enjoy the lack of conflict guarantee, because by virtue
of being vendor-specific, such data types cannot use a global fixed agreed upon mapping like the
standard data types do. As such, whenever vendor-specific data types are used, there is always a
risk that different nodes may map different data types to the same data type ID.
It is the responsibility of the system integrator to ensure that if vendor-specific data types are used,
the data type ID mappings are configured on all nodes identically. Vendors of UAVCAN equipment

20/24 3. Data structure description language

DRA
FT

2018.07.23 Specification v1.0
must provide the integrator with a way to change the data type ID of any vendor-specific data type
leveraged by the node15.

3.8 Standard and vendor-specific data types

3.8.1 Standard data type repository

The DSDL definitions of the standard data types are available in the official DSDL repository, which
is linked from the project homepage at uavcan.org.
Information concerning development andmaintenance of the standard DSDL definitions is available
in the chapter 1.

3.8.2 Vendor-specific data types

Vendors must define their specific data types in a separate namespace, which should typically be
named tomatch their company name. Separation of the vendor’s definitions into a dedicated names-
pace ensures that no nameconflictswill occur in systems that utilize vendor-specific data types from
different providers. Note that, according to the naming requirements, the name of a DSDL names-
pace must start with an alphabetic character; therefore, a company whose name starts with a digit
will have to resort to a mangled name, e.g. by moving the digits towards the end of the name, or by
spelling the digits in English (e.g. 42 - fortytwo).
Defining vendor-specific data typeswithin the standard namespace (uavcan.) is explicitly prohibited.
The standard namespace will always be used only for standard data types.
Generally speaking, it is desirable for "generic" data types to be included into the standard set. Ven-
dors should strive to design their data types as generic and as independent of their specific use
cases as possible. The SI system of measurement units should be preferred; data type definitions
that make unnecessary deviations from SI will not be accepted into the standard set.

15Nodes that fail to provide a way of altering the data type ID mapping for vendor-specific data types cannot be considered standard-
compliant

3. Data structure description language 21/24

http://uavcan.org

DRA
FT

Specification v1.0 2018.07.23

4 CAN bus transport layer

22/24 4. CAN bus transport layer

DRA
FT

2018.07.23 Specification v1.0

5 Application layer
5.1 Application-level conventions

5.2 Application-level functions

5. Application layer 23/24

DRA
FT

Specification v1.0 2018.07.23

6 Hardware design recommendations

24/24 6. Hardware design recommendations

	Introduction
	Core design goals
	Specification update and approval process
	Referenced sources

	Basic concepts
	Message broadcasting
	Anonymous message broadcasting

	Service invocation

	Data structure description language
	File hierarchy
	Service data types

	Syntax
	Attribute definition
	Directives
	Comments
	Service response marker

	Primitive data types
	Naming rules
	Mandatory
	Optional
	Advisory

	Data serialization
	General principles
	Scalar values
	Nested data structures
	Fixed size arrays
	Dynamic arrays
	Unions

	Data type compatibility and versioning
	Rationale
	Bit compatibility
	Semantic compatibility
	Data type versioning

	Data type ID
	Standard and vendor-specific data types
	Standard data type repository
	Vendor-specific data types

	CAN bus transport layer
	Application layer
	Application-level conventions
	Application-level functions

	Hardware design recommendations

