
DRA
FTSpecification v1.0

Revision 2018.08.21

Overview
UAVCAN is an open lightweight protocol designed for
reliable communication in aerospace and robotic ap-
plications via robust vehicle bus networks.
Features:
• Democratic network - no bus master, no single
point of failure.
• Publish/subscribe and request/response (RPC1)
exchange semantics.
• Efficient exchange of large data structures with au-
tomatic decomposition and reassembly.
• Lightweight, deterministic, easy to implement, and
easy to validate.
• Suitable for deeply embedded, resource
constrained, hard real-time systems.
• Supports dual and triply modular redundant trans-
ports.
• Supports high-precision network-wide time
synchronization.
• The specification and high quality reference
implementations in popular programming languages
are free, open source, and available for commercial
use (MIT license).

1Remote procedure call

Support and feedback
Information, documentation, and discussions related
to UAVCAN are available via the official website at
uavcan.org.
Legal statement
UAVCAN is an interface standard open to everyone.
No licensing or approval of any kind is necessary for
its implementation, distribution, or use.
In no event shall the authors of the standard be liable
for any damage arising, directly or indirectly, from its
use.
This UAVCAN specification is distributed under the
terms of the Creative Commons Attribution 4.0 Inter-
national License.

© 2015–2018 UAVCAN Development Team Support & feedback: uavcan.org

http://uavcan.org
http://uavcan.org
http://uavcan.org

DRA
FT

Specification v1.0 2018.08.21

Table of contents
1 Introduction 1

1.1 Design principles 1
1.2 Capabilities 1
1.3 Maintenance of the standard data

type set 2
1.4 Referenced sources 2

2 Basic concepts 4
2.1 Message broadcasting 5

2.1.1 Anonymous message broad-
casting 5

2.2 Service invocation 5
3 Data structure description language . . 7

3.1 File hierarchy 7
3.1.1 Service data types 8

3.2 Syntax 8
3.2.1 Attribute definition 9
3.2.2 Directives 11
3.2.3 Comments. 11
3.2.4 Service response marker . . . 12

3.3 Primitive data types 12
3.4 Naming rules 12

3.4.1 Mandatory 12
3.4.2 Optional 12
3.4.3 Advisory 12

3.5 Data serialization 13
3.5.1 General principles 13
3.5.2 Scalar values 14
3.5.3 Nested data structures. . . . 14
3.5.4 Fixed size arrays 14
3.5.5 Dynamic arrays 14
3.5.6 Unions 15

3.6 Data type compatibility and ver-
sioning 16
3.6.1 Rationale 16
3.6.2 Bit compatibility 16
3.6.3 Semantic compatibility. . . . 19
3.6.4 Data type versioning 19

3.7 Data type ID 23
3.8 Standard and vendor-specific data

types. 24
3.8.1 Standard data type repository . 24
3.8.2 Vendor-specific data types . . 24

4 Transport layer 25
4.1 The concept of transfer 25

4.1.1 Message broadcasting. . . . 25
4.1.2 Service invocation 26
4.1.3 Transfer prioritization 27

4.2 Transfer emission 28
4.2.1 Transfer ID computation . . . 28
4.2.2 Single frame transfers 29

4.2.3 Multi-frame transfers 29
4.2.4 Redundant interface support . . 32

4.3 Transfer reception 32
4.3.1 Transfer ID comparison . . . 32
4.3.2 State variables 33
4.3.3 State update in a redundant in-

terface configuration 34
4.3.4 State update in a non-

redundant interface con-
figuration 36

4.4 CAN bus transport layer specifica-
tion 38
4.4.1 CAN ID structure 38
4.4.2 CAN frame data 42
4.4.3 Software design considera-

tions. 45
5 Application layer 49

5.1 Application-level conventions . . . 49
5.2 Application-level functions 49

6 Physical layer 50
6.1 CAN bus physical layer specifica-

tion 51
6.1.1 Physical connector specifica-

tion 51
6.1.2 CAN bus physical layer param-

eters. 58
6.2 Hardware design recommenda-

tions 59
6.2.1 Non-uniform transport redun-

dancy 59
6.2.2 Bus power supply 59

ii Support & feedback: uavcan.org © 2015–2018 UAVCAN Development Team

http://uavcan.org
http://uavcan.org

DRA
FT

2018.08.21 Specification v1.0

List of tables

2.1 Broadcast message properties 5
2.2 Service request/response properties . . . 6
3.1 Primitive data types 12
3.2 Scalar value serialization 14
3.3 Variable-size data type compatibility exam-

ple. 18
3.4 Complex bit compatibility examples . . . 19
3.5 Data type ID ranges per data kind 24
4.1 Common transfer properties 25
4.2 Service request transfer properties 27
4.3 Service response transfer properties . . . 27
4.4 Transfer CRC algorithm parameters. . . . 30
4.5 Transfer ID forward distance examples . . 32
4.6 Transfer reception state variables 34
4.7 Transfer reception state operations 34
4.8 Transfer reception state conditions 34
4.9 CAN ID fields for message transfers . . . 40
4.10CAN ID fields for anonymous message

transfers 40
4.11 CAN ID fields for service transfers 40
4.12 Tail byte structure 43
4.13 CAN frame data segments for single-frame

transfers 44
4.14 CAN frame data segments for multi-frame

transfers (except the last CAN frame of the
transfer) 44

4.15 CAN frame data segments for multi-frame
transfers (the last CAN frame of the trans-
fer) 44

6.1 Standard CAN connector types 51
6.2 UAVCAN D-Sub connector pinout 53
6.3 UAVCAN M8 connector pinout 54
6.4 UAVCAN Micro connector pinout. 56
6.5 Standard CAN 2.0 PHY parameters 58

List of figures

2.1 UAVCAN architectural diagram. 4
3.1 DSDL serialization example. 14
4.1 CAN ID structure 39
6.1 UAVCAN D-Sub connector pair example:

device connector (left) and cable (right).
53

6.2 UAVCAN M8 connector pair example. . . . 55
6.3 UAVCAN M8 assembled connector pair ex-

ample. 55
6.4 UAVCANMicro right-angle connectors with

a twisted pair patch cable connected. . . . 57
6.5 UAVCAN Micro CAN bus termination plug. . 57
6.6 Non-uniform transport redundancy. 59
6.7 Simplified conceptual power sinking node

design schematic. 60
6.8 Simplified conceptual power sourcing

node design schematic. 60

© 2015–2018 UAVCAN Development Team Support & feedback: uavcan.org iii

http://uavcan.org
http://uavcan.org

DRA
FT

2018.08.21 Specification v1.0

1 Introduction
This chapter covers the basic concepts that govern development and maintenance of the specifica-
tion. The actual specification is contained in the following chapters.

1.1 Design principles
UAVCAN is designed to adhere to the following set of basic principles.
Democratic network - There will be no master node. All nodes in the network will have the same
communication rights; there must be no single point of failure.
Nodes can exchange long payloads - Nodes must be provided with a simple way of exchanging
large data structures that cannot fit into a single transport frame (such as GNSS solutions, 3D vec-
tors, etc.). UAVCAN should perform automatic transfer decomposition and reassembly at the pro-
tocol level, hiding the related complexity from the application.
Support for redundant interfaces and redundant nodes - UAVCAN must be suitable for use in ap-
plications that require modular redundancy.
High throughput, low latency communication - UAVCAN must be suitable for use in hard real-time
systems.
Simple logic, low computational requirements - UAVCAN targets a wide variety of embedded
systems, from high-performance embedded on-board computers for intensive data processing
(e.g., a high-performance GNU/Linux-powered machine) to extremely resource-constrained
microcontrollers. The latter imposes severe restrictions on the amount of logic needed to
implement the protocol.
Common high-level functions must be clearly defined - UAVCAN defines standard services and
messages for common high-level functions, such as network discovery, node configuration,
node software update, node status monitoring (which naturally grows into a vehicle-wide health
monitoring), network-wide time synchronization, dynamic node ID allocation (a.k.a. plug-and-play
node support), etc.
Open specification and reference implementations - The UAVCAN specification is open and freely
available; the reference implementations are distributed under the terms of the permissive MIT Li-
cense.

1.2 Capabilities
This section summarizes the capabilities of the UAVCAN protocol.
UAVCAN-based networks can accommodate up to 127 nodes on the same logical bus. More nodes
can be added to the system by separating the bus into several independent logical segments inter-
connected via gateway nodes.
UAVCAN supports up to 32768 distinct message data types and up to 256 distinct service data
types. Part of those are reserved for the standard data types defined by the specification; the rest
are available for vendor- and application-specific data types. More information is provided in the
chapter 5.

1. Introduction 1/60

DRA
FT

Specification v1.0 2018.08.21

UAVCAN supports at least2 eight distinct communication priority levels, defined in the section 4.1.3.
Within each priority level, different types of transfers and different data types are prioritized in a
well-defined deterministic manner.
The list of transport protocols supported by UAVCAN is provided in the chapter 4. Non-redundant,
doubly-redundant and triply-redundant transports are supported. More information on the physical
layer and standardized physical connectivity options is provided in the chapter 6.

1.3 Maintenance of the standard data type set
The UAVCAN maintainers are charged with advancing the standard data type set based on the in-
put from adopters. This feedback is gathered via the official discussion forum3, which is open to
everyone.
The set of standard data type definitions is an important part of the specification (the data structure
description language (DSDL) and related concepts are described in section 3). With minor excep-
tions explained in the chapter 5, none of the standard data types are required to be supported by
protocol implementations. Rather, their objective is to create a standardized data exchange envi-
ronment allowing COTS4 equipment manufactured by different vendors to interoperate. Non-COTS
applicationsmay avoid any dependency on the standard data type definitions (barring the aforemen-
tioned minor exceptions), relying solely on vendor-specific data types instead.
Within the same major version, the set of standard data type definitions can be modified only in the
following ways:
• A new data type can be added, possibly with a default data type ID, as long as the default data
type ID doesn’t conflict with one of the existing data types.
• An existing data type can be modified, as long as its version number is updated accordingly and
the backward compatibility guarantees are respected.
• A major version of an existing data type can be declared deprecated.

• Once declared deprecated, the major version will be maintained for at least two more years.
• Deprecation will be indicated in the DSDL definition and announced via the discussion forum.

• An existing data type can be declared deprecated.
• Once declared deprecated, the data type will be maintained for at least twomore years. After
this period its default data type ID may be reused for an incompatible data type.
• Deprecation will be indicated in the DSDL definition and announced via the discussion forum.

A link to the repository containing the set of default DSDL definitions can be found on the official
website5.

1.4 Referenced sources
The UAVCAN specification contains references to the following sources:
• CiA 801 - Application note - Automatic bit rate detection.
• CiA 103 - Intrinsically safe capable physical layer.
• CiA 303 - Recommendation - Part 1: Cabling and connector pin assignment.
• IEEE 754 - Standard for binary floating-point arithmetic.
• ISO 11898-1 - Controller area network (CAN) - Part 1: Data link layer and physical signaling.
• ISO 11898-2 - Controller area network (CAN) - Part 2: High-speed medium access unit.

2Depending on the transport protocol.3Please refer to uavcan.org.4Commercial off-the-shelf equipment.5uavcan.org

2/60 1. Introduction

http://uavcan.org
http://uavcan.org

DRA
FT

2018.08.21 Specification v1.0
• ISO/IEC 10646 - Universal Coded Character Set (UCS).
• ISO/IEC 14882 - Programming Language C++.
• "Implementing a Distributed High-Resolution Real-Time Clock using the CAN-Bus", M. Gergeleit
and H. Streich.
• "In Search of an Understandable Consensus Algorithm (Extended Version)", Diego Ongaro and
John Ousterhout.
• semver.org - Semantic versioning specification.

1. Introduction 3/60

http://semver.org

DRA
FT

Specification v1.0 2018.08.21

2 Basic concepts
UAVCAN is a lightweight protocol designed to provide a highly reliable communication method for
aerospace and robotic applications via robust vehicle bus networks. A UAVCAN network is a de-
centralized peer network, where each peer (node) has a unique numeric identifier - node ID - ranging
from 1 to 127, inclusively. Nodes of a UAVCAN network can communicate using the following com-
munication methods:
Message broadcasting - The primary method of data exchange with one-to-all publish/subscribe
semantics.
Service invocation - The communication method for peer-to-peer request/response interactions6.
For each type of communication, a predefined set of data structures is used, where each data struc-
ture has a unique identifier - the data type ID (DTID). Additionally, every data structure definition has a
pair ofmajor andminor semantic version numbers, which enable data type definitions to evolve in ar-
bitrary ways while ensuring a comprehensible migration path in the event of backward-incompatible
changes. Some data structures are standard and defined by the protocol specification; others may
be specific to a particular application or vendor.
Since every message or service data type has its own unique data type ID, and each node in the
network has its own unique node ID, a pair of data type ID and node ID can be used to support
redundant nodes with identical functionality inside the same network.
Message and service data structures are defined using the Data Structure Description Language
(DSDL) (chapter 3). A DSDL description can be used to automatically generate the serializa-
tion/deserialization code for every defined data structure in a particular programming language.
DSDL ensures that the worst case memory footprint and computational complexity per data type
are constant and easily predictable, which is paramount for hard real-time and safety-critical
applications.
On top of the standard data types, UAVCAN defines a set of standard high-level functions including:
node health monitoring, network discovery, time synchronization, firmware update, plug-and-play
node support, and more. For more information see chapter 5.
Serialized message and service data structures are exchanged by means of the transport layer
(chapter 4), which implements automatic decomposition/reassembly of long transfers into/from
several transport frames7, allowing nodes to exchange data structures of arbitrary size.

Application
Standard functions

Vendor-specific data types (optional)Standard data types
Serialization

Transport layer
Figure 2.1: UAVCAN architectural diagram.

6Like remote procedure call (RPC).7Here and elsewhere, a transport frame means a block of data that can be atomically exchanged over the network, e.g., a CAN frame.

4/60 2. Basic concepts

DRA
FT

2018.08.21 Specification v1.0

2.1 Message broadcasting
Message broadcasting refers to the transmission of a serialized data structure over the network
to other nodes. This is the primary data exchange mechanism used in UAVCAN; it is functionally
similar to rawdata exchangewithminimal overhead, additional communication integrity guarantees,
and automatic decomposition and reassembly of long payloads across multiple transport frames.
Typical use cases may include transfer of the following kinds of data (either cyclically or on an ad-
hoc basis): sensor measurements, actuator commands, equipment status information, and more.
Information contained in a broadcast message is summarized in the table 2.1.

Table 2.1: Broadcast message properties

Property Description

Payload The serialized message data structure.
Data type ID Numerical identifier that indicates how the data structure should be in-

terpreted.
Data type major version number Semantic major version number of the data type description.
Source node ID The node ID of the transmitting node (excepting anonymousmessages).
Transfer ID A small overflowing integer that increments with every transfer of this

message type from a given node. Used for message sequence monitor-
ing, multi-frame transfer reassembly, and elimination of transport frame
duplication errors for single-frame transfers. Additionally, Transfer ID
is crucial for automatic management of redundant transport interfaces.
The properties of this field are explained in detail in the chapter 4.

2.1.1 Anonymous message broadcasting

Nodes that don’t have a unique node ID can publish anonymousmessages. An anonymousmessage
is different from a regular message in that it doesn’t contain a source node ID.
UAVCAN nodes will not have an identifier initially until they are assigned one, either statically (which
is generally the preferred option for applications where a high degree of determinism and high safety
assurances are required) or dynamically. Anonymous messages are particularly useful for the dy-
namic node ID allocation feature, which is explored in detail in the chapter 5.
Anonymous messages cannot be decomposed into multiple transport frames, meaning that their
payload capacity is limited to that of a single transport frame. More info is provided in the chapter 4.

2.2 Service invocation
Service invocation is a two-step data exchange operation between exactly two nodes: a client and
a server. The steps are8:
1. The client sends a service request to the server.
2. The server takes appropriate actions and sends a response to the client.
Typical use cases for this type of communication include: node configuration parameter update,
firmware update, an ad-hoc action request, file transfer, and similar service tasks.
Information contained in service requests and responses is summarized in the table 2.2.

8The request/response semantic is facilitated by means of hardware (if available) or software acceptance filtering and higher-layer
logic. No additional support or non-standard transport layer features are required.

2. Basic concepts 5/60

DRA
FT

Specification v1.0 2018.08.21

Table 2.2: Service request/response properties

Property Description

Payload The serialized request/response data structure.
Data type ID Numerical identifier that indicates how the data structure should be in-

terpreted.
Data type major version number Semantic major version number of the data type definition.
Client node ID Source node ID during request transfer, destination node ID during re-

sponse transfer.
Server node ID Destination node ID during request transfer, source node ID during re-

sponse transfer.
Transfer ID A small overflowing integer that increments with every call of this ser-

vice type from a given node. Used for request/response matching, multi-
frame transfer reassembly, and elimination of transport frame duplica-
tion errors for single-frame transfers. Additionally, Transfer ID is crucial
for automatic management of redundant transport interfaces. The prop-
erties of this field are explained in detail in the chapter 4.

Both request and response contain same values for all listed fields except payload, where the con-
tent is application-defined. Clients match responses with corresponding requests using the follow-
ing fields: data type ID, data type major version number, client node ID, server node ID, and transfer
ID.

6/60 2. Basic concepts

DRA
FT

2018.08.21 Specification v1.0

3 Data structure description language
The data structure description language (DSDL) is used to define data structures for exchange via
the network. DSDL definitions are used to automatically (or manually) generate the message or
service serialization/deserialization code in a particular programming language. A tool that auto-
matically generates source code from DSDL definition files is called a DSDL compiler.

3.1 File hierarchy
Each DSDL definition file specifies exactly one data structure that can be used for message broad-
casting, or a pair of structures that can be used for service invocation (request and response).
A DSDL source file is named using the short data type name, the semantic version number pair (major
and minor; see the section 3.6 for more information on data type versioning), and the default data
type ID (if needed) as shown below9:
[default DTID.]<short name>.<major version number>.<minor version number>.uavcan

Every defined data structure is contained in a namespace, whichmay in turn be nestedwithin another
namespace. A namespace that is not nested in another namespace is called a root namespace. For
example, all standard data types are contained in the root namespace uavcan, which contains nested
namespaces, such as protocol.
The namespace hierarchy is mapped directly to the file system directory structure, as shown in the
example below:
uavcan/ <- Root namespace

equipment/ <- Nested namespace

...

protocol/ <- Nested namespace

341.NodeStatus.1.0.uavcan <- Data type "uavcan.protocol.NodeStatus" v1.0 with default DTID 341

...

Timestamp.uavcan <- Data type "uavcan.Timestamp", default DTID is not assigned

Notes:
• It is not necessary to explicitly define a default data type ID for non-standard data types (i.e., for
vendor-specific or application-specific data types).

• If the default data type ID is not defined by the DSDL definition, it will need to be assigned by
the application at run time.
• All standard data types have default data type ID values defined.

• Data type names are case sensitive, i.e., names foo.Bar and foo.bar are considered different.
Names that differ only in case should be avoided, because it may cause problems on file systems
that are not case-sensitive.
• Data types may contain nested data structures.

• Some data structures may be designed for such nesting only, in which case they are not
required to have a dedicated data type ID at all (neither default nor runtime-assigned).

• Full data type name is a unique identifier of a data type constructed from the root namespace,
all nested namespaces (if any), and the short data type name, joined via the dot symbol (.), e.g.,
uavcan.protocol.file.Read.

9In this declaration, themandatory parts are surroundedwith angle brackets, and the optional parts are surroundedwith square brackets.

3. Data structure description language 7/60

DRA
FT

Specification v1.0 2018.08.21

• The total length of the full data type name must not exceed 80 characters.
• Refer to the naming rules below for the limitations imposed on the character set.

3.1.1 Service data types

Since a service invocation consists of two independent network data exchange operations, the DSDL
definition for a service must define two structures:
Request part - for the request transfer (client to server).
Response part - for the response transfer (server to client).
Both request and response structures are contained within the same DSDL definition file, separated
by a special statement as defined in the section 3.2.
Service invocation data structures cannot be nested into other structures.

3.2 Syntax
Adata structure definition is a collection of statements. Each statement is located on a separate line.
Lines are separated with the ASCII line feed character (\n, code 10), or with a sequence consisting
of the ASCII carriage return character followed by the ASCII line feed character (\r\n, code 13 and
10, respectively).
The following types of statements are defined:
Attribute - used to define entities of the data type, such as data fields and constants.
Directive - directives provide instructions to the DSDL compiler.
Service response marker - separates the request and response parts of a service data type defini-
tion.
An attribute can be either of the following:
Field - a variable that can be modified by the application and exchanged via the network.
Constant - an immutable value that does not participate in network exchange.
DSDL source files may also contain human-readable comments, which are ignored by the compiler.
A message data type definition may contain the following entities:
• Attribute definitions
• Directives
• Comments
A service data type definition may contain the following entities:
• Request part attribute definitions
• Response part attribute definitions
• Request part directives
• Response part directives
• Comments

8/60 3. Data structure description language

DRA
FT

2018.08.21 Specification v1.0
• Service response marker (always exactly one marker) (section 3.2.4)
Unless specifically stated otherwise, directives apply only to the part of the service type definition
where they are defined, not crossing the boundary of the service response marker.

3.2.1 Attribute definition

Field definitions follow one of the below specified declaration patterns:
• cast_mode field_type field_name

• cast_mode field_type[X] field_name

• cast_mode field_type[<X] field_name

• cast_mode field_type[<=X] field_name

• void_type

Constant definitions are formed using the following declaration patterns:
• cast_mode constant_type constant_name = constant_initializer

Each component of the specified patterns is reviewed in detail below.
3.2.1.1 Field type

A field type declaration can be either a primitive data type (primitive data types are defined in section
3.3) or a nested data structure.
A primitive data type is referred simply by its name, e.g., float16, bool.
A nested data structure is referred by its name and the version number, separated by the ASCII dot
(full stop) character. The name can be either the full name or the short name. The latter option is
permitted only if the referred data type is located in the same namespace as the referring data type.
The version number can be either themajor version number, or both themajor and theminor version
numbers separated by the ASCII dot (full stop) character. In the former case, the highest available
minor version number is implied. Consider the following examples, where all of the declarations refer
to the same nested data type, assuming that the referring definition is located in the namespace
uavcan.protocol:
NodeStatus.1

NodeStatus.1.0

uavcan.protocol.NodeStatus.1

uavcan.protocol.NodeStatus.1.0

A field type name can be appended with a statement in square brackets to define an array:
• Syntax [X] is used to define a static array of size exactly X items.
• Syntax [<X] is used to define a dynamic array of size from 0 to X-1 items, inclusively.
• Syntax [<=X] is used to define a dynamic array of size from 0 to X items, inclusively.
In the array definition statements above, Xmust be a valid integer literal according to the rules defined
in the section 3.2.1.4.
Observe that the maximum size of dynamic arrays is always bounded, this ensures that the worst
case memory footprint and associated computational complexity are predictable.

3.2.1.2 Field name and constant name

For a message data type, all attributes must have a unique name within the data type definition.

3. Data structure description language 9/60

DRA
FT

Specification v1.0 2018.08.21

For a service data type, all attributes must have a unique name within the same part (re-
quest/response) of the data type definition. In other words, service type attributes can have the
same name as long as they are separated by the service response marker (section 3.2.4).
Restrictions on the character set and further information are provided in the section 3.4.

3.2.1.3 Cast mode

Cast mode defines the rules of conversion from native values of a particular programming language
to serialized field values. Cast mode may be left undefined, in which case the default will be used.
Cast mode cannot be specified for nested data structures and void field types. The possible cast
modes are defined below.
• saturated - this is the default cast mode, which will be used if the attribute definition does not
specify the cast mode explicitly. For integers, it prevents an integer overflow, replacing it with satu-
ration - for example, an attempt to write 0x44 to a 4-bit field will result in a bit field value of 0x0F. For
floating point values, it prevents overflow when casting to a lower precision floating point represen-
tation - for example, 65536.0 will be converted to a float16 as 65504.0; infinity will be preserved.
• truncated - for integers, discards the excessive most significant bits; for example, an attempt to
write 0x44 to a 4-bit field will produce 0x04. For floating point values, overflow during downcasting
will produce an infinity.

3.2.1.4 Constant definition

A constant must be of a primitive (section 3.3) scalar type. Arrays and nested data structures are
not allowed as constant types.
A constant must be assigned with a constant initializer, which must be one of the following:
• Integer zero (0).
• Integer literal in base 10, starting with a non-zero character. E.g., 123, -12.
• Integer literal in base 16 prefixed with 0x. E.g., 0x123, -0x12, +0x123.
• Integer literal in base 2 prefixed with 0b. E.g., 0b1101, -0b101101, +0b101101.
• Integer literal in base 8 prefixed with 0o. E.g., 0o123, -0o777, +0o777.
• Floating point literal. Fractional part with an optional exponent part, e.g., 15.75, 1.575E1, 1575e-2,
-2.5e-3, +25E-4. Not-a-number (NaN), positive infinity, and negative infinity are intentionally not
supported in order to maximize cross-platform compatibility.
• Boolean true or false.
• Single ASCII character, ASCII escape sequence, or ASCII hex literal in single quotes. E.g., 'a',
'\x61', '\n'.
The DSDL compiler must convert the initializer expression to its constant type if the target type
can allocate the value with no data loss. If a data loss occurs (e.g., integer overflow, floating point
number decays to infinity, etc.), the DSDL compiler must refuse to compile such data type.
Note that constants do not affect the serialized data layout as they are never exchanged via the
network.

3.2.1.5 Void type

Void type is a special field type that is intended for data alignment purposes. The specification
defines 64 distinct void types as follows:
• void1 - 1 padding bit;
• void2 - 2 padding bits;

10/60 3. Data structure description language

DRA
FT

2018.08.21 Specification v1.0
• . . .
• void63 - 63 padding bits;
• void64 - 64 padding bits.
A field of a void type does not have a name and its cast mode cannot be specified. During message
serialization, all void fields are filled with zero bits; during deserialization, the contents of void fields
should be ignored.

3.2.2 Directives

A directive is a single case-sensitive word starting with an ASCII "at sign" character (@), possibly
followed by space-separated arguments:
@directive

@directive arg1 arg2

All valid directives are documented in this section.
3.2.2.1 Union

Keyword: @union.
This directive instructs the DSDL compiler that the current message or the current part of a service
data type (request or response) is a tagged union. A tagged union is a data structure thatmay encode
any one of its fields at a time. Such a data structure contains one implicit field - the union tag - that
indicates which particular field the data structure is holding at the moment. Unions are required to
have at least two fields.
This directive must be placed before the first attribute definition.

3.2.2.2 Deprecated

Keyword: @deprecated.
This directive notifies the DSDL compiler that the current data type definition is scheduled for re-
moval in the future. Note that it applies to the current definition and not to the data type as a whole,
meaning that only the current version is affected, while newer versions, if available, are not to be
considered deprecated unless also marked with this directive.
This directive must be placed before the first attribute definition. In the case of service data types,
this directive must be placed before the first attribute definition of the request part.
The DSDL compiler can leverage this directive to amend auto-generated entities with depre-
cation markers appropriate to the target programming language; e.g. [[deprecated]] in C++,
DeprecationWarning in Python, and so on.
As explained in the section 3.6, there are circumstances when the DSDL compiler is required to
assume implicit deprecation, as if the @deprecated directive was provided in the definition source.

3.2.3 Comments

A DSDL description may contain comments starting from the ASCII number sign (#) up until the end
of the current line. Comments are ignored by DSDL compilers.

3. Data structure description language 11/60

DRA
FT

Specification v1.0 2018.08.21

3.2.4 Service response marker

A service response marker separates the request and response parts of a service data type defini-
tion. The marker consists of three ASCII minus symbols (-) in a row on a dedicated line:

The request part precedes the marker, and the response part follows the marker. The presence of a
service response marker indicates that the current definition is a service type definition rather than
a message type definition.

3.3 Primitive data types
These types are assumed to be built-in. They can be directly referenced from any data type of any
namespace. The DSDL compiler should implement these types using the native types of the target
programming language. An example mapping to native types is given here for C/C++.

Table 3.1: Primitive data types

Name Bit length Possible representation in C/C++ Value range

bool 1 bool (can be optimized for bit arrays) {0, 1}

intX 2 ≤ X ≤ 64 int8_t, int16_t, int32_t, int64_t [− 2X
2 ,

2X
2 − 1]

uintX 2 ≤ X ≤ 64 uint8_t, uint16_t, uint32_t, uint64_t [0, 2X − 1]

float16 16 float ±65504

float32 32 float Approx. ±1039
float64 64 double Approx. ±10308
voidX 1 ≤ X ≤ 64 N/A N/A

3.4 Naming rules

3.4.1 Mandatory

Field names, constant names, and type namesmust contain only ASCII alphanumeric characters and
underscores [A-Za-z0-9_], and must begin with an ASCII alphabetic character [A-Za-z]. Violation
of this rule must be detected by the DSDL compiler and treated as a fatal error.

3.4.2 Optional

The following rules should be checked by the DSDL compiler, but are not mandatory; their violation
should not be treated as a fatal error:
• Field and namespace names should be all-lowercase words separated with underscores, andmay
include numbers, (e.g.: field_name_123).
• Constant names should be all-uppercase words separated with underscores, and may include
numbers (e.g.: CONSTANT_NAME_123).
• Data type names should be in camel case (first letter of each word is uppercase), andmay include
numbers (e.g.: TypeName123).

3.4.3 Advisory

The following advisory rules should be considered by the data type designer:
• Message names should be nouns and/or adjectives (e.g., BatteryStatus); service names should

12/60 3. Data structure description language

DRA
FT

2018.08.21 Specification v1.0
be imperatives (e.g., Restart, GetNodeInfo).
• The name of a message that carries a command should end with the word "Command"; the name
of a message that carries status information should end with the word "Status".
• The name of a service that is designed to obtain or to store data should begin with the word "Get"
or "Set", respectively.

3.5 Data serialization

3.5.1 General principles

A serialized data structure of type A is an ordered set of data fields joined together into a bit string
according to the DSDL definition of the data structure A. The ordering of the fields follows that of
the data structure definition.
Serialized bit strings do not have any implicit data entities such as padding or headers. Data type
developers are advised10 tomanually align fields at byte boundaries using the void data types in order
to simplify data layouts and improve the performance of serialization and deserialization routines.
Serialized fields follow the little-endian byte order11. One byte is assumed to contain exactly eight
bits. Bits are filled from the most significant bit to the least significant bit, i.e., the most significant
bit has the index 0.
Serialized data structures must be padded upon completion to one byte, with the pad bits set to
zero. Lower layers of the protocol may also add additional padding as necessary12; however, the
rules and patterns of such padding fall out of the scope of the DSDL specification.

3.5.1.1 Example

Consider the following data type definition:
1 truncated uint12 first

2 truncated int3 second

3 truncated int4 third

4 truncated int2 fourth

5 truncated uint4 fifth

It can be seen that the bit layout is rather complicated because the field boundaries do not align
with byte boundaries, which makes it a good case study. Suppose that we were to encode the above
structure with the fields assigned the following values shown in the comments:

1 truncated uint12 first # = 0xBEDA (48858)

2 truncated int3 second # = -1

3 truncated int4 third # = -5

4 truncated int2 fourth # = -1

5 truncated uint4 fifth # = 0x88 (136)

The resulting serialized byte sequence is shown on the figure 3.1.
10But not required.11Least-significant byte (LSB) first.12More on this in the chapter 4.

3. Data structure description language 13/60

DRA
FT

Specification v1.0 2018.08.21

Figure 3.1: DSDL serialization example.

3.5.2 Scalar values

The table 3.2 lists the scalar value serialization rules.
Table 3.2: Scalar value serialization

Type Bit length Binary format

bool 1 Single bit
intX X Two’s complement signed integer
uintX X Plain bits
float16 16 IEEE 754 binary16
float32 32 IEEE 754 binary32
float64 64 IEEE 754 binary64
voidX X X zero bits; ignore when decoding

3.5.3 Nested data structures

Nested data structures are serialized directly in-place, as if their DSDL definition was pasted directly
in place of their reference. No additional prefixes, suffixes, or padding is provided.

3.5.4 Fixed size arrays

Fixed-size arrays are serialized as a plain sequence of items, with each item serialized independently
in place, with no alignment. No extra data is added.
Essentially, a fixed-size array of size X elements will be serialized exactly in the same way as a
sequence of X fields of the same type in a row. Hence, the following two data type definitions will
have identical binary representation, the only actual difference being their representation for the
application if automatic code generation is used.

1 AnyType[3] array

1 AnyType item_0

2 AnyType item_1

3 AnyType item_2

3.5.5 Dynamic arrays

The following two array definitions are equivalent; the difference is their representation in the DSDL
definition for better readability:

1 AnyType[<42] a # Can contain from 0 to 41 elements

2 AnyType[<=41] b # Can contain from 0 to 41 elements

14/60 3. Data structure description language

DRA
FT

2018.08.21 Specification v1.0
A dynamic array is serialized as a sequence of serialized items prepended with an unsigned integer
field representing the number of contained items - the length field. The bit width of the length field
is a function of the maximum number of items in the array:

d log2(X + 1)e

where X is the maximum number of items in the array. For example, if the maximum number of
items is 251, the length field bit width must be 8 bits; if the maximum number of items is 1, the
length field bit width will be just a single bit.
It is recommended to manually align dynamic arrays by prepending them with void fields so that the
first element is byte-aligned, as that enables more efficient serialization and deserialization. This
recommendation does not need to be followed if the size of the array elements is not a multiple of
eight bits or if the array elements are of variable size themselves (e.g., a dynamic array of nested
types which contain dynamic arrays themselves).
Consider the following definition:

1 void2 # Padding - not required, provided as an example

2 AnyType[<42] array # The length field is 6 bits wide (see the formula)

If the array contained three elements, the resulting binary representation would be equivalent to that
of the following definition:

1 void2 # Padding - not required, provided as an example

2 uint6 array_length # Set to 3, because the array contains three elements

3 AnyType item_0

4 AnyType item_1

5 AnyType item_2

3.5.6 Unions

Similar to dynamic arrays, tagged unions are serialized as two subsequent entities: the union tag
followed by the selected field, with no additional data.
The union tag is an unsigned integer, the bit length of which is a function of the number of fields in
the union:

d log2 Ne

where N is the number of fields in the union. The value serialized in the union tag is the index of the
selected field. Field indexes are assigned according to the order in which they are defined in DSDL,
starting from zero; i.e. the first defined field has the index 0, the second defined field has the index
1, and so on.
Constants are not affected by the union tag.
It is recommended to manually align unions when they are nested into outer data types by prepend-
ing them with void fields so that the elements are byte-aligned, as that enables more efficient seri-
alization and deserialization.
Consider the following example:

1 @union # In this case, the union tag requires 2 bits

2 uint16 FOO = 42 # A regular constant attribute

3 uint16 a # Index 0

4 uint8 b # Index 1

5 float64 c # Index 2

6 uint32 BAR = 42 # Another regular constant

3. Data structure description language 15/60

DRA
FT

Specification v1.0 2018.08.21

In order to encode the field b, which, according to the definition, has the data type uint8, the union
tag should be assigned the value 1. The following structure will have an identical layout:

1 uint2 tag # Set to 1

2 uint8 b # The actual data

If the value of b was 7, the resulting serialized byte sequence would be (in binary):

01︸︷︷︸tag

field b︷ ︸︸ ︷
000001 11 000000︸ ︷︷ ︸

padding

3.6 Data type compatibility and versioning

3.6.1 Rationale

As can be seen from the preceding sections, the concept of data type is a cornerstone feature of
UAVCAN, which sets it apart from many competing solutions.
In order to be able to interoperate successfully, all nodes connected to the same bus must use
compatible definitions of all employed data types. This section is dedicated to the concepts of data
type compatibility and data type versioning.
A data type is a named set of data structures defined in DSDL. As has been explained above, in
the case of message data types, the set consists of just one data structure, whereas in the case of
service data types the set is a pair of request and response data structures.
Data type definitions may evolve over time as they are refined to better address the needs of their
applications. In order to formalize the data type evolution process with respect to the data type com-
patibility concerns, UAVCAN introduces two concepts: bit compatibility and semantic compatibility,
which are discussed below.

3.6.2 Bit compatibility

3.6.2.1 Definition

For the purposes of the definition that follows, a valid serialized13 representation of a data structure
A is a bit sequence that satisfies the serialization constraints of A.
Serialization constraints limit the set of valid bit sequences according to the data type definition. A
bit sequence meets the serialization constraints if all of the following conditions are satisfied14:
• Each dynamic array length field contains a valid value; i.e. the value of the length field is less than
the maximum number of values in the array.
• Each union tag field contains a valid value; i.e. the value of the tag field is less than the number of
alternatives in the union.
• The bit sequence is sufficiently long.
A data type definition A is bit-compatible with a data type definition B if and only if the set of valid
serialized representations of A is a superset of that of B.
A and B are said to be mutually compatible if A is compatible with B and B is compatible with A.

13The serialization rules are reviewed in detail in the section 3.5.14Observe that serialization constraints are not affected by void-typed fields, because per the serialization rules, the values of void-typed
fields are to be set to zero during serialization and to be ignored during deserialization.

16/60 3. Data structure description language

DRA
FT

2018.08.21 Specification v1.0
3.6.2.2 Example

A fixed-size data structure is a structure that does not contain dynamic arrays, unions, or other struc-
tures that contain dynamic arrays or unions within themselves. As such, the bit length of an seri-
alized representation of a fixed-size structure is constant, regardless of the data contained in the
structure. Conversely, any data structure that is not fixed-size is called a variable-size data structure.
It stands to reason that any data structure definition is compatible with itself. The following two
definitions are bit-compatible as well:

1 uint32 a

2 uint32 b

1 uint64 c

It should be observed that bit-compatibility is invariant to the complexity and the level of nesting of
the data structure. From the above provided definitions follows that two fixed-size data structures
are bit-compatible if the bit lengths of their respective serialized representations are equal.
Consider the following example data type definition; assume that its full data type name is
demo.Pair:

1 # demo.Pair

2 float16 first

3 float16 second

Further, let the following be description of the data type demo.PairVector:
1 # demo.PairVector

2 demo.Pair[3] vector

Then the following two definitions are bit-compatible:
1 demo.PairVector pair_vector

1 float16 first_0 # pair_vector.vector[0].first

2 float16 second_0 # pair_vector.vector[0].second

3 float16 first_1 # pair_vector.vector[1].first

4 float16 second_1 # pair_vector.vector[1].second

5 float16 first_2 # pair_vector.vector[2].first

6 float16 second_2 # pair_vector.vector[2].second

The latter definition in the example above is a flattened unrolled form of the former definition. As
such, in that particular example, both definitions can be used interchangeably; data serialized using
one definition can still be meaningful if deserialized using the other definition. However, it is also
possible to construct bit-compatible definitions that are not interchangeable:

1 float16 a

2 float32 b

1 float32 a

2 float16 b

3. Data structure description language 17/60

DRA
FT

Specification v1.0 2018.08.21

Even though the above definitions are bit-compatible, one cannot be substituted with the other. The
problem of functional equivalency is addressed by the concept of semantic compatibility, explored
in the section 3.6.3.
The examples above were focused on fixed-size structures. In the case of fixed-size structures, if
A is compatible with B, the reverse is also true. This does not hold for variable-size structures.
Consider the following example:

1 uint8[<=10] a

1 void1 # The maximum array length is twice lower, so the length prefix is one bit shorter.

2 uint16[<=5] a # The 1-bit void field is needed to ensure identical bit offset of the array.

For the first definition, it is evident that since it contains one dynamic array with 11 possible length
values15, and the array type is a fixed-size structure16, there are 11 possible bit length values for the
first definition.
Likewise, for the second definition, there are 6 possible bit length values.
Since both arrays have the same bit offset from the beginning of the bit string, and taking into ac-
count the fact that the element sizes differ by an integral factor, the set of all possible serialized
representations of the second definition is a subset of those of the first definition. Possible serial-
ized representations are summarized in the table 3.3, where the columns labeled "First definition"
and "Second definition" contain the number of elements in the respective arrays.

Table 3.3: Variable-size data type compatibility example

Bit length First definition Second definition

4 0 0
12 1 invalid
20 2 1
28 3 invalid
36 4 2
44 5 invalid
52 6 3
60 7 invalid
68 8 4
76 9 invalid
84 10 5

The table illustrates the fact that the first definition is compatible with the second definition, but the
reverse is not true.
Complicated scenarios are possible when a bit belonging to a scalar field is handed over to a con-
strained field such as an array length field or a union tag field. Some interesting examples are shown
in the table 3.4, together with a set of valid serialized representation patterns. Remember that the
bits belonging to void-typed fields are ignored during deserialization.

15Which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.16Built-in types can be considered a special case of fixed-size data structures.

18/60 3. Data structure description language

DRA
FT

2018.08.21 Specification v1.0
Table 3.4: Complex bit compatibility examples

A B C D E

Definition
void1 bool x void1 bool x bool[<5] a

bool[<3] a bool[<3] a bool[<4] a bool[<4] a

Valid
serialized
representations

000 000 000

001a 001a 001a

010aa 010aa 010aa

011aaa 011aaa

100 100 100aaaa

101a 101a

110aa 110aa

111aaa

Compatible with B A A, B, D A, B, C (none)

3.6.3 Semantic compatibility

3.6.3.1 Definition

A data structure definition A is semantically compatible with a data structure definition B if an ap-
plication that correctly uses A exhibits a functionally equivalent behavior to an application that cor-
rectly uses B. The property of semantic compatibility is commutative.

3.6.3.2 Example

Despite using different binary layouts, the following two definitions are semantically compatible and
also bit-compatible:

1 uint16 FLAG_A = 1

2 uint16 FLAG_B = 256

3 uint16 flags

1 uint8 FLAG_A = 1

2 uint8 FLAG_B = 1

3 uint8 flags_a

4 uint8 flags_b

Therefore, the definitions can be used interchangeably17.
3.6.4 Data type versioning

3.6.4.1 Versioning principles

Every data type definition has a pair of version numbers - amajor version number and aminor version
number, following the principles of semantic versioning.
For the purposes of the following definitions, a release of a data type definition stands for the dis-
closure of the data type definition to the intended users or to the public, or for the commencement
of usage of the data type definition in a production system.

17It should be noted here that due to different set of fields and constants, the source code auto-generated from the provided defini-
tions may be not drop-in replaceable, requiring changes in the application. However, application compatibility is orthogonal to data type
compatibility.

3. Data structure description language 19/60

DRA
FT

Specification v1.0 2018.08.21

In order to ensure a deterministic application behavior and ensure a robust migration path as data
type definitions evolve, UAVCAN requires that all data type definitions that share the same major
version number greater than zero must be semantically compatible with each other and mutually
bit-compatible with each other.
Observe that the data type name or its ID do not affect its compatibility. Regardless, the default
data type ID and/or the name of a data type should not be changed after its release, as that would
essentially construe the release of a new data type.
In order to ensure predictable and repeatable behavior of applications that leverage UAVCAN, the
standard requires that once a data type definition is released, it cannot undergo any modifications
to its attributes or directives anymore. Essentially, released data type definitions are to be considered
immutable excepting comments and whitespace formatting.
Therefore, substantial modifications of released data types are only possible by releasing new defi-
nitions of the same data type. If it is desired and possible to keep the samemajor version number for
a new definition of the data type, the minor version number of the new definition shall be one greater
than the newest existing minor version number before the new definition is introduced. Otherwise,
the major version number shall be incremented by one and the minor version shall be set to zero.
An exception to the above rules applies when the major version number is zero. Data type defini-
tions bearing the major version number of zero are not subjected to any compatibility requirements.
Released data type definitions with themajor version number of zero are permitted to change in arbi-
trary ways without any regard for compatibility. It is recommended, however, to follow the principles
of immutability, releasing every subsequent definition with the minor version number one greater
than the newest existing definition.

3.6.4.2 Major version release constraints

The DSDL specification limits the number of coexisting major data type versions in order to simplify
support of the data type versioning system at the transport layer and simplify the management of
legacy data type definitions. As such, at any given moment, the difference between the highest
released major version number and the lowest released major version number of any given data
type must not exceed 3.
For example, the following set of released data type definition versions is valid and permissible: {0.1,
0.2, 0.3, 1.0, 1.1, 2.0, 2.1, 2.2, 3.0}, because the difference between the newest releasedmajor version
(3) and the oldest released major version (0) does not exceed 3. The set of the minor versions is
not subjected to any constraints, and as such, there are no limits on the set of concurrently released
minor versions.
Continuing with the above example, if it were necessary to release a newer data type definition under
a new major version of 4, the oldest major version of 0 would have to be removed first. Otherwise,
the maximum major version number difference constraint would be violated. Observe that the ac-
tual number of published major versions is irrelevant; the constraint only applies to the difference
between the highest and the lowest released major versions. For example, shall the version 2 be
deprecated and removed while the versions 0 and 1 were still around, the requirement to remove the
version 0 before publishing the version 4 would still hold. The resulting set of versions may then
look like this: {1.0, 1.1, 3.0, 4.0}.
If the difference between the highest and the lowest available major version numbers exceeds
2, the DSDL compiler must assume that the oldest available definition is marked with an implicit
@deprecated directive (section 3.2.2), even if it is not explicitly provided in the definition.

20/60 3. Data structure description language

DRA
FT

2018.08.21 Specification v1.0
If the difference between the highest and the lowest available major version numbers exceeds 3, the
DSDL compiler must refuse to process the data type and abort with an error.

3.6.4.3 Data type version selection

There are two aspects to the problem of data type version selection: compile-time behavior and
runtime behavior. They are explored in this section.
As far as compile-time data type version selection is concerned, the DSDL compiler is required to
compile every available major data type version separately, allowing the application to choose any
available major version at runtime. However, there may be more than one minor version available
per major version; the DSDL compiler must resolve this ambiguity by always selecting the newest
available minor version per major version at the time of compilation.
For example, consider the following set of data type definition versions: {0.1, 0.2, 0.3, 1.0, 1.1, 2.0, 2.1,
2.2, 3.0}. As there are four different major data type versions (0, 1, 2, and 3), the DSDL compiler will
make four independent definitions available for the application. Following the principle of choosing
the newest available minor version, the resulting set of definitions available at runtime will be as
follows: {0.3, 1.1, 2.2, 3.0}.
Seeing as the minor version ambiguity is resolved statically, this information becomes irrelevant for
the protocol at runtime. While implementations can keep theminor version information for diagnos-
tic purposes, it is completely unnecessary at the transport layer. As such, the transport layer (which
is specified in the chapter 4) does not concern itself with the minor data type version information,
whereas the major data type version is attached to every transfer.
The implication is that upon reception of a transfer, the node will use the appropriate data type
definition according to the major data type version information attached to the transfer; whereas
the minor versions used by the emitter and the receiver may mismatch. The possibility of a minor
version mismatch is acceptable because, by definition, all data type definitions sharing the same
major version number are mutually semantically compatible.
When initiating a data exchange (e.g. broadcasting a message or invoking a service), the node is
free to choose the major data type version freely, according to its own application logic. Nodes that
provide services (i.e., servers) must respond to requests using the same major service data type
version that was used in the request. Again, the minor version number may mismatch, but by the
compatibility requirement this is acceptable.

3.6.4.4 Versioning example

Suppose a vendor named Sirius Cybernetics Corporation was contracted to design a cryopod man-
agement data bus for a colonial spaceship Golgafrincham B-Ark. Having consulted with applicable
specifications and standards, an engineer came up with the following definition of a cryopod status
message type (named sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status):

1 # sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.0.1

2 float16 internal_temperature # [kelvin]

3 float16 coolant_temperature # [kelvin]

4 # Status flags in the low byte

5 uint16 FLAG_COOLING_SYSTEM_A_ACTIVE = 1

6 uint16 FLAG_COOLING_SYSTEM_B_ACTIVE = 2

7 # Error flags in the high byte

8 uint16 FLAG_PSU_MALFUNCTION = 8192

9 uint16 FLAG_OVERHEATING = 16384

3. Data structure description language 21/60

DRA
FT

Specification v1.0 2018.08.21

10 uint16 FLAG_CRYOBOX_BREACH = 32768

11 # Storage for the above defined flags

12 uint16 flags

The definition has been deployed to the first prototype for initial lab tests. Since the definition was
experimental, the major version number was set to zero, to signify the tentative nature of the defini-
tion. Suppose that upon completion of the first trials it was identified that the units must track their
power consumption in real time, for each of the three redundant power supplies independently. The
definition has been amended appropriately.
It is easy to see that the amended definition shown below is neither semantically compatible nor bit-
compatible with the original definition; however, it shares the same major version number of zero,
because the backward compatibility rules do not apply to zero-versioned data types to allow for
low-overhead experimentation before the system is fully deployed and fielded.

1 # sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.0.2

2 truncated float16 internal_temperature # [kelvin]

3 truncated float16 coolant_temperature # [kelvin]

4 saturated float32 power_consumption_0 # Power consumption by the redundant PSU 0 [watt]

5 saturated float32 power_consumption_1 # likewise for PSU 1

6 saturated float32 power_consumption_2 # likewise for PSU 2

7 # Status flags in the low byte

8 uint16 FLAG_COOLING_SYSTEM_A_ACTIVE = 1

9 uint16 FLAG_COOLING_SYSTEM_B_ACTIVE = 2

10 # Error flags in the high byte

11 uint16 FLAG_PSU_MALFUNCTION = 8192

12 uint16 FLAG_OVERHEATING = 16384

13 uint16 FLAG_CRYOBOX_BREACH = 32768

14 # Storage for the above defined flags

15 uint16 flags

The last definition was deemed sufficient and deployed to the production system under the version
number of 1.0: sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.1.0.
Having collected empirical data from the fielded systems, the Sirius Cybernetics Corporation has
identified a shortcoming in the v1.0 definition, which was corrected in an updated definition. Since
the updated definition, which is shown below, is mutually semantically compatible18 with v1.0, the
major version number was kept the same and the minor version number was incremented by one:

1 # sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.1.1

2 saturated float16 internal_temperature # [kelvin]

3 saturated float16 coolant_temperature # [kelvin]

4 saturated float32[3] power_consumption # Power consumption by the PSU

5 # Status flags

6 uint8 STATUS_FLAG_COOLING_SYSTEM_A_ACTIVE = 1

7 uint8 STATUS_FLAG_COOLING_SYSTEM_B_ACTIVE = 2

8 uint8 status_flags

9 # Error flags

10 uint8 ERROR_FLAG_PSU_MALFUNCTION = 5

18The topic of data serialization is explored in detail in the section 3.5.

22/60 3. Data structure description language

DRA
FT

2018.08.21 Specification v1.0
11 uint8 ERROR_FLAG_OVERHEATING = 6

12 uint8 ERROR_FLAG_CRYOBOX_BREACH = 7

13 uint8 error_flags

Since the definitions v1.0 and v1.1 aremutually semantically compatible, UAVCAN nodes using either
of them can successfully interoperate on the same bus.
Suppose further that at some point a newer version of the cryopodmodule was released, with higher
precision temperature sensors. The definition has to be updated accordingly to use float32 for the
temperature fields instead of float16. Seeing as that change breaks the binary compatibility, the
major version number has to be incremented by one, and the minor version number has to be reset
back to zero:

1 # sirius_cyber_corp.golgafrincham_b_ark.cryopod.Status.2.0

2 float32 internal_temperature # [kelvin]

3 float32 coolant_temperature # [kelvin]

4 float32[3] power_consumption # Power consumption by the PSU

5 # Status flags

6 uint8 STATUS_FLAG_COOLING_SYSTEM_A_ACTIVE = 1

7 uint8 STATUS_FLAG_COOLING_SYSTEM_B_ACTIVE = 2

8 uint8 status_flags

9 # Error flags

10 uint8 ERROR_FLAG_PSU_MALFUNCTION = 5

11 uint8 ERROR_FLAG_OVERHEATING = 6

12 uint8 ERROR_FLAG_CRYOBOX_BREACH = 7

13 uint8 error_flags

Now, nodes using v1.0, v1.1, and v2.0 definitions can still coexist on the same network, but they are
not guaranteed to understand each other unless they support all of the used data type definitions.
In practice, nodes that need to maximize their compatibility are likely to employ all existing major
versions of each used data type. If there are more than one minor versions available, the highest
minor version within the major version should be used, to take advantage of the latest changes
in the data type definition. It is also expected that in certain scenarios some nodes may resort
to publishing the same message type using different major versions concurrently to circumvent
compatibility issues (in the example reviewed here that would be v1.1 and v2.0).

3.7 Data type ID
Whenever a data structure is transferred over the bus, it is accompanied by a non-negative integer
- a data type ID. The data type ID (together with the major version number, which is also exchanged
over the bus together with the data type ID) is used by receiving nodes to determine which data type
definition to use to process the received data structure. The data type ID value does not affect data
type compatibility.
It stands to reason that in order to be able to interoperate successfully, every node connected to the
bus must use identical mapping between data types and their identifiers.
There are two kinds of data types: message data types and service data types. Each kind has an
independent set of data type identifiers. Each kind has a reserved subset which is used for standard
data type definitions, and a dedicated subset for vendor-specific data type definitions. More info on
the reserved subsets is provided in the chapter 5. The permitted ranges of data type ID values are

3. Data structure description language 23/60

DRA
FT

Specification v1.0 2018.08.21

specified in the table 3.5.
Table 3.5: Data type ID ranges per data kind

Kind Minimum Maximum Note

Message type 0 65535 Representable as 16-bit unsigned integer (2 octets). The range of
message data type ID usable with anonymousmessage transfers
is further limited; more info in the chapter 4.

Service type 0 255 Representable as 8-bit unsigned integer (1 octet).
All UAVCAN nodes must use the same data type ID mapping for the standard data types, as defined
by the default data type ID values provided for each of the standard data types. Since the standard
data type ID mapping is immutable, all standard-compliant nodes can always use standard data
types conflict-free.
Vendor-specific data types, however, do not enjoy the lack of conflict guarantee, because by virtue
of being vendor-specific, such data types cannot use a global fixed agreed upon mapping like the
standard data types do. As such, whenever vendor-specific data types are used, there is always a
risk that different nodes may map different data types to the same data type ID.
It is the responsibility of the system integrator to ensure that if vendor-specific data types are used,
the data type ID mappings are configured on all nodes identically. Vendors of UAVCAN equipment
must provide the integrator with a way to change the data type ID of any vendor-specific data type
leveraged by the node19.

3.8 Standard and vendor-specific data types

3.8.1 Standard data type repository

The DSDL definitions of the standard data types are available in the official DSDL repository, which
is linked from the project homepage at uavcan.org.
Information concerning development andmaintenance of the standard DSDL definitions is available
in the chapter 1.

3.8.2 Vendor-specific data types

Vendors must define their specific data types in a separate namespace, which should typically be
named tomatch their company name. Separation of the vendor’s definitions into a dedicated names-
pace ensures that no nameconflictswill occur in systems that utilize vendor-specific data types from
different providers. Note that, according to the naming requirements, the name of a DSDL names-
pace must start with an alphabetic character; therefore, a company whose name starts with a digit
will have to resort to a mangled name, e.g. by moving the digits towards the end of the name, or by
spelling the digits in English (e.g. 42 - fortytwo).
Defining vendor-specific data typeswithin the standard namespace (uavcan.) is explicitly prohibited.
The standard namespace will always be used only for standard data types.
Generally speaking, it is desirable for "generic" data types to be included into the standard set. Ven-
dors should strive to design their data types as generic and as independent of their specific use
cases as possible. The SI system of measurement units should be preferred; data type definitions
that make unnecessary deviations from SI will not be accepted into the standard set.

19Nodes that fail to provide a way of altering the data type ID mapping for vendor-specific data types cannot be considered standard-
compliant.

24/60 3. Data structure description language

http://uavcan.org

DRA
FT

2018.08.21 Specification v1.0

4 Transport layer
This chapter defines the transport layer of UAVCAN. First, general implementation-agnostic con-
cepts are introduced. Afterwards, they are further defined for each supported transport medium,
e.g., CAN FD.

4.1 The concept of transfer
A transfer is an act of data transmission between nodes. A transfer that is addressed to all nodes
except the source node is a broadcast transfer. A transfer that is addressed to one particular node
is a unicast transfer. UAVCAN defines the following types of transfers:
Message transfer - a broadcast transfer that contains a serialized message.
Service transfer - a unicast transfer that contains either a service request or a service response.
Both message and service transfers can be further distinguished between:
Single-frame transfer - a transfer that is entirely contained in a single transport frame. The amount
of data that can be exchanged using single-frame transfers is dependent on the transport protocol
in use.
Multi-frame transfer - a transfer that has its payload distributed overmultiple transport frames. The
UAVCAN protocol stack handles transfer decomposition and reassembly automatically.
The following properties are common to all types of transfers:

Table 4.1: Common transfer properties

Property Description

Payload The serialized data structure.
Data type ID A numerical identifier that indicates how the data structure should be

interpreted.
Data type major version number Semantic major version number of the data type definition.
Source node ID The node ID of the transmitting node (excepting anonymous message

transfers).
Priority A non-negative integer value that defines the transfer urgency. Higher

priority transfers can preempt lower priority transfers.
Transfer ID A small overflowing integer that increments with every transfer of this

data type from a given node.
4.1.1 Message broadcasting

Message broadcasting is the main method of communication between UAVCAN nodes.
A broadcast message is carried by a single message transfer that contains the serialized message
data structure. A broadcast message does not contain any additional fields besides those listed in
the table 4.1.
In order to broadcast a message, the broadcasting node must have a node ID that is unique within
the network. An exception applies to anonymous message broadcasts.

4. Transport layer 25/60

DRA
FT

Specification v1.0 2018.08.21

4.1.1.1 Anonymous message broadcasting

An anonymous message transfer is a transfer that can be sent from a node that does not have a
node ID. This sort ofmessage transfer is especially useful for dynamic node ID allocation (a high-level
concept that is reviewed in detail in the chapter 5).
A node that does not have a node ID is said to be in passive mode. Passive nodes are unable to
initiate regular data exchanges, but they can listen to the data exchanged over the bus, and they can
emit anonymous message transfers.
An anonymousmessage has the same properties as a regular message, except for the source node
ID, which in the case of anonymous message transfers is always assumed to be zero.
An anonymous transfer can only be a single-frame transfer. Multi-frame anonymousmessage trans-
fers are not allowed. This restriction must be kept in mind when designing message data types
intended for use with anonymous message transfers: when used with anonymous transfers, the
whole message must fit into a single transport frame; however, the same data type can be used
with multi-frame regular (non-anonymous) transfers.
The set of message type ID values that can be used with anonymous messages may be limited
depending on the transport in use (section 4)20. It is guaranteed, however, that the message data
type ID in the range from 0 to 7, inclusively, are always available for use with anonymous messages
regardless of the transport in use.
Note that anonymous messages require specific arbitration rules and have restrictions on the ac-
ceptable data type ID values. The details are explained later in this chapter.

4.1.1.2 Message timing requirements

Generally, a message transmission should be aborted if it cannot be completed in 1 second. Ap-
plications are allowed to deviate from this recommendation, provided that every such deviation is
explicitly documented. It is expected that high-frequency high-priority messages may opt for lower
timeout values, whereas low-priority data may opt for higher timeout values to account for the net-
work congestion.

4.1.2 Service invocation

A service invocation sequence consists of two related service transfers:
Service request transfer - from the node that invokes the service - the client - to the node that pro-
vides the service - the server.
Service response transfer - once the server node receives the service request and processes it, it
sends a response transfer back to the client node.
The tables 4.2 and 4.3 describe the properties of service request and service response transfers,
respectively.
Both the client and the server must have node ID values that are unique within the network; service
invocation is not available to passive nodes.

20This is considered to be an acceptable limitation because anonymous transfers are intended for an extremely limited set of use cases.

26/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
Table 4.2: Service request transfer properties

Property Description

Payload The serialized service request data structure.
Data type ID See the table 4.1.
Data type major version number See the table 4.1.
Source node ID The node ID of the client (the invoking node).
Destination node ID The node ID of the server (the invoked node).
Priority See the table 4.1.
Transfer ID An integer value that:

1. allows the server to distinguish the request from other requests from
the same client;
2. allows the client to match the response with its request.

Table 4.3: Service response transfer properties

Property Description

Payload The serialized service response data structure.
Data type ID Same value as in the request transfer.
Data type major version number Same value as in the request transfer.
Source node ID The node ID of the server (the invoked node).
Destination node ID The node ID of the client (the invoking node).
Priority Same value as in the request transfer.
Transfer ID Same value as in the request transfer.

4.1.2.1 Service timing requirements

Applications should follow the service invocation timing recommendations specified below. Appli-
cations are allowed to deviate from these recommendations, provided that every such deviation is
explicitly documented.
• Service transfer transmission should be aborted if does not complete in 1 second.
• The client should stopwaiting for a response from the server if one has not arrivedwithin 1 second.
If the server uses a significant part of the timeout period to process the request, the client might
drop the request before receiving the response. It is recommended to ensure that the server will be
able to process any request in less than 0.5 seconds.

4.1.3 Transfer prioritization

UAVCAN transfers are prioritized by means of the transfer priority property, which allows at least
eight different priority levels for all types of transfers. The priority level mnemonics are specified in
the following list. The mapping between the mnemonics and actual numeric identifiers is transport-
dependent.
• Foreground (highest)
• Super
• Urgent
• High
• Normal

4. Transport layer 27/60

DRA
FT

Specification v1.0 2018.08.21

• Low
• Diagnostic
• Background (lowest)
Transfers with higher priority levels preempt transfers with lower priority levels, delaying their trans-
mission until there are no more higher priority transfers to exchange.

4.2 Transfer emission

4.2.1 Transfer ID computation

The transfer ID is a small unsigned integer value in the range from 0 to 31, inclusive, that is provided
for every transfer. This value is crucial for many aspects of UAVCAN communication; specifically:
Message sequence monitoring - the continuously increasing transfer ID allows receiving nodes to
detect lost messages and detect when a message stream from any remote node is interrupted.
Service response matching - when a server responds to a request, it uses the same transfer ID for
the response as in the request, allowing any node to emit concurrent requests to the same server
while being able to match each response with the corresponding request.
Transport frame deduplication - for single-frame transfers, the transfer ID allows receiving nodes
to work around the transport frame duplication problem21 (multi-frame transfers combat the frame
duplication problem using the toggle bit).
Multi-frame transfer reassembly - more info is provided in the section 4.3.
Automatic management of redundant interfaces - the transfer ID parameter allows the UAVCAN
protocol stack to perform automatic switchover to a back-up interface shall the primary interface
fail. The switchover logic can be completely transparent to the application, joining several indepen-
dent redundant physical transports into a highly reliable single virtual communication channel.
For message transfers and service request transfers the ID value should be computed as described
below. For service response transfers this value must be directly copied from the corresponding
service request transfer.
The logic to compute the transfer ID relies on the concept of transfer descriptor. A transfer descrip-
tor is a set of properties that identify a particular set of transfers that originate from the same node,
share the same data type ID, same data type major version number, and the same type. The proper-
ties that constitute a transfer descriptor are listed below:
• Transfer type (message broadcast, service request, etc.).
• Data type ID.
• Data type major version number.
• Source node ID.
• Destination node ID (only for unicast22 transfers).
Every non-passive node must maintain a mapping from transfer descriptors to transfer ID counters.
This mapping is referred to as the transfer ID map.

21This is a well-known issue that can be observed with certain transports such as CAN bus – a frame that appears valid to the receiver
may under certain (rare) conditions appear invalid to the transmitter, triggering the latter to retransmit the frame, in which case it will be
duplicated on the side of the receiver. Sequence counting mechanisms such as the transfer ID or the toggle bit (both of which are used in
UAVCAN) allow applications to circumvent this problem.22I.e., service requests and service responses.

28/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
Whenever a node needs to emit a transfer, it will query its transfer IDmap for the appropriate transfer
descriptor. If the map does not contain such entry, a new entry will be created with the transfer ID
counter initialized to zero. The node will use the current value of the transfer ID from the map for the
transfer, and then the value stored in the map will be incremented by one. When the stored transfer
ID exceeds its maximum value, it will roll over to zero.
It is expected that some nodes will need to publish certain transfers aperiodically or on an ad-hoc
basis, thereby creating unused entries in the transfer ID map. In order to avoid keeping unused
entries in themap, the nodes are allowed, but not required, to remove entries from themap that were
not used for more than 2 seconds. Therefore, it is possible that a node may publish a transfer with
an out-of-order transfer ID value, if the previous transfer of the same descriptor has been published
more than 2 seconds earlier.

4.2.2 Single frame transfers

If the size of the entire transfer payload does not exceed the space available for payload in a single
transport frame, the whole transfer will be contained in one transport frame. Such transfer is called
a single-frame transfer.
Single frame transfers are more efficient than multi-frame transfers in terms of throughput, latency,
and data overhead.

4.2.3 Multi-frame transfers

Multi-frame transfers are used when the size of the transfer payload exceeds the space available for
payload in a single transport frame.
Two new concepts are introduced in the context ofmulti-frame transfers, both of which are reviewed
below in detail:
• Transfer CRC23.
• Toggle bit.
In order to emit a multi-frame transfer, the node must first compute the CRC for the entirety of the
transfer payload. The node appends the CRC value at the end of the transfer payload, and then emits
the resulting byte set in chunks as an ordered sequence of transport frames (i.e. the last transport
frame contains the last bytes of the payload and the transfer CRC). The data field of all transport
frames of a multi-frame transfer, except the last one, must be fully utilized.
All frames of a multi-frame transfer should be pushed to the transmission queue at once, in the
proper order from the first frame to the last frame. Explicit gap time between transport frames
belonging to the same transfer should not be introduced.

4.2.3.1 Transfer CRC

The objective of the transfer CRC is to allow receiving nodes to validate correctness of multi-frame
transfer reassembly. It should be understood that the transfer CRC is not intended for bit-level data
integrity checks, as that must be managed by the transport layer implementation on a per-frame
basis. As such, the transfer CRC allows receiving nodes to ensure that all of the frames of a multi-
frame transfer were received, all of the received frames were reassembled in the correct order, and
that all of the received frames belong to the same multi-frame transfer.
The transfer CRC is computed over the entire payload of the transfer. Certain transport implemen-

23CRC stands for "cyclic redundancy check", an error-detecting code added to data transmissions to reduce the likelihood of undetected
data corruption.

4. Transport layer 29/60

DRA
FT

Specification v1.0 2018.08.21

tations, such as CAN FD, may require a short sequence of padding bytes to be added at the end of
the transfer payload due to low granularity of the frame payload length property; in that case, the
padding bytes are not to be included in the CRC computation.
The resulting CRC value is appended to the transfer in the big-endian byte order (most significant
byte first), in order to take advantage of the CRC residue check intrinsic to this algorithm.
The transfer CRC algorithm specification is provided in the table 4.4.

Table 4.4: Transfer CRC algorithm parameters

Property Value

Name CRC-16/CCITT-FALSE
Initial value 0xFFFF

Polynomial 0x1021

Reverse No
Output XOR 0

Residue 0

Check (49, 50, . . . , 56, 57)→ 0x29B1

The following code snippet provides an implementation of the transfer CRC algorithm in C++.

30/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
1 // UAVCAN transfer CRC algorithm implementation in C++.

2 // License: CC0, no copyright reserved.

3 #include <iostream>

4 #include <cstdint>

5 #include <cstddef>

6 class TransferCRC

7 {

8 std::uint16_t value_ = 0xFFFFU;

9 public:

10 void add(std::uint8_t byte)

11 {

12 value_ ^= static_cast<std::uint16_t>(byte) << 8U;

13 for (std::uint8_t bit = 8; bit > 0; --bit)

14 {

15 if ((value_ & 0x8000U) != 0)

16 {

17 value_ = (value_ << 1U) ^ 0x1021U;

18 }

19 else

20 {

21 value_ = value_ << 1U;

22 }

23 }

24 }

25 void add(const std::uint8_t* bytes, std::size_t length)

26 {

27 while (length-- > 0)

28 {

29 add(*bytes++);

30 }

31 }

32 [[nodiscard]] std::uint16_t get() const { return value_; }

33 };

34 int main()

35 {

36 TransferCRC crc;

37 crc.add(reinterpret_cast<const std::uint8_t*>("123456789"), 9);

38 std::cout << std::hex << "0x" << crc.get() << std::endl; // Outputs 0x29B1

39 return 0;

40 }

4.2.3.2 Toggle bit

The toggle bit is a property defined at the transport frame level. Its purpose is to detect and avoid
transport frame duplication errors in multi-frame transfers24.
The toggle bit of the first transport frame of a multi-frame transfer must be set to one. The toggle
bits of the following transport frames of the transfer must alternate, i.e., the toggle bit of the second
transport frame must be zero, the toggle bit of the third transport frame must be one, and so on.
For single-frame transfers, the toggle bitmust be set to one or removed completely, whichever option
works best for the particular transport.
Transfers where the initial value of the toggle bit is zero must be ignored. The initial state of the
toggle bit may be inverted in the future revisions of the protocol to facilitate automatic protocol

24In single-frame transfers, transport frame deduplication is based on the transfer ID counter.

4. Transport layer 31/60

DRA
FT

Specification v1.0 2018.08.21

version detection.
4.2.4 Redundant interface support

In configurationswith redundant bus interfaces, nodes are required to submit every outgoing transfer
to the transmission queues of all available redundant interfaces simultaneously. It is recognized that
perfectly simultaneous transmission may not be possible due to different utilization rates of the
redundant interfaces and different phasing of their traffic; however, that is not an issue for UAVCAN.
If perfectly simultaneous frame submission is not possible, interfaces with lower numerical index
should be handled in the first order.
An exception to the above rule applies if the payload of the transfer depends on some properties of
the interface through which the transfer is emitted. An example of such a special case is the time
synchronization algorithm leveraged by UAVCAN (documented in the chapter 5 of the specification).

4.3 Transfer reception

4.3.1 Transfer ID comparison

The following explanation relies on the concept of the transfer ID forward distance. Transfer ID for-
ward distanceF is a function of two transfer ID values,A andB, that defines the number of increment
operations that need to be applied to A so that A′ = B, assuming modulo 32 arithmetic:

A+ F = B (mod 32)

Consider the examples provided in the table 4.5.
The half range of transfer ID is 16.

Table 4.5: Transfer ID forward distance examples

A B F

0 0 0
0 5 5
5 0 27
31 30 31
31 0 1

The following code sample provides an example implementation of the transfer ID comparison al-
gorithm in C++.

32/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
1 // UAVCAN transfer ID forward distance computation algorithm implemented in C++.

2 // License: CC0, no copyright reserved.

3 #include <cstdint>

4 #include <iostream>

5 #include <cassert>

6 constexpr std::uint8_t TransferIDBitLength = 5;

7 [[nodiscard]]

8 constexpr std::uint8_t computeForwardDistance(std::uint8_t a, std::uint8_t b)

9 {

10 constexpr std::uint8_t MaxValue = (1U << TransferIDBitLength) - 1U;

11 assert((a <= MaxValue) && (b <= MaxValue));

12 std::int16_t d = static_cast<std::int16_t>(b) - static_cast<std::int16_t>(a);

13 if (d < 0)

14 {

15 d += 1U << TransferIDBitLength;

16 }

17 assert(d >= 0);

18 assert(d <= MaxValue);

19 assert(((a + d) & MaxValue) == b);

20 return static_cast<std::uint8_t>(d);

21 }

22 int main()

23 {

24 assert(0 == computeForwardDistance(0, 0));

25 assert(1 == computeForwardDistance(0, 1));

26 assert(7 == computeForwardDistance(0, 7));

27 assert(0 == computeForwardDistance(7, 7));

28 assert(31 == computeForwardDistance(31, 30)); // overflow

29 assert(1 == computeForwardDistance(31, 0)); // overflow

30 return 0;

31 }

4.3.2 State variables

Nodes that receive transfersmust keep a certain set of state variables for each transfer descriptor25.
The set of state variables will be referred to as the receiver state. For the purposes of this specifica-
tion, it is assumed that the nodewill maintain amapping from transfer descriptors to receiver states,
which will be referred to as the receiver map. It is understood, however, that real implementations
may resort to different architectures as long as the resulting behavior of the node observable at the
protocol level is functionally equivalent.
The list of receiver state variables is provided in the table 4.6. Operations defined on receiver states
are listed in the table 4.7; and the set of conditions defined for receiver states is provided in the table
4.8.
Whenever a node receives a transfer, it will query its receiver map for the matching transfer descrip-
tor. If the matching state does not exist, the node will add a new uninitialized receiver state to the
map. The node then will proceed with the procedure of receiver state update, which is defined below
in this section.
It is expected that some transfers will be aperiodic or ad-hoc, which implies that the receiver map
may over time accumulate receiver states that are no longer used. Therefore, nodes are allowed, but
not required, to remove any receiver state from the receiver map, once the state reaches the transfer

25The concept of transfer descriptor is explained in the section 4.2.1.

4. Transport layer 33/60

DRA
FT

Specification v1.0 2018.08.21

ID timeout condition.
Receiver state can only be modified when a new transport frame of a matching transfer is received.
This guarantee simplifies implementation, as it implies that the receiver states will not require any
background maintenance processes.

Table 4.6: Transfer reception state variables

State Description

Transfer payload Useful payload byte sequence; extended upon reception of transport frames.
Transfer ID The transfer ID value of the current transfer or the next expected transfer. Section

4.2.1.Next toggle bit Expected value of the toggle bit in the next transport frame. Section 4.2.3.2.
Transfer timestamp The local monotonic timestamp sampled when the first frame of the transfer arrived.

Here, "monotonic" means that the reference clock does not change its rate or leap.
Interface index Only in the case of redundant transport interfaces.

Table 4.7: Transfer reception state operations

Operation Description

Extension Add newly received useful payload data to the current transfer payload state.
Restart Reset the state variables to match the parameters of a new transfer. A reset can only be per-

formed synchronously with the reception of a matching transport frame which is the first frame
of a new transfer (e.g. the start of transfer flag is set). A reset operation includes at least the
following:
• Clearing (emptying) the transfer payload state.
• Updating the transfer ID state with the actual transfer ID value from the new transfer.
• Setting the toggle bit to its initial state (section 4.2.3.2).
• Initializing the transfer timestamp with the reception timestamp from the transport frame.
• Initializing the interface index (for nodes with redundant interfaces only).

Table 4.8: Transfer reception state conditions

Condition Description

Uninitialized The default condition, which indicates that the receiver state has not yet seen
any transfers.

Transfer ID timeout Last matching transfer was seen more than 2 seconds ago.
Interface switch allowed This condition is only applicable for configurations with redundant transport in-

terfaces. It means that the node is allowed to receive the next transfer from
an interface that is not the same the previous transfer was received from. The
condition is reached when the last matching transfer has been successfully re-
ceived more than Tswitch seconds ago. The value of Tswitch must not exceed 2
seconds. The actual value of Tswitch can be either a constant chosen by the de-
signer according to the application requirements (e.g., maximum recovery time
in the event of an interface failure), or the protocol stack can estimate this value
automatically by analyzing the transfer intervals.

4.3.3 State update in a redundant interface configuration

The following pseudocode demonstrates the transfer reception process for a configuration with
redundant transport interfaces.

34/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
1 // Constants:

2 tid_timeout := 2 seconds;

3 tid_half_range := 16;

4 iface_switch_delay := UserDefinedConstant; // Or autodetect

5 // State variables:

6 initialized := 0;

7 payload;

8 this_transfer_timestamp;

9 current_transfer_id;

10 iface_index;

11 toggle;

12 function receiveFrame(frame)

13 {

14 // Resolving the state flags:

15 tid_timed_out := (frame.timestamp - this_transfer_timestamp) > tid_timeout;

16 same_iface := frame.iface_index == iface_index;

17 first_frame := frame.start_of_transfer;

18 non_wrapped_tid := computeForwardDistance(current_transfer_id, frame.transfer_id) < tid_half_range;

19 not_previous_tid := computeForwardDistance(frame.transfer_id, current_transfer_id) > 1;

20 iface_switch_allowed := (frame.timestamp - this_transfer_timestamp) > iface_switch_delay;

21 // Using the state flags from above, deciding whether we need to reset:

22 need_restart :=

23 (!initialized) or

24 (tid_timed_out) or

25 (same_iface and first_frame and not_previous_tid) or

26 (iface_switch_allowed and first_frame and non_wrapped_tid);

27 if (need_restart)

28 {

29 initialized := 1;

30 iface_index := frame.iface_index;

31 current_transfer_id := frame.transfer_id;

32 payload.clear();

33 toggle := 0;

34 if (!first_frame)

35 {

36 current_transfer_id.increment();

37 return; // Ignore this frame, since the start of the transfer has already been missed

38 }

39 }

40 if (frame.iface_index != iface_index)

41 {

42 return; // Wrong interface, ignore

43 }

44 if (frame.toggle != toggle)

45 {

46 return; // Unexpected toggle bit, ignore

47 }

48 if (frame.transfer_id != current_transfer_id)

49 {

50 return; // Unexpected transfer ID, ignore

51 }

52 if (first_frame)

53 {

54 this_transfer_timestamp := frame.timestamp;

55 }

4. Transport layer 35/60

DRA
FT

Specification v1.0 2018.08.21

56 toggle := !toggle;

57 payload.append(frame.data);

58 if (frame.last_frame)

59 {

60 // CRC validation for multi-frame transfers is intentionally omitted for brevity

61 processTransfer(payload, ...);

62 current_transfer_id.increment();

63 toggle := 0;

64 payload.clear();

65 }

66 }

4.3.4 State update in a non-redundant interface configuration

The following pseudocode demonstrates the transfer reception process for a configuration with a
non-redundant transport interface. This is a specialization of themore general algorithm defined for
redundant transport.

36/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
1 // Constants:

2 tid_timeout := 2 seconds;

3 // State variables:

4 initialized := 0;

5 payload;

6 this_transfer_timestamp;

7 current_transfer_id;

8 toggle;

9 function receiveFrame(frame)

10 {

11 // Resolving the state flags:

12 tid_timed_out := (frame.timestamp - this_transfer_timestamp) > tid_timeout;

13 first_frame := frame.start_of_transfer;

14 not_previous_tid := computeForwardDistance(frame.transfer_id, current_transfer_id) > 1;

15 // Using the state flags from above, deciding whether we need to reset:

16 need_restart :=

17 (!initialized) or

18 (tid_timed_out) or

19 (first_frame and not_previous_tid);

20 if (need_restart)

21 {

22 initialized := 1;

23 current_transfer_id := frame.transfer_id;

24 payload.clear();

25 toggle := 0;

26 if (!first_frame)

27 {

28 current_transfer_id.increment();

29 return; // Ignore this frame, since the start of the transfer has already been missed

30 }

31 }

32 if (frame.toggle != toggle)

33 {

34 return; // Unexpected toggle bit, ignore

35 }

36 if (frame.transfer_id != current_transfer_id)

37 {

38 return; // Unexpected transfer ID, ignore

39 }

40 if (first_frame)

41 {

42 this_transfer_timestamp := frame.timestamp;

43 }

44 toggle := !toggle;

45 payload.append(frame.data);

46 if (frame.last_frame)

47 {

48 // CRC validation for multi-frame transfers is intentionally omitted for brevity

49 processTransfer(payload, ...);

50 current_transfer_id.increment();

51 toggle := 0;

52 payload.clear();

53 }

54 }

4. Transport layer 37/60

DRA
FT

Specification v1.0 2018.08.21

4.4 CAN bus transport layer specification
This section specifies the CAN-based transport layer of UAVCAN.
Here and in the following parts of this section, "CAN" implies both CAN 2.0 and CAN FD, unless
specifically noted otherwise. CAN FD should be considered the primary transport protocol.
UAVCAN utilizes only extended CAN frames with 29-bit identifiers. UAVCAN can share the same bus
with other protocols based on standard (non-extended) CAN frames with 11-bit identifiers. However,
future revisions of UAVCAN may utilize 11-bit identifiers as well; therefore, backward compatibility
with other protocols is not guaranteed.

4.4.1 CAN ID structure

UAVCAN utilizes three different CAN ID formats for different types of transfers: message transfers,
service transfers, and anonymousmessage transfers. The structure is summarized on the figure 4.1.

38/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0

Bit Service Message Anonymous message Bit

28
Transfer priority

28
27 27
26 26
25 Service not message

Reserved, required =0
25

24 Request not response

Message data type ID

24
23

Service data type ID

23
22 22
21

Message DTID modulo 8
21

20 20
19 19
18

Payload discriminator

18
17 17
16 16
15

Destination node ID

15
14 14
13 13
12 12
11 11
10 10
9 9
8

Source node ID

8
7 7
6 6
5 5
4 4
3 3
2 2
1 Data type major version number modulo 4 1
0 0
Bit Service Message Anonymous message Bit

Figure 4.1: CAN ID structure

The fields are described in detail in the following sections. The tables 4.9, 4.10, and 4.11 summarize
the purpose of the fields and their permitted values for message transfers, anonymous message
transfers, and service transfers, respectively. The following acronyms are used for brevity:
DTID - data type ID.
DTMVN - data type major version number.

4. Transport layer 39/60

DRA
FT

Specification v1.0 2018.08.21

Table 4.9: CAN ID fields for message transfers

Field Width Permitted values Description

Transfer priority 3 [0, 7] (any) Section 4.1.3.
Service not message 1 0 Always zero for message transfers.
Message DTID 16 [0, 65535] (any) Data type ID of the encoded message data structure.
Source node ID 7 [1, 127] Node ID of the origin.
Message DTMVN 2 [0, 3] (any) Major version number of the data type, modulo 4.

Table 4.10: CAN ID fields for anonymous message transfers

Field Width Permitted values Description

Transfer priority 3 [0, 7] (any) Section 4.1.3.
Reserved field 4 0 Set to zero when emitting. When receiving, ignore

the frame if this field is not zero.Message DTID modulo 8 3 [0, 7] (any) Three least significant bits of the data type ID of the
encoded message data structure. Message types
where DTID is greater than 7 cannot be used with
anonymous message transfers.

Payload discriminator 10 [0, 1023] (any) Used for CAN ID conflict avoidance; see section
4.4.1.5.Source node ID 7 0 Set to zero. This field is used to distinguish anony-
mous message transfers from regular message
transfers.Message DTMVN 2 [0, 3] (any) Major version number of the data type, modulo 4.

Table 4.11: CAN ID fields for service transfers

Field Width Permitted values Description

Transfer priority 3 [0, 7] (any) Section 4.1.3.
Service not message 1 1 Always one for service transfers.
Request not response 1 {0, 1} (any) 1 for service request, 0 for service response.
Service DTID 8 [0, 255] (any) Data type ID of the encoded service data structure (re-

quest or response).
Destination node ID 7 [1, 127] Node ID of the destination (i.e., server for requests,

client for responses).
Source node ID 7 [1, 127] Node ID of the origin (i.e., client for requests, server for

responses).
Service DTMVN 2 [0, 3] (any) Major version number of the data type, modulo 4.

4.4.1.1 Transfer priority

Valid values for priority range from 0 to 7, inclusively, where 0 corresponds to the highest priority,
and 7 corresponds to the lowest priority. Mnemonics for transfer priority levels are provided in the
section 4.1.3.
In multi-frame transfers, the value of the priority field must be identical for all frames of the transfer.
Shall there be multiple transfers of different types at the same priority level contesting for the bus
access, the following precedence is ensured, from higher priority to lower priority:

40/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
1. Message transfers.
2. Service response transfers.
3. Service request transfers.
Message transfers take precedence over service transfers because message broadcasting is the
primary method of communication in UAVCAN networks. Service responses take precedence over
service requests in order to make service invocations more atomic and reduce the number of pend-
ing states in the system.
Within the same type and the same priority level, transfers are prioritized according to the data type
ID: transfers with lower data type ID values preempt those with higher data type ID values.

4.4.1.2 Data type ID

A higher-level review of the concept of data type ID is available in the chapter 3.
For anonymous message transfers, the range of usable message type ID values is limited to [0, 7];
messages with data type ID outside of this range cannot be used with anonymous message trans-
fers with this transport.

4.4.1.3 Data type major version number

As explained in the section 3.6, the difference between the lowest and the highest released major
version numbers of any given data type may never exceed three.
Having made certain assumptions about the data type release cadence and the deprecation strat-
egy, one can see that the transport layer can represent the data type major version number using a
reduced modulo 4 representation; i.e., instead of carrying the whole version number, the transport
layer can carry only the major version number modulo four:

V ′ = V mod 4⇔ V ≥ 0

where V is the data type major version number and V ′ is its reduced representation used by the
transport layer.
Taking advantage of the fact that the transport layer representation of the major data type version
number belongs to [0, 3], UAVCAN uses only a two-bit wide field in the CAN identifier to represent
the major version number.
The bit width saving measures described here warrant certain special handling rules for the major
version number at the transport layer. When emitting a transfer, the node must compute the modulo
of the major data type version number as described above, and populate the corresponding CAN ID
field with the resulting value. When receiving a transfer, the node must search for an appropriate
data type definition among the known definitions by looking for the one which has the same major
version number modulus as the received modulus:

Vlocal mod 4 = V ′

where Vlocal is the major version number of the locally available data type definition that will be used
to process the transfer.
From the above description one can see that a data type mismatch will occur if the absolute differ-
ence between the major data type version used by the emitter and that used by the receiver exceeds
three:

Vlocal 6= V ⇔ |Vlocal − V | ≥ 4

However, due to the implicit deprecation policy defined in the section 3.6, the risk of version conflict
is easy to avoid, and the limitation is therefore deemed acceptable.

4. Transport layer 41/60

DRA
FT

Specification v1.0 2018.08.21

4.4.1.4 Node ID

Valid values of node ID belong to the range [1, 127].
Node ID is represented by a 7-bit unsigned integer value; zero is reserved. A node ID of zero is used
to represent either an unknown node or all nodes, depending on the context.
As such, for anonymous message transfers, the source node ID field is always set to zero. By ob-
serving a source node ID of zero, receiving nodes can distinguish anonymous message transfers
from other types of transfers.

4.4.1.5 Payload discriminator

CANbus does not allow different nodes to transmit CAN frameswith different data field values under
the same CAN ID. Owing to the fact that the CAN ID includes the node ID value of the transmitting
node, this restriction does not affect regular UAVCAN transfers. However, anonymous message
transfers would violate this restriction, because they all share the same node ID of zero.
In order to work-around this problem, UAVCAN adds a payload discriminator to the CAN ID of anony-
mousmessage transfers, and defines special logic for handling CAN bus errors during transmission
of anonymous frames.
The payload discriminator field must be filled with pseudorandom data whenever a node transmits
an anonymous message transfer. The source of the pseudorandom data must be likely to produce
different discriminator values for different data field values. A possibleway of initializing the payload
discriminator value is to apply the transfer CRC function (as defined in the section 4.2.3.1) to the
contents of the anonymous message, and then use any 10 bits of the result. Nodes that adopt
this approach will be using the same payload discriminator value for identical messages, which is
acceptable since this will not trigger an error on the bus.
Since the discriminator is only 10 bits long, the probability of having multiple nodes emitting CAN
frames with the same CAN ID but different data can exceed 0.1%, which is significant. Therefore, the
protocol must account for possible errors on the CAN bus triggered by CAN ID collisions. In order to
comply with this requirement, UAVCAN requires all nodes to immediately abort transmission of all
anonymous transfers once an error on the CAN bus is detected. This measure allows the protocol
to prevent the bus deadlock that may occur if the automatic retransmission on bus error is not
suppressed.

4.4.2 CAN frame data

The CAN frame data field may contain the following data items, in the listed order:
1. The useful payload (serialized data structure). This segment may be empty.
2. Possible padding bytes. Padding bytes may be necessary if the transport layer does not provide
byte-level granularity of the data field length (e.g., CAN FD).
3. The last frame of multi-frame transfers always contains the transfer CRC (section 4.2.3.1).
4. The last byte of the data field always contains the tail byte.
The segments are documented below in this section.

4.4.2.1 Tail byte

UAVCAN adds one byte of overhead to every CAN frame irrespective of the type of the transfer. The
extra byte contains certain metadata for the needs of the transport layer. It is named the tail byte,
and as the name suggests, it is always situated at the very last byte of the data field of every CAN
frame. The tail byte contains four fields: start of transfer, end of transfer, toggle bit, and the transfer ID

42/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
(described earlier in the section 4.2.1). The placement of the fields and their usage for single-frame
and multi-frame transfers are documented in the table 4.12.

Table 4.12: Tail byte structure

Bit Field Single-frame transfers Multi-frame transfers

7 Start of transfer Always 1 First frame: 1, otherwise 0.
6 End of transfer Always 1 Last frame: 1, otherwise 0.
5 Toggle bit Always 1 First frame: 1, then alternates; section 4.2.3.2.
4
3 Modulo 32 (range [0, 31])
2 Transfer ID section 4.2.1
1
0 (least significant bit)

The transfer ID field is populated according to the specification provided in the section 4.2.1. The
usage of this field is independent of the type of the transfer.
For single-frame transfers, the fields start-of-transfer, end-of-transfer, and the toggle bit are all set
to 1.
Formulti-frame transfers, the fields start-of-transfer and end-of-transfer are used to state the bound-
aries of the current transfer as described in the table. The transfer ID value is identical for all frames
of a multi-frame transfer.
The toggle bit, as described in the section 4.2.3.2, serves two main purposes: CAN frame dedupli-
cation and protocol version detection.

4.4.2.2 Padding bytes

Certain transports (such as CAN FD) may not provide byte-level granularity of the CAN data field
length. In that case, the useful payload is to be padded with the minimal number of padding bytes
required to bring the total length of the CANdata field to a value that can satisfy the length granularity
constraints.
When transmitting, each padding byte must be set to 85 = 55hex = 0101 0101bin. This specific
padding value is chosen to avoid stuff bits and to facilitate CAN controller synchronization.
When receiving, the values of the padding bytes must be ignored. In other words, receiving nodes
must not make any assumptions about the values of the padding bytes.
Usage of padding bytes implies that when a serialized message is being deserialized by a receiving
node, the byte sequence used for deserialization may be longer than the actual byte sequence gen-
erated by the emitting node during serialization. Therefore, nodes must ignore the trailing unused
data bytes at the end of serialized byte sequences; a length mismatch is only to be considered an
error if the received byte sequence is shorter than expected by the deserialization routine.

4.4.2.3 Single-frame transfers

For single-frame transfers, the data field of the CAN frame contains two or three segments: the
useful payload (which is the serialized data structure, may be empty), possible padding bytes, and
the tail byte (the last byte of the data field).
The resulting data field segmentation is shown in the table 4.13.

4. Transport layer 43/60

DRA
FT

Specification v1.0 2018.08.21

Table 4.13: CAN frame data segments for single-frame transfers

Offset Length Segment

0 Lpayload ≥ 0 Useful payload (serialized data structure).
Lpayload Lpadding ≥ 0 Padding bytes (if necessary).
Lpayload + Lpadding 1 Tail byte.

4.4.2.4 Multi-frame transfers

Formulti-frame transfers, all frames except the last one contain only a fragment of the useful payload
and the tail byte. Notice that the padding bytes are not used in multi-frame transfers, excepting the
last frame.
The useful payload is fragmented in the forward order: the first CAN frame of a multi-frame transfer
contains the beginning of the payload (the first fragment), the following frames contain the subse-
quent fragments of the useful payload. The last CAN frame of a multi-frame transfer contains the
last fragment, unless the last fragment was fully accommodated by the previous CAN frame of the
transfer. In the latter case, the last CAN frame will contain only the metadata, as specified below in
this section.
Each CAN frame of a multi-frame transfer except the last one should use the maximum CAN data
length permitted by the transport. Observe that this is not a hard requirement; some systems that
utilize CAN FDmay opt for shorter CAN frames in order to reduce theworst case preemption latency.
Therefore, UAVCAN implementations must be able to correctly process multi-frame transfers with
arbitrary CAN frame data lengths.
The resulting data field segmentation for all frames of a multi-frame transfer except the last one is
shown in the table 4.14.

Table 4.14: CAN frame data segments for multi-frame transfers (except the last CAN frame of the transfer)

Offset Length Segment

0 Lpayload > 0 A fragment of the useful payload (serialized data structure). This segment occupies
the entirety of the CAN data field except the last byte, which is used by the tail byte.

Lpayload 1 Tail byte.

The last CAN frame of a multi-frame transfer contains one or two additional segments: the padding
bytes (if necessary) and the transfer CRC. The padding rules are identical to those of single-frame
transfers. The transfer CRC is to be allocated in the big-endian byte order26 immediately before the
tail byte. The resulting data field segmentation is shown in the table 4.15.

Table 4.15: CAN frame data segments for multi-frame transfers (the last CAN frame of the transfer)

Offset Length Segment

0 Lpayload ≥ 0 The last fragment of the useful payload (serialized data structure).
Lpayload Lpadding ≥ 0 Padding bytes (if necessary).
Lpayload + Lpadding 2

Transfer CRC, high byte.
Transfer CRC, low byte.

Lpayload + Lpadding + 2 1 Tail byte.
26Most significant byte first. This byte order is used to allow faster CRC residue checks; more info in section 4.2.3.1.

44/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
4.4.3 Software design considerations

4.4.3.1 Ordered transmission

Multi-frame transfers use identical CAN ID for all frames of the transfer, and UAVCAN requires that
all frames of a multi-frame transfer should be transmitted in the correct order. Therefore, the CAN
controller driver software must ensure that CAN frames with identical CAN ID values must be trans-
mitted in their order of appearance in the transmission queue. Some CAN controllers will not meet
this requirement by default, so the designer must take special care to ensure the correct behavior,
and apply workarounds if necessary.

4.4.3.2 Transmission time-stamping

Certain advanced features of UAVCAN may require the driver to time-stamp outgoing transport
frames, e.g., the time synchronization feature. A sensible approach to transmission time-stamping
is built around the concept of loop-back frames, which is described here.
If the application needs to time-stamp an outgoing frame, it sets a special flag – the loop-back flag
– on the frame before sending it to the driver. The driver would then automatically re-enqueue this
frame back into the reception queue once it is transmitted (keeping the loop-back flag set so that the
application is able to distinguish the loop-back frame from regular received traffic). The time-stamp
of the loop-backed frame would be of the moment when it was delivered to the bus.
The advantage of the loop-back based approach is that it relies on the same interface between the
application and the driver that is used for regular communications. No complex and dangerous
callbacks or write-backs from interrupt handlers are involved.

4.4.3.3 Inner priority inversion

Suppose the application needs to emit a frame with the CAN ID X. The frame is submitted to the
CAN controller’s registers and the transmission is started. Suppose that afterwards it turned out
that there is a new frame with the CAN ID (X − 1) that needs to be sent, too, but the previous frame
X is in the way, and it is blocking the transmission of the new frame. This may turn into a problem
if the lower-priority frame is losing arbitration on the bus due to the traffic on the bus having higher
priority than the current frame, but lower priority than the next frame that is waiting in the queue.
A naive solution to this is to continuously check whether the priority of the frame that is currently
being transmitted by the CAN controller is lower than the priority of the next frame in the queue, and
if it is, abort transmission of the current frame, move it back to the transmission queue, and begin
transmission of the new one instead. This approach, however, has a hidden race condition: the old
frame may be aborted at the moment when it has already been received by remote nodes, which
means that the next time it is re-transmitted, the remote nodes will see it duplicated. Additionally,
this approach increases the complexity of the driver and can possibly affect its throughput and
latency.
Most CAN controllers offer a proper solution to the problem: they have multiple transmission mail-
boxes (usually at least 3), and the controller always chooses for transmission the mailbox which
contains the highest priority frame. This provides the application with a possibility to avoid the inner
priority inversion problem: whenever a new transmission is initiated, the application should check
whether the priority of the next frame is higher than any of the other frames that are already awaiting
transmission. If there is at least one higher-priority frame pending, the application doesn’t move the
new one to the controller’s transmission mailboxes, it remains in the queue. Otherwise, if the new
frame has a higher priority level than all of the pending frames, it is pushed to the controller’s trans-
mission mailboxes and removed from the queue. In the latter case, if a lower-priority frame loses

4. Transport layer 45/60

DRA
FT

Specification v1.0 2018.08.21

arbitration, the controller would postpone its transmission and try transmitting the higher-priority
one instead. That resolves the problem.
There is an interesting extreme case, however. Imagine a controller equipped with N transmission
mailboxes. Suppose the application needs to emitN frames in the increasing order of priority, which
leads to all of the transmission mailboxes of the controller being occupied. Now, if all of the condi-
tions below are satisfied, the system ends upwith a priority inversion condition nevertheless, despite
the measures described above:
• The highest-priority pending CAN frame cannot be transmitted due to the bus being saturatedwith
a higher-priority traffic.
• The application needs to emit a new frame which has a higher priority than that which saturates
the bus.
If both hold, a priority inversion is afoot because there is no free transmission mailbox to inject the
new higher-priority frame into. The scenario is extremely unlikely, however; it is also possible to
construct the application in a way that would preclude the problem, e.g., by limiting the number of
simultaneously used distinct CAN ID values.
The following pseudocode demonstrates the principles explained above:

1 // Returns the index of the TX mailbox that can be used for the transmission of the newFrame

2 // If none are available, returns -1.

3 getFreeMailboxIndex(newFrame)

4 {

5 chosen_mailbox = -1 // By default, assume that no mailboxes are available

6 for i = 0...NumberOfTxMailboxes

7 {

8 if isTxMailboxFree(i)

9 {

10 chosen_mailbox = i

11 // Note: cannot break here, must check all other mailboxes as well.

12 }

13 else

14 {

15 if not isFramePriorityHigher(newFrame, getFrameFromTxMailbox(i))

16 {

17 chosen_mailbox = -1

18 break // Denied - must wait until this mailbox has finished transmitting

19 }

20 }

21 }

22 return chosen_mailbox

23 }

4.4.3.4 Automatic hardware acceptance filter configuration

Most CAN controllers are equipped with hardware acceptance filters. Hardware acceptance filters
reduce the application workload by ignoring irrelevant CAN frames on the bus by comparing their ID
values against the set of relevant ID values configured by the application.
There exist two common approaches to CAN hardware filtering: list-based and mask-based. In the
case of the list-based approach, every CAN frame detected on the bus is compared against the
set of reference CAN ID values provided by the application; only those frames that are found in the
reference set are accepted. Due to the complex structure of the CAN ID field used by UAVCAN, usage
of the list-based filtering method with this protocol is impractical.

46/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0
Most CAN controller vendors implement mask-based filters, where the behavior of each filter is
defined by two parameters: the maskM and the reference IDR. Then, such filter accepts only those
CAN frames for which the following bitwise logical condition holds true27:

((X ∧M)⊕R)↔ 0

where X is the CAN ID value of the evaluated frame.
Complex UAVCAN applications are often required to operate with more distinct transfers than there
are acceptance filters available in the hardware. That creates the challenge of finding the optimal
configuration of the available filters that meets the following criteria:
• All CAN frames needed by the application are accepted.
• The number of irrelevant frames (i.e., not used by the application) accepted from the bus is mini-
mized.
The optimal configuration is a function of the number of available hardware filters, the set of distinct
transfers needed by the application, and the expected frequency of occurrence of all possible distinct
transfers on the bus. The latter is important because if there are to be irrelevant transfers, it makes
sense to optimize the configuration so that the acceptance of less common irrelevant transfers is
preferred over the more common irrelevant transfers, as that reduces the processing load on the
application.
The optimal configuration depends on the properties of the network the node is connected to. In
the absence of the information about the network, or if the properties of the network are expected
to change frequently, it is possible to resort to a quasi-optimal configuration which assumes that
the occurrence of all possible irrelevant transfers is equally probable. As such, the quasi-optimal
configuration is a function of only the number of available hardware filters and the set of distinct
transfers needed by the application.
The quasi-optimal configuration can be easily found automatically. Certain implementations of the
UAVCAN protocol stack include this functionality, allowing the application to easily adjust the con-
figuration of the hardware acceptance filters using a very simple API.
The quasi-optimal hardware acceptance filter configuration algorithm is defined below.
First, the bitwise filter merge operation is defined on filter configurations A and B. The set of CAN
frames accepted by the merged filter configuration is a superset of those accepted byA andB. The
definition is as follows:

mM (RA, RB ,MA,MB) = MA ∧MB ∧ ¬(RA ⊕RB)

mR(RA, RB ,MA,MB) = RA ∧mM (RA, RB ,MA,MB)

The filter rank is a function of the mask of the filter. The rank of a filter is a unitless quantity that
defines in relative terms how selective the filter configuration is. The rank of a filter is proportional
to the likelihood that the filter will reject a random CAN ID. In the context of hardware filtering, this
quantity is conveniently representable via the number of bits set in the filter mask parameter:

r(M) =

0 M < 1

r(bM2 c) M mod 2 = 0

r(bM2 c) + 1 M mod 2 6= 0

Having the low-level operations defined, we can proceed to define the whole algorithm. First, con-
struct the initial set of CAN acceptance filter configurations according to the requirements of the

27Notation: ∧ – bitwise logical AND,⊕ – bitwise logical XOR, ¬ – bitwise logical NOT.

4. Transport layer 47/60

DRA
FT

Specification v1.0 2018.08.21

application. Then, as long as the number of configurations in the set exceeds the number of avail-
able hardware acceptance filters, repeat the following:
1. Find the pair A, B of configurations in the set for which r(mM (RA, RB ,MA,MB)) is maximized.
2. Remove A and B from the set of configurations.
3. Add a new configurationX to the set of configurations, whereXM = mM (RA, RB ,MA,MB), and
XR = mR(RA, RB ,MA,MB).
The algorithm reduces the number of filter configurations by one at each iteration, until the number
of available hardware filters is sufficient to accommodate the whole set of configurations.

48/60 4. Transport layer

DRA
FT

2018.08.21 Specification v1.0

5 Application layer
5.1 Application-level conventions

5.2 Application-level functions

5. Application layer 49/60

DRA
FT

Specification v1.0 2018.08.21

6 Physical layer
This chapter contains the specification of the supported physical layers of UAVCAN, aswell as some
related hardware design recommendations.
Following the requirements and recommendations of this chapter will ensure the highest level of
inter-vendor compatibility and allow the developers to avoid many common design pitfalls.
The sections that provide transport-specific physical layer specification directly correspond to those
defined in the chapter 4.

50/60 6. Physical layer

DRA
FT

2018.08.21 Specification v1.0

6.1 CAN bus physical layer specification
This section specifies the CAN-based physical layer of UAVCAN.
Here and in the following parts of this section, "CAN" implies both CAN 2.0 and CAN FD, unless
specifically noted otherwise.

6.1.1 Physical connector specification

The UAVCAN standard defines several connector types, targeted towards different application do-
mains: from highly compact systems to large deployments, from low-cost to safety-critical applica-
tions.
The table 6.1 provides an overview of the currently defined connector types for the CANbus transport
implementation. Other connector types may be added in future revisions of the specification.
It is highly recommended to provide two identical parallel connectors for each CAN interface per
device, so that the device can be connected to the bus without the need to use T-connectors. T-
connectors should be avoided when possible because generally they add an extra point of failure,
increase the stub length, weight, and often require more complex and expensive wiring harnesses.

Table 6.1: Standard CAN connector types

Connector name Base connector type Bus power Known compatible standards

UAVCAN D-Sub Generic D-Subminiature DE-9 24 V, 3 A De-facto standard connector for CAN, sup-
ported by many current specifications.

UAVCAN M8 Generic M8 5-circuit B-coded 24 V, 3 A CiA 103 (CANopen)
UAVCAN Micro JST GH 4-circuit 5 V, 1 A Dronecode Autopilot Connector Standard

6. Physical layer 51/60

DRA
FT

Specification v1.0 2018.08.21

6.1.1.1 UAVCAN D-Sub connector

The UAVCAN D-Sub connector type is based upon, and compatible with, the D-Subminiature DE-9
CAN connector (this is the most popular CAN connector type, in effect the de-facto industry stan-
dard). This connector is fully compatible with CANopen and many other current specifications. An
example connector pair is pictured on the figure 6.1.

Advantages Disadvantages

• Highest level of compatibility with the existing
commercial off the shelf (COTS) hardware. Connec-
tors, cables, termination plugs, and other compo-
nents can be easily purchased from many different
vendors.
• High-reliability options are available from multiple
vendors.
• Low-cost options are available from multiple ven-
dors.
• Both PCB mounted and panel mounted types are
available.

D-Subminiature connectors are the largest connector
type defined by UAVCAN. Due to its significant size
and weight, it may be unsuitable for many vehicular
applications.

The UAVCAN D-Sub connector is based on the industry-standard D-Sub DE-9 (9-circuit) connector
type. Devices are equipped with the male plug connector type mounted on the panel or on the PCB,
and the cables are equipped with the female socket connectors on both ends (see the figure 6.1).
If the device uses two parallel connectors per CAN bus interface (as recommended), then all of the
lines of the paired connectors, including those that are not used by the current specification, must be
interconnected one to one. This will ensure compatibility with future revisions of the specification
that make use of currently unused circuits of the connector.
The CAN physical layer standard that can be used with this connector type is ISO 11898-228.
Devices that deliver power to the bus are required to provide 23.0–30.0 V on the bus power line, 24
V nominal. The maximum current draw is up to 3 A per connector.
Devices that are powered from the bus should expect 18.0–30.0 V on the bus power line. The max-
imum recommended current draw from the bus is 0.5 A per device.
The table 6.2 documents the pinout specification for the UAVCAN D-Sub connector type. The pro-
vided pinout, as has been indicated above, is the de-facto industry standard for the CAN bus. Note
that the signals "CAN High" and "CAN Low" must belong to the same twisted pair. Usage of twisted
or flat wires for all other signals remains at the discretion of the implementer.

28Also known as high-speed CAN.

52/60 6. Physical layer

DRA
FT

2018.08.21 Specification v1.0
Table 6.2: UAVCAN D-Sub connector pinout

Function Note

1
2 CAN low Twisted with "CAN high" (pin 7).
3 CAN ground Must be interconnected with "Ground" (pin 6) within the device.
4
5 CAN shield Optional.
6 Ground Must be interconnected with "CAN ground" (pin 3) within the device.
7 CAN high Twisted with "CAN low" (pin 2).
8
9 Bus power supply 24 V nominal. See the power supply requirements.

Figure 6.1: UAVCAN D-Sub connector pair example: device connector (left) and cable (right).

6. Physical layer 53/60

DRA
FT

Specification v1.0 2018.08.21

6.1.1.2 UAVCAN M8 connector

The UAVCAN M8 connector type is based on the generic circular M8 connector type, shown on the
figure 6.2. This is a popular industry-standard connector, and there are many vendors that manufac-
ture compatible components: connectors, cables, termination plugs, T-connectors, and so on. The
pinning, physical layer, and supply voltages used in this connector type are compatible with CiA 103
(CANopen) and some other CAN bus standards.
TheM8 connector is preferred formost UAVCANapplications (it should be the default choice, except
when there are specific reasons to select another standard connector type).

Advantages Disadvantages

• Compatibility with existing COTS hardware. Con-
nectors, cables, termination plugs, and other com-
ponents can be purchased from many different ven-
dors.
• High-reliability options are available from multiple
vendors.
• Low-cost options are available from multiple ven-
dors.
• Reasonably compact. M8 connectors are much
smaller than D-Sub.
• PCB mounted and panel mounted types are avail-
able.

• M8 connectors may be a poor fit for applications
that have severe weight and space constraints.
• The level of adoption in the industry is noticeably
lower than that of the D-Sub connector type.

The UAVCAN M8 connector is based on the industry-standard circular M8 B-coded 5-circuit con-
nector type. Devices are equipped with themale plug connector typemounted on the panel or on the
PCB, and the cables are equipped with the female socket connectors on both ends (see the figure
6.2). Do not confuse A-coded and B-coded M8 connectors – they are not mutually compatible.
The CAN physical layer standard that can be used with this connector type is ISO 11898-229.
Devices that deliver power to the bus are required to provide 23.0–30.0 V on the bus power line, 24
V nominal. The maximum current draw is up to 3 A per connector.
Devices that are powered from the bus should expect 18.0–30.0 V on the bus power line. The max-
imum recommended current draw from the bus is 0.5 A per device.
The table 6.3 documents the pinout specification for the UAVCAN M8 connector type. The provided
pinout, as indicated above, is compatible with the CiA 103 specification (CANopen). Note that the
wires "CAN high" and "CAN low" should be a twisted pair.

Table 6.3: UAVCAN M8 connector pinout

Function Note

1 Bus power supply 24 V nominal. See the power supply requirements.
2 CAN shield Optional.
3 CAN high Twisted with "CAN low" (pin 4).
4 CAN low Twisted with "CAN high" (pin 3).
5 Ground

29Also known as high-speed CAN.

54/60 6. Physical layer

DRA
FT

2018.08.21 Specification v1.0

Example connectors: female socket cable (left) and male plug device connector (right). Different connector
types are available from various vendors: PCB mounted, panel mounted; straight cables, angled cables, etc.

Figure 6.2: UAVCAN M8 connector pair example.

Figure 6.3: UAVCAN M8 assembled connector pair example.

6. Physical layer 55/60

DRA
FT

Specification v1.0 2018.08.21

6.1.1.3 UAVCAN Micro connector

The UAVCANMicro connector is intended for weight- and space-sensitive applications. It is a board-
level connector, meaning that it can be installed on the PCB rather than on the panel. An example is
shown on the figure 6.4.
The Micro connector is compatible with the Dronecode Autopilot Connector Standard. This connec-
tor type is recommended for small UAV and nanosatellites. It is also the recommended connector
for attaching external panel-mounted connectors (such as the M8 or D-Sub types) to the PCB inside
the enclosure.

Advantages Disadvantages

• Extremely compact, low-profile. The PCB footprint
is under 9âĲŢ5 millimeters.
• Secure positive lock ensures that the connection
will not self-disconnect when exposed to vibrations.
• Low-cost, easy to stock.

• Board-level connections only. No panel-mounted
options available.
• No shielding available.
• Not suitable for safety-critical hardware.

The UAVCAN Micro connector is based on the proprietary JST GH 4-circuit connector type.
The suitable cable types are flat or twisted pair #30 to #26 AWG, outer insulation diameter 0.8–
1.0 mm, multi-strand. Non-twisted (flat) cables can only be used in very small deployments free of
significant EMI30; otherwise, reliable functioning of the bus cannot be guaranteed.
The CAN physical layer standard that can be used with this connector type is ISO 11898-2.
Devices that deliver power to the bus are required to provide 5.0–5.5 V on the bus power line. The
anticipated current draw is up to 1 A per connector.
Devices that are powered from the bus should expect 4.0–5.5 V on the bus power line. Themaximum
recommended current draw from the bus is 0.5 A per device.
The table 6.4 documents the pinout specification for the UAVCAN M8 connector type. The provided
pinout, as indicated above, is compatible with the Dronecode Autopilot Connector Standard. Note
that the wires "CAN high" and "CAN low" should be a twisted pair.

Table 6.4: UAVCAN Micro connector pinout

Function Note

1 Bus power supply 5 V nominal. See the power supply requirements.
2 CAN high Should be twisted with "CAN low" (pin 3).
3 CAN low Should be twisted with "CAN high" (pin 2).
4 Ground

30Electromagnetic interference.

56/60 6. Physical layer

DRA
FT

2018.08.21 Specification v1.0

Figure 6.4: UAVCAN Micro right-angle connectors with a twisted pair patch cable connected.

Figure 6.5: UAVCAN Micro CAN bus termination plug.

6. Physical layer 57/60

DRA
FT

Specification v1.0 2018.08.21

6.1.2 CAN bus physical layer parameters

As can be seen from the rest of the specification, UAVCAN is mostly agnostic of the parameters of
the physical layer. However, vendors should follow the recommendations provided in this section to
maximize the cross-vendor compatibility.

6.1.2.1 CAN 2.0

This section is dedicated to the legacy CAN 2.0 protocol.
The table 6.5 lists the standard parameters of the CAN PHY for ISO 11898-2. The estimated bus
length limits are based on the assumption that the propagation delay does not exceed 5 ns/m, not
including additional delay times of CAN transceivers and other components.

Table 6.5: Standard CAN 2.0 PHY parameters

Bit rate [kbit/s] Valid range for
location of sample

point [%]

Recommended
location of sample

point [%]

Maximum bus
length [m]

Maximum stub
length [m]

1000 75 to 90 87.5 40 0.3
500 85 to 90 87.5 100 0.3
250 85 to 90 87.5 250 0.3
125 85 to 90 87.5 500 0.3
Designers are encouraged to implement CAN auto bit rate detection when applicable. Please refer
to the CiA 801 application note for the recommended practices.
UAVCAN allows the use of a simple bit time measuring approach, as it is guaranteed that any func-
tioning UAVCAN network will always exchange node status messages, which can be expected to be
published at a rate no lower than 1 Hz, and that contain a suitable alternating bit pattern in the CAN
ID field. Please refer to the chapter 5 for details.

6.1.2.2 CAN FD

This section will be populated in a later revision of the document.

58/60 6. Physical layer

DRA
FT

2018.08.21 Specification v1.0

6.2 Hardware design recommendations
This section contains certain generic hardware design recommendations that are agnostic of a par-
ticular physical layer implementation.

6.2.1 Non-uniform transport redundancy

Mission critical devices and non-mission critical devices often need to co-exist within the same
UAVCAN network. Non-mission critical devices are likely to be equipped with a non-redundant trans-
port interface, which can create the situation where multiple devices with different numbers of re-
dundant interfaces need to be connected to the same network. In that case, the following rules
should be followed:
• Each available bus is assigned a level of importance (primary, secondary, etc.).
• All nodes should be connected to the primary bus.
• Only nodes with redundant interfaces should be also connected to the non-primary bus/buses.
The figure 6.6 shows a doubly redundant bus transport as an example.

Figure 6.6: Non-uniform transport redundancy.

6.2.2 Bus power supply

The standard UAVCAN physical layers support power distribution between nodes. Integration of the
power distribution functionality with the communication interface obviates the need for a dedicated
power distribution network, which can greatly simplify the system design and reduce the complexity
and weight of the wiring harnesses. Additionally, redundant power supply topologies can be easily
implemented on top of redundant communication interfaces.

6.2.2.1 Power sinking nodes

This section applies to nodes that draw power from the network.
Each power input must be protected with an over-current protection circuit (for example, an elec-
tronic fuse), so that a short-circuit or a similar failure of the node does not propagate to the entire
bus.
If the node incorporates redundant bus interfaces, it must prevent direct current flow between power
inputs from different interface connectors, so that if one bus suffers a power failure (e.g. a short
circuit) it is not propagated to the other buses.

6. Physical layer 59/60

DRA
FT

Specification v1.0 2018.08.21

Figure 6.7: Simplified conceptual power sinking node design schematic.

6.2.2.2 Power sourcing nodes

This section applies to nodes that deliver power to the network.
Similar to the case of bus-powered nodes, UAVCAN power sources should take into account that
one of the redundant interfaces may suffer a short-circuit or a failure of a similar mode. Should
that happen, the power source should shut down the power supply of the failing bus and continue
supplying the remaining bus interfaces.

Figure 6.8: Simplified conceptual power sourcing node design schematic.

60/60 6. Physical layer

	Introduction
	Design principles
	Capabilities
	Maintenance of the standard data type set
	Referenced sources

	Basic concepts
	Message broadcasting
	Anonymous message broadcasting

	Service invocation

	Data structure description language
	File hierarchy
	Service data types

	Syntax
	Attribute definition
	Directives
	Comments
	Service response marker

	Primitive data types
	Naming rules
	Mandatory
	Optional
	Advisory

	Data serialization
	General principles
	Scalar values
	Nested data structures
	Fixed size arrays
	Dynamic arrays
	Unions

	Data type compatibility and versioning
	Rationale
	Bit compatibility
	Semantic compatibility
	Data type versioning

	Data type ID
	Standard and vendor-specific data types
	Standard data type repository
	Vendor-specific data types

	Transport layer
	The concept of transfer
	Message broadcasting
	Service invocation
	Transfer prioritization

	Transfer emission
	Transfer ID computation
	Single frame transfers
	Multi-frame transfers
	Redundant interface support

	Transfer reception
	Transfer ID comparison
	State variables
	State update in a redundant interface configuration
	State update in a non-redundant interface configuration

	CAN bus transport layer specification
	CAN ID structure
	CAN frame data
	Software design considerations

	Application layer
	Application-level conventions
	Application-level functions

	Physical layer
	CAN bus physical layer specification
	Physical connector specification
	CAN bus physical layer parameters

	Hardware design recommendations
	Non-uniform transport redundancy
	Bus power supply

