
DRAFT
Specification v1.0
Revision 2019-11-15

Overview
UAVCAN is an open lightweight protocol designed for
reliable intravehicular communication in aerospace and
robotic applications over robust transports. It is created
to address the challenge of deterministic on-board data
exchange between systems and components of advanced
intelligent vehicles.

The name UAVCAN stands for Uncomplicated
Application-level Vehicular Communication And
Networking.

Features:

• Democratic network – no bus master, no single point of
failure.
• Publish/subscribe and request/response (RPC1)
communication semantics.
• Efficient exchange of large data structures with
automatic decomposition and reassembly.
• Lightweight, deterministic, easy to implement, and easy
to validate.
• Suitable for deeply embedded, resource constrained,
hard real-time systems.
• Supports dual and triply modular redundant transports.
• Supports high-precision network-wide time
synchronization.
• Provides rich data type and interface abstractions –
an interface description language is a core part of the
technology which allows deeply embedded sub-systems
to interface with higher-level systems directly and in a
maintainable manner while enabling simulation and
functional testing.
• The specification and high quality reference implemen-
tations in popular programming languages are free, open
source, and available for commercial use under the per-
missive MIT license.

1Remote procedure call.

License
UAVCAN is a standard open to everyone, and it will always
remain this way. No licensing or approval of any kind is
necessary for its implementation, distribution, or use.

This work is licensed under the Creative Commons Attri-
bution 4.0 International License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by/4.0/
or send a letter to Creative Commons, PO Box 1866, Moun-
tain View, CA 94042, USA.

Disclaimer of warranty
Note well: this Specification is provided on an “as is” basis,
without warranties or conditions of any kind, express or
implied, including, without limitation, any warranties or
conditions of title, non-infringement, merchantability, or
fitness for a particular purpose.

Limitation of liability
In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless
required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any author of
this Specification be liable for damages, including any
direct, indirect, special, incidental, or consequential
damages of any character arising from, out of, or in
connection with the Specification or the implementation,
deployment, or other use of the Specification (including
but not limited to damages for loss of goodwill, work
stoppage, equipment failure or malfunction, injuries to
persons, death, or any and all other commercial damages
or losses), even if such author has been made aware of
the possibility of such damages.

© 2015–2019 UAVCAN Development Team Support & feedback: uavcan.org

http://creativecommons.org/licenses/by/4.0/
http://uavcan.org
http://uavcan.org

DRAFT

Specification v1.0 2019-11-15

Table of contents
1 Introduction 1

1.1 Document conventions 1
1.2 Design principles 1
1.3 Capabilities 2
1.4 Public regulated data types 2
1.5 Referenced sources 3

2 Basic concepts 4
2.1 Main principles. 4

2.1.1 Communication 4
2.1.2 Data types 4
2.1.3 High-level functions 6

2.2 Message publication 6
2.2.1 Anonymous message publication . . . 6

2.3 Service invocation 7
3 Data structure description language 8

3.1 Architecture 8
3.1.1 General principles 8
3.1.2 Data types and namespaces 8
3.1.3 File hierarchy 9
3.1.4 Elements of data type definition. . . . 10
3.1.5 Serialization 10

3.2 Grammar 11
3.2.1 Notation 11
3.2.2 Definition. 11
3.2.3 Expressions 14
3.2.4 Literals 14
3.2.5 Reserved identifiers 15

3.3 Expression types 16
3.3.1 Rational number 16
3.3.2 Unicode string 17
3.3.3 Set. 17
3.3.4 Serializable metatype 18

3.4 Serializable types 18
3.4.1 Void types. 18
3.4.2 Primitive types 19
3.4.3 Array types 21
3.4.4 Composite types 21

3.5 Attributes. 22
3.5.1 Composite type attributes 23
3.5.2 Local attributes 24
3.5.3 Intrinsic attributes 24

3.6 Directives. 25
3.6.1 Tagged union marker. 25
3.6.2 Deprecation marker 25
3.6.3 Assertion check 26
3.6.4 Print 26

3.7 Data serialization 26
3.7.1 General principles 26
3.7.2 Void types. 28
3.7.3 Primitive types 28
3.7.4 Array types 29
3.7.5 Composite types 30

3.8 Data type compatibility and versioning . 32
3.8.1 Rationale 32
3.8.2 Compatibility 32
3.8.3 Versioning 34

3.9 Conventions and recommendations . . 37
3.9.1 Naming recommendations 38
3.9.2 Comments 38
3.9.3 Optional value representation 38
3.9.4 Bit flag representation 39

4 Transport layer 40
4.1 Core concepts 40

4.1.1 Transfer 40
4.1.2 Message publication 41
4.1.3 Service invocation 41
4.1.4 Transfer priority 42

4.1.5 Transfer descriptor 43

4.2 Transfer emission 44
4.2.1 Transfer-ID computation 44
4.2.2 Single frame transfers 44
4.2.3 Multi-frame transfers 44
4.2.4 Redundant interface support 46

4.3 Transfer reception 47
4.3.1 Transfer-ID comparison 47
4.3.2 Payload truncation 47
4.3.3 State variables 48
4.3.4 State update in a redundant interface con-

figuration 50
4.3.5 State update in a non-redundant interface

configuration 52

4.4 CAN bus transport layer specification . . 53
4.4.1 CAN ID structure 53
4.4.2 CAN frame data 55
4.4.3 Software design considerations 56

5 Application layer 60
5.1 Application-level requirements 61

5.1.1 Port identifier distribution 61
5.1.2 Standard namespace 61

5.2 Application-level conventions 62
5.2.1 Node identifier distribution 62
5.2.2 Coordinate frames 62
5.2.3 Rotation representation 63
5.2.4 Matrix representation 63
5.2.5 Physical quantity representation . . . 64

5.3 Application-level functions. 65
5.3.1 Node initialization 65
5.3.2 Node heartbeat 65
5.3.3 Generic node information 66
5.3.4 Bus data flow monitoring 67
5.3.5 Network-wide time synchronization . . 67
5.3.6 Primitive types and physical quantities . . 68
5.3.7 Remote file system interface 70
5.3.8 Generic node commands 71
5.3.9 Node software update 71
5.3.10 Register interface 71
5.3.11 Diagnostics and event logging 72
5.3.12 Plug-and-play nodes 72
5.3.13 Internet/LAN forwarding interface . . . 72

6 List of standard data types 74
6.1 uavcan.diagnostic 78

6.1.1 Record 78
6.1.2 Severity 78

6.2 uavcan.file 79
6.2.1 GetInfo 79
6.2.2 List 79
6.2.3 Modify 80
6.2.4 Read 80
6.2.5 Write 81
6.2.6 Error 81
6.2.7 Path 81

6.3 uavcan.internet.udp 82
6.3.1 HandleIncomingPacket 82
6.3.2 OutgoingPacket 83

6.4 uavcan.node. 85
6.4.1 ExecuteCommand 85
6.4.2 GetInfo 86
6.4.3 GetTransportStatistics 86
6.4.4 Heartbeat 87
6.4.5 ID 88
6.4.6 IOStatistics 88
6.4.7 Version 88

6.5 uavcan.node.port 88
6.5.1 GetInfo 88
6.5.2 GetStatistics 89
6.5.3 List 90
6.5.4 ID 90
6.5.5 ServiceID 90

ii Support & feedback: uavcan.org © 2015–2019 UAVCAN Development Team

http://uavcan.org
http://uavcan.org

DRAFT

2019-11-15 Specification v1.0

6.5.6 SubjectID 91

6.6 uavcan.pnp 92
6.6.1 NodeIDAllocationData 92
6.6.2 NodeIDAllocationDataMTU8 94

6.7 uavcan.pnp.cluster 95
6.7.1 AppendEntries 95
6.7.2 Discovery 96
6.7.3 RequestVote 96
6.7.4 Entry 97

6.8 uavcan.register 98
6.8.1 Access 98
6.8.2 List 99
6.8.3 Name 99
6.8.4 Value 100

6.9 uavcan.time 101
6.9.1 GetSynchronizationMasterInfo 101
6.9.2 Synchronization 101
6.9.3 SynchronizedTimestamp 103
6.9.4 TimeSystem 103

6.10 uavcan.metatransport.can 104
6.10.1 ArbitrationID 104
6.10.2 BaseArbitrationID 104
6.10.3 DataClassic 104
6.10.4 DataFD 104
6.10.5 Error 105
6.10.6 ExtendedArbitrationID 105
6.10.7 Frame 105
6.10.8 Manifestation. 105
6.10.9 RTR 106

6.11 uavcan.metatransport.serial 106
6.11.1 Fragment 106

6.12 uavcan.metatransport.udp 106
6.12.1 Endpoint 106
6.12.2 Frame 106

6.13 uavcan.primitive 108
6.13.1 Empty 108
6.13.2 String 108
6.13.3 Unstructured 108

6.14 uavcan.primitive.array 108
6.14.1 Bit 108
6.14.2 Integer8 108
6.14.3 Integer16 109
6.14.4 Integer32 109
6.14.5 Integer64 109
6.14.6 Natural8 109
6.14.7 Natural16 109
6.14.8 Natural32 109
6.14.9 Natural64 110
6.14.10 Real16 110
6.14.11 Real32 110
6.14.12 Real64 110

6.15 uavcan.primitive.scalar 110
6.15.1 Bit 110
6.15.2 Integer8 110
6.15.3 Integer16 111
6.15.4 Integer32 111
6.15.5 Integer64 111
6.15.6 Natural8 111
6.15.7 Natural16 111
6.15.8 Natural32 111
6.15.9 Natural64 111
6.15.10 Real16 112
6.15.11 Real32 112
6.15.12 Real64 112

6.16 uavcan.si.sample.acceleration. 112
6.16.1 Scalar 112
6.16.2 Vector3 112

6.17 uavcan.si.sample.angle 112
6.17.1 Quaternion 112
6.17.2 Scalar 113

6.18 uavcan.si.sample.angular_velocity . . . 113
6.18.1 Scalar 113
6.18.2 Vector3 113

6.19 uavcan.si.sample.duration 113
6.19.1 Scalar 113
6.19.2 WideScalar 113

6.20 uavcan.si.sample.electric_charge. . . . 113
6.20.1 Scalar 113

6.21 uavcan.si.sample.electric_current . . . 114
6.21.1 Scalar 114

6.22 uavcan.si.sample.energy 114
6.22.1 Scalar 114

6.23 uavcan.si.sample.length 114
6.23.1 Scalar 114
6.23.2 Vector3 114
6.23.3 WideVector3 114

6.24 uavcan.si.sample.magnetic_field_strength
114
6.24.1 Scalar 115
6.24.2 Vector3 115

6.25 uavcan.si.sample.mass 115
6.25.1 Scalar 115

6.26 uavcan.si.sample.power 115
6.26.1 Scalar 115

6.27 uavcan.si.sample.pressure 115
6.27.1 Scalar 115

6.28 uavcan.si.sample.temperature 115
6.28.1 Scalar 115

6.29 uavcan.si.sample.velocity 116
6.29.1 Scalar 116
6.29.2 Vector3 116

6.30 uavcan.si.sample.voltage 116
6.30.1 Scalar 116

6.31 uavcan.si.sample.volume 116
6.31.1 Scalar 116

6.32 uavcan.si.sample.volumetric_flow_rate . 116
6.32.1 Scalar 116

6.33 uavcan.si.unit.acceleration 117
6.33.1 Scalar 117
6.33.2 Vector3 117

6.34 uavcan.si.unit.angle 117
6.34.1 Quaternion 117
6.34.2 Scalar 117

6.35 uavcan.si.unit.angular_velocity 117
6.35.1 Scalar 117
6.35.2 Vector3 117

6.36 uavcan.si.unit.duration 118
6.36.1 Scalar 118
6.36.2 WideScalar 118

6.37 uavcan.si.unit.electric_charge 118
6.37.1 Scalar 118

6.38 uavcan.si.unit.electric_current 118
6.38.1 Scalar 118

6.39 uavcan.si.unit.energy. 118
6.39.1 Scalar 118

6.40 uavcan.si.unit.length 118
6.40.1 Scalar 118
6.40.2 Vector3 119
6.40.3 WideVector3 119

6.41 uavcan.si.unit.magnetic_field_strength . 119
6.41.1 Scalar 119
6.41.2 Vector3 119

6.42 uavcan.si.unit.mass 119
6.42.1 Scalar 119

© 2015–2019 UAVCAN Development Team Support & feedback: uavcan.org iii

http://uavcan.org
http://uavcan.org

DRAFT

Specification v1.0 2019-11-15

6.43 uavcan.si.unit.power 119
6.43.1 Scalar 119

6.44 uavcan.si.unit.pressure 120
6.44.1 Scalar 120

6.45 uavcan.si.unit.temperature. 120
6.45.1 Scalar 120

6.46 uavcan.si.unit.velocity 120
6.46.1 Scalar 120
6.46.2 Vector3 120

6.47 uavcan.si.unit.voltage 120
6.47.1 Scalar 120

6.48 uavcan.si.unit.volume 121
6.48.1 Scalar 121

6.49 uavcan.si.unit.volumetric_flow_rate. . . 121
6.49.1 Scalar 121

7 Physical layer 122
7.1 CAN bus physical layer specification . . 123

7.1.1 Physical connector specification . . . 123
7.1.2 CAN bus physical layer parameters . . . 130

7.2 Hardware design recommendations. . . 131
7.2.1 Non-uniform transport redundancy . . 131
7.2.2 Bus power supply. 131

iv Support & feedback: uavcan.org © 2015–2019 UAVCAN Development Team

http://uavcan.org
http://uavcan.org

DRAFT

2019-11-15 Specification v1.0

List of tables

2.1 Data type taxonomy . 5
2.2 Published message properties . 6
2.3 Service request/response properties . 7

3.1 Notation used in the formal grammar definition. 11
3.2 Unary operators . 14
3.3 Binary operators . 14
3.4 String literal escape sequences. 15
3.5 Reserved identifier patterns (POSIX ERE notation, ASCII character set, case-insensitive) 16
3.6 Operators defined on instances of rational numbers 17
3.7 Operators defined on instances of Unicode strings . 17
3.8 Attributes defined on instances of sets . 18
3.9 Operators defined on instances of sets . 18
3.10 Properties of integer types . 19
3.11 Properties of floating point types . 19
3.12 Lossy assignment rules per cast mode . 19
3.13 Operators defined on instances of type boolean . 20
3.14 Permitted constant attribute value initialization patterns. 23
3.15 Local attribute representation . 24
3.16 Complex bit compatibility examples . 33

4.1 Common transfer properties . 41
4.2 Service request transfer properties . 42
4.3 Service response transfer properties . 42
4.4 Transfer CRC algorithm parameters . 45
4.5 Transfer reception state variables . 49
4.6 CAN ID fields for message transfers . 53
4.7 CAN ID fields for service transfers . 53
4.8 CAN transfer priority level mapping . 54
4.9 Tail byte structure . 55
4.10 CAN frame data segments for single-frame transfers 56
4.11 CAN frame data segments for multi-frame transfers (except the last CAN frame of the transfer) 56
4.12 CAN frame data segments for multi-frame transfers (the last CAN frame of the transfer) 56

5.1 Port identifier distribution . 61
5.2 Index of the nested namespace “uavcan.node.port” 67
5.3 Index of the nested namespace “uavcan.time” . 67
5.4 Index of the nested namespace “uavcan.si” . 69
5.5 Index of the nested namespace “uavcan.primitive” . 70
5.6 Index of the nested namespace “uavcan.file” . 71
5.7 Index of the nested namespace “uavcan.register” . 72
5.8 Index of the nested namespace “uavcan.pnp” . 72
5.9 Index of the nested namespace “uavcan.internet” . 73

6.1 Index of the root namespace “uavcan” . 75

7.1 Standard CAN connector types . 123
7.2 UAVCAN D-Sub connector pinout . 124
7.3 UAVCAN M8 connector pinout . 126
7.4 UAVCAN Micro connector pinout. 128
7.5 Standard CAN 2.0 PHY parameters . 130

© 2015–2019 UAVCAN Development Team Support & feedback: uavcan.org v

http://uavcan.org
http://uavcan.org

DRAFT

Specification v1.0 2019-11-15

List of figures

2.1 UAVCAN architectural diagram. 6

3.1 Data type name structure. 9
3.2 Data type definition file name structure. 9
3.3 DSDL directory structure example. 10
3.4 Reference to an external composite data type definition. 22
3.5 Reference to an external composite data type definition located in the same namespace. 22
3.6 Bit and byte ordering. 27

4.1 Transfer payload truncation. 48
4.2 CAN ID structure . 53

5.1 Coordinate frame conventions. 62

7.1 UAVCAN D-Sub device connector example. 125
7.2 UAVCAN D-Sub cable connector example. 125
7.3 UAVCAN M8 connector pair example. 127
7.4 UAVCAN M8 assembled connector pair example. 127
7.5 UAVCAN Micro right-angle connectors with a twisted pair patch cable connected. 129
7.6 UAVCAN Micro CAN bus termination plug. 129
7.7 Non-uniform transport redundancy.. 131
7.8 Simplified conceptual power sinking node design schematic. 131
7.9 Simplified conceptual power sourcing node design schematic. 132

vi Support & feedback: uavcan.org © 2015–2019 UAVCAN Development Team

http://uavcan.org
http://uavcan.org

DRAFT

2019-11-15 Specification v1.0

1 Introduction
UAVCAN is a lightweight protocol designed to provide a highly reliable communication method for aerospace
and robotic applications via robust vehicle bus networks.

This is a non-normative chapter covering the basic concepts that govern development and maintenance of
the specification.

1.1 Document conventions
Non-normative text, examples, recommendations, and elaborations that do not directly participate in the
definition of the protocol are contained in footnotes2 or highlighted sections as shown below.

Non-normative sections such as examples are enclosed in shaded boxes like this.

Code listings are formatted as shown below. All such code is distributed under the same license as this spec-
ification, unless specifically stated otherwise.

1 # This is a source code listing.
2 print(’Hello world!’)

A byte is a group of eight (8) bits.

Textual patterns are specified using the standard POSIX Extended Regular Expression (ERE) syntax; the char-
acter set is ASCII and patterns are case sensitive, unless explicitly specified otherwise.

Type parametrization expressions use subscript notation, where the parameter is specified in the subscript
enclosed in angle brackets: type<parameter>.

Numbers are represented in base-10 by default. If a different base is used, it is specified after the number in
the subscript: BADC0FFEE16 = 50159747054, 101012.

1.2 Design principles
Democratic network — There will be no master node. All nodes in the network will have the same commu-
nication rights; there must be no single point of failure.

Facilitation of functional safety — A system designer relying on UAVCAN will have the necessary guaran-
tees and tools at their disposal to analyze the system and ensure its correct behavior.

High-level communication abstractions — The protocol will support publish/subscribe and remote pro-
cedure call communication semantics with statically defined and statically verified data types (schema). The
data types used for communication will be defined in a clear, platform-agnostic way that can be easily un-
derstood by machines, including humans.

Facilitation of cross-vendor interoperability — UAVCAN will be a common foundation that different ven-
dors can build upon to maximize interoperability of their equipment. UAVCAN will provide a generic set of
standard application-agnostic communication data types.

Well-defined generic high-level functions — UAVCAN will define standard services and messages for com-
mon high-level functions, such as network discovery, node configuration, node software update, node status
monitoring3, network-wide time synchronization, plug-and-play node support, etc.

Atomic data abstractions — Nodes must be provided with a simple way of exchanging large data structures
that exceed the capacity of a single transport frame4. UAVCAN should perform automatic data decomposi-
tion and reassembly at the protocol level, hiding the related complexity from the application.

High throughput, low latency, determinism — UAVCAN will add a very low overhead to the underlying
transport protocol, which will ensure high throughput and low latency, rendering the protocol well-suited
for hard real-time applications.

2This is a footnote.
3Which naturally grows into a vehicle-wide health monitoring solution.
4A transport frame is an atomic transmission unit defined by the underlying transport protocol. For example, a CAN frame.

1. Introduction 1/132

DRAFT

Specification v1.0 2019-11-15

Support for redundant interfaces and redundant nodes — UAVCAN must be suitable for use in applica-
tions that require modular redundancy.

Simple logic, low computational requirements — UAVCAN targets a wide variety of embedded systems,
from high-performance on-board computers to extremely resource-constrained microcontrollers. It will be
inexpensive to support in terms of computing power and engineering hours, and advanced features can be
implemented incrementally as needed.

Support for various transport protocols — UAVCAN will be usable with different transports. The standard
must be capable of accommodating other transport protocols in the future.

Open specification and reference implementations — The UAVCAN specification will always be open and
free to use for everyone; the reference implementations will be distributed under the terms of the permissive
MIT License or released into the public domain.

1.3 Capabilities
The maximum number of nodes per logical network is dependent on the transport protocol in use, but it is
guaranteed to be not less than 128.

UAVCAN supports an unlimited number of composite data types, which can be defined by the specification
(such definitions are called “standard data types”) or by others for private use or for public release (in which
case they are said to be “application-specific” or “vendor-specific”; these terms are equivalent). There can be
up to 256 major versions of a data type, and up to 256 minor versions per major version. More information is
provided in chapter 3.

UAVCAN supports 32768 message subject identifiers for publish/subscribe exchanges, 512 service identifiers
for remote procedure call exchanges, and at least 8 anonymous message subject identifiers for certain special
features such as plug-and-play support. A small subset of these identifiers is reserved for the core standard
and for publicly released vendor-specific types. More information is provided in chapter 5.

UAVCAN supports at least5 eight distinct communication priority levels, defined in section 4.1.4. Within each
priority level different types of transfers, messages, and services are prioritized in a well-defined, determin-
istic manner.

The list of transport protocols supported by UAVCAN is provided in chapter 4. Non-redundant, doubly-
redundant and triply-redundant transports are supported. More information on the physical layer and stan-
dardized physical connectivity options is provided in chapter 7.

1.4 Public regulated data types
This section talks about general management policies. The related technical aspects are covered in chapters 2
and 3.

The UAVCAN maintainers are charged with maintaining and advancing the set of public regulated data types
based on the input from adopters. This feedback is gathered via the online discussion and collaboration
websites which are open to the general public and available through uavcan.org.

The set of standard data types is a subset of public regulated data types and is an integral part of the speci-
fication; however, there is only a very small subset of required standard data types needed to implement the
protocol. A larger set of optional data types are defined to create a standardized data exchange environment
supporting the interoperability of COTS6 equipment manufactured by different vendors. See chapter 5 for
more information.

Within the same major version of the specification, the set of public regulated data type definitions can be
modified only in the following ways:

• A new data type can be added, as long as it doesn’t conflict with any of the existing data types.
• An existing data type can be modified, as long as its version number is updated accordingly and all back-
ward compatibility guarantees are respected.
• An existing data type or a particular major version of it can be declared deprecated.

• Once declared deprecated, the data type will be maintained for at least two more years. After this
period, its regulated fixed port-ID (if defined) may be reused for an incompatible data type definition.
The maintainers will be striving to postpone the reuse of regulated port identifiers as much as possible
in order to minimize the possibility of unintended conflicts.

5Depending on the transport protocol.
6Commercial off-the-shelf equipment.

2/132 1. Introduction

http://uavcan.org

DRAFT

2019-11-15 Specification v1.0

• Deprecation will be indicated in the DSDL definition and announced via the discussion forum.

A link to the repository containing the set of default DSDL definitions can be found on the official website.

1.5 Referenced sources
The UAVCAN specification contains references to the following sources:

• CiA 801 — Application note — Automatic bit rate detection.
• CiA 103 — Intrinsically safe capable physical layer.
• CiA 303 — Recommendation — Part 1: Cabling and connector pin assignment.
• IEEE 754 — Standard for binary floating-point arithmetic.
• ISO 11898-1 — Controller area network (CAN) — Part 1: Data link layer and physical signaling.
• ISO 11898-2 — Controller area network (CAN) — Part 2: High-speed medium access unit.
• ISO/IEC 10646 — Universal Coded Character Set (UCS).
• ISO/IEC 14882 — Programming Language C++.
• “Implementing a Distributed High-Resolution Real-Time Clock using the CAN-Bus”, M. Gergeleit and H.
Streich.
• “In Search of an Understandable Consensus Algorithm (Extended Version)”, Diego Ongaro and John
Ousterhout.
• semver.org - Semantic versioning specification.
• IEEE Std 1003.1 — IEEE Standard for Information Technology – Portable Operating System Interface
(POSIX) Base Specifications.
• IETF RFC2119 — Key words for use in RFCs to Indicate Requirement Levels.

1. Introduction 3/132

http://semver.org

DRAFT

Specification v1.0 2019-11-15

2 Basic concepts
2.1 Main principles

2.1.1 Communication

2.1.1.1 Architecture

A UAVCAN network is a decentralized peer network, where each peer (node) has a unique numeric identifier7

— node-ID — ranging from 0 up to a transport-specific upper boundary which is guaranteed to be not less
than 127. Nodes of a UAVCAN network can communicate using the following communication methods:

Message publication — The primary method of data exchange with one-to-many publish/subscribe seman-
tics.

Service invocation — The communication method for one-to-one request/response interactions8.

For each type of communication, a predefined set of data types is used, where each data type has a unique
name. Additionally, every data type definition has a pair of major and minor version numbers, which enable
data type definitions to evolve in arbitrary ways while ensuring a well-defined migration path if backward-
incompatible changes are introduced. Some data types are standard and defined by the protocol specifica-
tion (of which only a small subset are required); others may be specific to a particular application or vendor.

2.1.1.2 Subjects and services

Message exchanges between nodes are grouped into subjects by the semantic meaning of the message. Mes-
sage exchanges belonging to the same subject use same message data type down to the major version (minor
versions are allowed to differ) and pertain to same function or process within the system.

Request/response exchanges between nodes are grouped into services by the semantic meaning of the re-
quest and response, like messages are grouped into subjects. Requests and their corresponding responses
that belong to the same service use same service data type down to the major version (minor versions are
allowed to differ; as a consequence, the minor data type version number of a service response may differ
from that of its corresponding request) and pertain to the same function.

Each message subject is identified by a unique natural number – a subject-ID; likewise, each service is identi-
fied by a unique service-ID. An umbrella term port-ID is used to refer either to a subject-ID or to a service-ID
(port identifiers have no direct manifestation in the construction of the protocol, but they are convenient for
discussion). The sets of subject-ID and service-ID are orthogonal.

Port identifiers are assigned to various functions, processes, or data streams within the network at the system
definition time. Generally, a port identifier can be selected arbitrarily by a system integrator by changing
relevant configuration parameters of connected nodes, in which case such port identifiers are called non-
fixed port identifiers. It is also possible to permanently associate any data type definition with a particular
port identifier at a data type definition time, in which case such port identifiers are called fixed port identifiers;
their usage is governed by rules and regulations described in later sections.

A port-ID used in a given UAVCAN network shall not be shared between functions, processes, or data streams
that have different semantic meaning.

A port-ID used in a given UAVCAN network shall not be used with different data type definitions unless they
share the same full name and the same major version number9.

A data type of a given major version can be used simultaneously with an arbitrary number of non-fixed dif-
ferent port identifiers, but not more than one fixed port identifier.

2.1.2 Data types

2.1.2.1 Data type definitions

Message and service data types are defined using the data structure description language (DSDL) (chapter 3).
A DSDL definition specifies the name, major version, minor version, the data schemas, and an optional fixed
port-ID of the data type among other less important properties. Message data types always define exactly

7Here and elsewhere in this specification, ID and identifier are used interchangeably unless specifically indicated otherwise.
8Like remote procedure call (RPC).
9More on data type versioning in section 3.8.

4/132 2. Basic concepts

DRAFT

2019-11-15 Specification v1.0

one data schema, whereas service data types contain two independent schema definitions: one for request,
and the other for response.

2.1.2.2 Regulation

Data type definitions can be created by the UAVCAN specification maintainers or by its users, such as equip-
ment vendors or application designers. Irrespective of the origin, data types can be included into the set
of data type definitions maintained and distributed by the UAVCAN specification maintainers; definitions
belonging to this set are termed regulated data type definitions. The specification maintainers undertake to
keep regulated definitions well-maintained and may occasionally amend them and release new versions, if
such actions are believed to benefit the protocol. User-created (i.e., vendor-specific or application-specific)
data type definitions that are not included into the aforementioned set are called unregulated data type defi-
nitions.

Unregulated definitions that are made available for reuse by others are called unregulated public data type
definitions; those that are kept closed-source for private use by their authors are called (unregulated) private
data type definitions10.

Data type definitions authored by the specification maintainers for the purpose of supporting and advancing
this specification are called standard data type definitions. All standard data type definitions are regulated.

Fixed port identifiers can be used only with regulated data type definitions or with private definitions. Fixed
port identifiers must not be used with public unregulated data types, since that is likely to cause unresolvable
port identifier collisions11. This restriction shall be followed at all times by all compliant implementations
and systems12.

Table 2.1: Data type taxonomy

Regulated Unregulated

Public Standard and contributed (e.g., vendor-specific)
definitions.
Fixed port identifiers are allowed; they are called
“regulated port-ID”.

Definitions distributed separately from the
UAVCAN specification.
Fixed port identifiers are not allowed.

Private Nonexistent category. Definitions that are not available to anyone except
their authors.
Fixed port identifiers are permitted (although not
recommended); they are called “unregulated fixed
port-ID”.

DSDL processing tools shall prohibit unregulated fixed port identifiers by default, unless they are explicitly
configured otherwise.

Each of the two sets of valid port identifiers (which are subject identifiers and service identifiers) are segre-
gated into three categories (the ranges are documented in chapter 5):

• Application-specific port identifiers. These can be assigned by changing relevant configuration parameters
of the connected nodes (in which case they are called non-fixed or runtime-assigned), or at the data type
definition time (in which case they are called fixed unregulated, and they generally should be avoided due to
the risks of collisions as explained earlier).
• Regulated non-standard fixed port identifiers. These are assigned by the specification maintainers for non-
standard contributed vendor-specific public data types.
• Standard fixed port identifiers. These are assigned by the specification maintainers for standard regulated
public data types.

Data type authors that want to release regulated data type definitions or contribute to the standard data
type set should contact the UAVCAN maintainers for coordination. The maintainers will choose unoccupied
fixed port identifiers for use with the new definitions, if necessary. Since the set of regulated definitions is
maintained in a highly centralized manner, it can be statically ensured that no identifier collisions will take

10The word “unregulated” is redundant because private data types cannot be regulated, by definition. Likewise, all regulated definitions are public,
so the word “public” can be omitted.

11Any system that relies on data type definitions with fixed port identifiers provided by an external party (i.e., data types and the system in question are
designed by different parties) runs the risk of encountering port identifier conflicts that cannot be resolved without resorting to help from said external
party since the designers of the system do not have control over their fixed port identifiers. Because of this, the specification strongly discourages the
use of fixed unregulated private port identifiers. If a data type definition is ever disclosed to any other party (i.e., a party that did not author it) or to the
public at large it is important that the data type not include a fixed port-identifier.

12In general, private unregulated fixed port identifiers are collision-prone by their nature, so they should be avoided unless there are very strong
reasons for their usage and the authors fully understand the risks.

2. Basic concepts 5/132

DRAFT

Specification v1.0 2019-11-15

place within it; also, since the identifier ranges used with regulated definitions are segregated, regulated port-
IDs will not conflict with any other compliant UAVCAN node or system13.

2.1.2.3 Serialization

A DSDL description can be used to automatically generate the serialization and deserialization code for every
defined data type in a particular programming language. Alternatively, a DSDL description can be used to
construct appropriate serialization code manually by a human. DSDL ensures that the worst case memory
footprint and computational complexity per data type are constant and easily predictable.

Serialized message and service objects14 are exchanged by means of the transport layer (chapter 4), which
implements automatic decomposition of long transfers into several transport frames15 and reassembly from
these transport frames back into a single atomic data block, allowing nodes to exchange serialized objects of
arbitrary size (DSDL guarantees, however, that the minimum and maximum size of the serialized represen-
tation of any object of any data type is always known statically).

2.1.3 High-level functions

On top of the standard data types, UAVCAN defines a set of standard high-level functions including: node
health monitoring, node discovery, time synchronization, firmware update, plug-and-play node support,
and more. For more information see chapter 5.

Applications

Required functions Standard functions Custom functions

Required data types Standard data types Custom data types

Serialization

Transport

Figure 2.1: UAVCAN architectural diagram.

2.2 Message publication
Message publication refers to the transmission of a serialized message object over the network to other nodes.
This is the primary data exchange mechanism used in UAVCAN; it is functionally similar to raw data exchange
with minimal overhead, additional communication integrity guarantees, and automatic decomposition and
reassembly of long payloads across multiple transport frames. Typical use cases may include transfer of the
following kinds of data (either cyclically or on an ad-hoc basis): sensor measurements, actuator commands,
equipment status information, and more.

Information contained in a published message is summarized in the table 2.2.

Table 2.2: Published message properties

Property Description

Payload The serialized message object.

Subject-ID Numerical identifier that indicates how the information should be interpreted.

Source node-ID The node-ID of the transmitting node (excepting anonymous messages).

Transfer-ID A small overflowing integer that increments with every transfer of this message type from a given
node. Used for message sequence monitoring, multi-frame transfer reassembly, and elimination
of transport frame duplication errors for single-frame transfers. Additionally, Transfer-ID is crucial
for automatic management of redundant transport interfaces. Its properties are explained in detail
in the chapter 4.

2.2.1 Anonymous message publication

Nodes that don’t have a unique node-ID can publish only anonymous messages. An anonymous message is
different from a regular message in that it doesn’t contain a source node-ID, and that it can’t be decomposed
across several transport frames.

UAVCAN nodes will not have an identifier initially until they are assigned one, either statically (which is gen-
erally the preferred option for applications where a high degree of determinism and high safety assurances
are required) or automatically (i.e., plug-and-play). Anonymous messages are particularly useful for the plug-
and-play feature, which is explored in detail in chapter 5.

13The motivation for the prohibition of fixed port identifiers in unregulated public data types is derived directly from the above: since there is no
central repository of unregulated definitions, collisions would be likely.

14Here and elsewhere, an object means a value that is an instance of a well-defined type.
15Here and elsewhere, a transport frame means a block of data that can be atomically exchanged over the transport layer network, e.g., a CAN frame.

6/132 2. Basic concepts

DRAFT

2019-11-15 Specification v1.0

Anonymous messages cannot be decomposed into multiple transport frames, meaning that their payload
capacity is limited to that of a single transport frame. More info is provided in chapter 4.

2.3 Service invocation
Service invocation is a two-step data exchange operation between exactly two nodes: a client and a server.
The steps are16:

1. The client sends a service request to the server.
2. The server takes appropriate actions and sends a response to the client.

Typical use cases for this type of communication include: node configuration parameter update, firmware
update, an ad-hoc action request, file transfer, and other functions of similar nature.

Information contained in service requests and responses is summarized in the table 2.3.

Table 2.3: Service request/response properties

Property Description

Payload The serialized request/response object.

Service-ID Numerical identifier that indicates how the service should be handled.

Client node-ID Source node-ID during request transfer, destination node-ID during response transfer.

Server node-ID Destination node-ID during request transfer, source node-ID during response transfer.

Transfer-ID A small overflowing integer that increments with every call of this service type from a given node.
Used for request/response matching, multi-frame transfer reassembly, and elimination of trans-
port frame duplication errors for single-frame transfers. Additionally, Transfer-ID is crucial for au-
tomatic management of redundant transport interfaces. Its properties are explained in detail in the
chapter 4.

Both the request and the response contain same values for all listed fields except payload, where the con-
tent is application-defined. Clients match responses with corresponding requests using the following fields:
service-ID, client node-ID, server node-ID, and transfer-ID.

16The request/response semantic is facilitated by means of hardware (if available) or software acceptance filtering and higher-layer logic. No addi-
tional support or non-standard transport layer features are required.

2. Basic concepts 7/132

DRAFT

Specification v1.0 2019-11-15

3 Data structure description language
The data structure description language, or DSDL, is a simple domain-specific language designed for defining
composite data types. The defined data types are used for exchanging data between UAVCAN nodes via one
of the standard UAVCAN transport protocols17.

3.1 Architecture

3.1.1 General principles

In accordance with the UAVCAN architecture, DSDL allows users to define data types of two kinds: mes-
sage types and service types. Message types are used to exchange data over publish-subscribe one-to-many
message links identified by subject-ID, and service types are used to perform request-response one-to-one
exchanges (like RPC) identified by service-ID. A message data type defines one data schema of the message
object, and a service data type contains two independent data schema definitions: one of them applies to the
request object (transferred from client to server), and the other applies to the response object (transferred
from the server back to the client).

Following the deterministic nature of UAVCAN, the size of a serialized representation of any message or ser-
vice object is bounded within statically known limits. Variable-size entities always have a fixed size limit
defined by the data type designer.

DSDL definitions are strongly statically typed.

DSDL provides a well-defined means of data type versioning, which enables data type maintainers to intro-
duce changes to released data types while ensuring backward compatibility with fielded systems.

DSDL is designed to support extensive static analysis. Important properties of data type definitions such as
backward binary compatibility and data field layouts can be checked and validated by automatic software
tools before the systems utilizing them are fielded.

DSDL definitions can be used to automatically generate serialization (and deserialization) source code for
any data type in a target programming language. A tool that is capable of generating serialization code based
on a DSDL definition is called a DSDL compiler. More generically, a software tool designed for working with
DSDL definitions is called a DSDL processing tool.

3.1.2 Data types and namespaces

Every data type is located inside a namespace. Namespaces may be included into higher-level namespaces,
forming a tree hierarchy.

A namespace that is at the root of the tree hierarchy (i.e., not nested within another one) is called a root
namespace. A namespace that is located inside another namespace is called a nested namespace.

A data type is uniquely identified by its namespaces and its short name. The short name of a data type is the
name of the type itself excluding the containing namespaces.

A full name of a data type consists of its short name and all of its namespace names. The short name and the
namespace names included in a full name are called name components. Name components are ordered: the
root namespace is always the first component of the name, followed by the nested namespaces, if there are
any, in the order of their nesting; the short name is always the last component of the full name. The full name
is formed by joining its name components via the ASCII dot character “.” (ASCII code 46).

A full namespace name is the full name without the short name and its component separator.

A sub-root namespace is a nested namespace that is located immediately under its root namespace. Data
types that reside directly under their root namespace do not have a sub-root namespace.

The name structure is illustrated on the figure 3.1.

17The standard transport protocols are documented in chapter 4. UAVCAN doesn’t prohibit users from defining their own application-specific trans-
ports as well, although users doing that are likely to encounter compatibility issues and possibly a suboptimal performance of the protocol.

8/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

full name︷ ︸︸ ︷
uavcan︸ ︷︷ ︸

root
namespace

.node︸ ︷︷ ︸
nested, also

sub-root
namespace

.port︸ ︷︷ ︸
nested

namespace︸ ︷︷ ︸
full namespace

.GetInfo︸ ︷︷ ︸
short name

Figure 3.1: Data type name structure.

A set of full namespace names and a set of full data type names must not intersect18.

Data type names and namespace names are case-sensitive. However, names that differ only in letter case are
not permitted19. In other words, a pair of names which differ only in letter case is considered to constitute a
name collision.

A name component consists of alphanumeric ASCII characters (which are: A-Z, a-z, and 0-9) and under-
score (“_”, ASCII code 95). An empty string is not a valid name component. The first character of a name
component must not be a digit. A name component must not match any of the reserved word patterns,
which are listed in the table 3.5.

The length of a full data type name must not exceed 50 characters20.

Every data type definition is assigned a major and minor version number pair. In order to uniquely identify a
data type definition, its version numbers must be specified. In the following text, the term version without a
majority qualifier refers to a pair of major and minor version numbers.

Valid data type version numbers range from 0 to 255, inclusively. A data type version where both major and
minor components are zero is not allowed.

3.1.3 File hierarchy

DSDL data type definitions are contained in UTF-8 encoded text files with a file name extension .uavcan.

One file defines exactly one version of a data type, meaning that each combination of major and minor ver-
sion numbers must be unique per data type name. There may be an arbitrary number of versions of the same
data type defined alongside each other, provided that each version is defined at most once. Version number
sequences can be non-contiguous, meaning that it is allowed to skip version numbers or remove existing
definitions that are neither oldest nor newest.

A data type definition may have an optional fixed port-ID21 value specified.

The name of a data type definition file is constructed from the following entities joined via the ASCII dot
character “.” (ASCII code 46), in the specified order:

• Fixed port-ID in decimal notation, unless a fixed port-ID is not provided for this definition.
• Short name of the data type (mandatory, always non-empty).
• Major version number in decimal notation (mandatory).
• Minor version number in decimal notation (mandatory).
• File name extension “uavcan” (mandatory).

optional︷ ︸︸ ︷
432︸ ︷︷ ︸

fixed
port-ID

.
mandatory︷ ︸︸ ︷

GetInfo︸ ︷︷ ︸
short name

.1.0︸ ︷︷ ︸
version

numbers

.uavcan︸ ︷︷ ︸
file extension

Figure 3.2: Data type definition file name structure.

DSDL namespaces are represented as directories, where one directory defines exactly one namespace, possi-
bly nested. The name of the directory defines the name of its data type name component. A directory defin-
ing a namespace will always define said namespace in its entirety, meaning that the contents of a namespace

18For example, a namespace “vendor.example” and a data type “vendor.example.1.0” are mutually exclusive. Note the data type name shown in
this example violates the naming conventions which are reviewed in a separate section.

19Because that may cause problems with case-insensitive file systems.
20This includes the name component separators.
21Chapter 2.

3. Data structure description language 9/132

DRAFT

Specification v1.0 2019-11-15

cannot be spread across different directories sharing the same name. One directory cannot define more than
one level of nesting22.

Directory tree Entry description

vendor_x/ Root namespace vendor_x.

foo/ Nested namespace (also sub-root) vendor_x.foo.

100.Run.1.0.uavcan Data type definition v1.0 with fixed service-ID 100.

100.Status.1.0.uavcan Data type definition v1.0 with fixed subject-ID 100.

ID.1.0.uavcan Data type definition v1.0 without fixed port-ID.

ID.1.1.uavcan Data type definition v1.1 without fixed port-ID.

bar_42/ Nested namespace vendor_x.foo.bar_42.

101.List.1.0.uavcan Data type definition v1.0 with fixed service-ID 101.

102.List.2.0.uavcan Data type definition v2.0 with fixed service-ID 102.

ID.1.0.uavcan Data type definition v1.0 without fixed port-ID.

Figure 3.3: DSDL directory structure example.

3.1.4 Elements of data type definition

A data type definition file contains an exhaustive description of a particular version of the said data type in
the data structure description language (DSDL). As explained above, one data type definition contains either
one or two data schema definitions, for message types and service types, respectively.

A data schema definition contains an ordered, possibly empty collection of field attributes and/or unordered,
possibly empty collection of constant attributes. A data schema may describe either a structure object or a
tagged union object. The value of a structure object is a function of the values of all of its field attributes. A
tagged union object is formed from at least two field attributes, but it is capable of holding exactly one field
attribute value at any given time. The value of a tagged union object is a function of which field attribute
value it is holding at the moment and the value of said field attribute.

A field attribute represents a named dynamically assigned value of a statically defined type that can be ex-
changed over the network as a member of its containing object. A padding field attribute is a special kind of
field attribute which is used for data alignment purposes; such field attributes are not named.

A constant attribute represents a named statically defined value of a statically defined type. Constants are
never exchanged over the network, since they are assumed to be known to all involved nodes by virtue of
them sharing compatible definitions of the data type.

Constant values are defined via DSDL expressions, which are evaluated at the time of DSDL definition pro-
cessing. There is a special category of types called expression types, instances of which are used only during
expression evaluation and cannot be exchanged over the network.

Data type definitions can also contain various auxiliary elements reviewed later, such as deprecation mark-
ers (notifying its users that the data type is no longer recommended for new designs) or assertions (special
statements introduced by data type designers which are statically validated by DSDL processing tools).

3.1.5 Serialization

Every object that can be exchanged between UAVCAN nodes has a well-defined serialized representation. The
value and meaning of an object can be unambiguously recovered from its serialized representation, provided
that the type of the object is known. Such recovery process is called deserialization.

A serialized representation is a sequence of binary digits (bits); the number of bits in a serialized represen-
tation is called its bit length. A bit length set of a data type (or a data schema) refers to the set of bit length
values of all possible serialized representations of objects that are instances of the data type (or that follow
the data schema).

The data type of a serialized message or service object exchanged over the network is recovered from its
subject-ID or service-ID, respectively, which is attached to the serialized object, along with other metadata,
in a manner dictated by the applicable transport layer specification (chapter 4). For more information on
port identifiers and data type mapping refer to section 2.1.1.2.

22For example, “foo.bar” is not a valid directory name. The valid representation would be “bar” nested in “foo”.

10/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

3.2 Grammar
This section contains the formal definition of the DSDL grammar. Its notation is introduced beforehand. The
meaning of each element of the grammar and their semantics will be explained in the following sections.

3.2.1 Notation

The notation used in the following definition is a variant of the extended Backus–Naur form23. The rule
definition patterns are specified in the table 3.1. The text of the formal definition contains comments which
begin with an octothorp and last until the end of the line.

Table 3.1: Notation used in the formal grammar definition

Pattern Description

"korovan" Denotes a terminal string of ASCII characters. The string is case-sensitive.

(space) Concatenation. E.g., korovan paukan excavator matches a sequence
where the specified tokens appear in the defined order.

korovan / paukan / excavator Alternatives. The leftmost matching alternative is accepted.

korovan? Optional greedy match.

paukan* Zero or more expressions, greedy match.

excavator+ One or more expressions, greedy match.

~r"regex-pattern" An IEEE POSIX Extended Regular Expression pattern defined between the dou-
ble quotes. The expression operates on the ASCII character set and is always
case-sensitive. ASCII escape sequences “\r”, “\n”, and “\t” are used to denote
ASCII carriage return (code 13), line feed (code 10), and tabulation (code 9)
characters, respectively.

~r’regex-pattern’ As above, with single quotes instead of double quotes.

(korovan paukan) Parentheses are used for grouping.

3.2.2 Definition

At the top level, a DSDL definition file is an ordered collection of statements; the order is determined by the
relative placement of statements inside the DSDL source file: statements located closer the beginning of the
file precede those that are located closer to the end of the file.

From the top level down to the expression rule, the grammar is a valid regular grammar, meaning that it can
be parsed using standard regular expressions.

The grammar definition provided here assumes lexerless parsing; that is, it applies directly to the unpro-
cessed source text of the definition.

All characters used in the definition belong to the ASCII character set.

23This notation is a subset of the notation defined in a Python parsing library titled Parsimonious. Parsimonious is an MIT-licensed software product
authored by Erik Rose; its sources are available at https://github.com/erikrose/parsimonious.

3. Data structure description language 11/132

https://github.com/erikrose/parsimonious

DRAFT

Specification v1.0 2019-11-15

1 definition = line (end_of_line line)* # An empty file is a valid definition. Trailing end-of-line is optional.
2 line = statement? _? comment? # An empty line is a valid line.
3 comment = ~r"#[^\r\n]*"
4 end_of_line = ~r"\r?\n" # Unix/Windows
5 _ = ~r"[\t]+" # Whitespace

6 identifier = ~r"[a-zA-Z_][a-zA-Z0-9_]*"

7 # == Statements ==

8 statement = statement_directive
9 / statement_service_response_marker
10 / statement_attribute

11 statement_attribute = statement_constant
12 / statement_field
13 / statement_padding_field

14 statement_constant = type _ identifier _? "=" _? expression
15 statement_field = type _ identifier
16 statement_padding_field = type_void "" # The trailing empty symbol is to prevent the node from being optimized away.

17 statement_service_response_marker = ~r"---+" # Separates request/response, specifies that the definition is a service.

18 statement_directive = statement_directive_with_expression
19 / statement_directive_without_expression
20 statement_directive_with_expression = "@" identifier _ expression # The expression type must match the directive.
21 statement_directive_without_expression = "@" identifier

22 # == Data types ==

23 type = type_array
24 / type_scalar

25 type_array = type_array_variable_inclusive
26 / type_array_variable_exclusive
27 / type_array_fixed

28 type_array_variable_inclusive = type_scalar _? "[" _? "<=" _? expression _? "]" # Expression must yield integer.
29 type_array_variable_exclusive = type_scalar _? "[" _? "<" _? expression _? "]"
30 type_array_fixed = type_scalar _? "[" _? expression _? "]"

31 type_scalar = type_versioned
32 / type_primitive
33 / type_void

34 type_versioned = identifier ("." identifier)* "." type_version_specifier
35 type_version_specifier = literal_integer_decimal "." literal_integer_decimal

36 type_primitive = type_primitive_truncated
37 / type_primitive_saturated

38 type_primitive_truncated = "truncated" _ type_primitive_name
39 type_primitive_saturated = ("saturated" _)? type_primitive_name # Defaults to this.

40 type_primitive_name = type_primitive_name_boolean
41 / type_primitive_name_unsigned_integer
42 / type_primitive_name_signed_integer
43 / type_primitive_name_floating_point

44 type_primitive_name_boolean = "bool"
45 type_primitive_name_unsigned_integer = "uint" type_bit_length_suffix
46 type_primitive_name_signed_integer = "int" type_bit_length_suffix
47 type_primitive_name_floating_point = "float" type_bit_length_suffix

48 type_void = "void" type_bit_length_suffix

49 type_bit_length_suffix = ~r"[1-9]\d*"

50 # == Expressions ==

51 expression = ex_logical # Aliased for clarity.

52 expression_list = (expression (_? "," _? expression)*)? # May be empty.

53 expression_parenthesized = "(" _? expression _? ")" # Used for managing precedence.

54 expression_atom = expression_parenthesized # Ordering matters.
55 / type
56 / literal
57 / identifier

58 # Operators. The precedence relations are expressed in the rules; the order here is from lower to higher.
59 # Operators that share common prefix (e.g. < and <=) are arranged so that the longest form is specified first.
60 ex_logical = ex_logical_not (_? op2_log _? ex_logical_not)*
61 ex_logical_not = op1_form_log_not / ex_comparison
62 ex_comparison = ex_bitwise (_? op2_cmp _? ex_bitwise)*
63 ex_bitwise = ex_additive (_? op2_bit _? ex_additive)*
64 ex_additive = ex_multiplicative (_? op2_add _? ex_multiplicative)*
65 ex_multiplicative = ex_inversion (_? op2_mul _? ex_inversion)*
66 ex_inversion = op1_form_inv_pos / op1_form_inv_neg / ex_exponential

12/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

67 ex_exponential = ex_attribute (_? op2_exp _? ex_inversion)? # Right recursion
68 ex_attribute = expression_atom (_? op2_attrib _? identifier)*

69 # Unary operator forms are moved into separate rules for ease of parsing.
70 op1_form_log_not = "!" _? ex_logical_not # Right recursion
71 op1_form_inv_pos = "+" _? ex_exponential
72 op1_form_inv_neg = "-" _? ex_exponential

73 # Logical operators; defined for booleans.
74 op2_log = op2_log_or / op2_log_and
75 op2_log_or = "||"
76 op2_log_and = "&&"

77 # Comparison operators.
78 op2_cmp = op2_cmp_equ / op2_cmp_geq / op2_cmp_leq / op2_cmp_neq / op2_cmp_lss / op2_cmp_grt # Ordering is important.
79 op2_cmp_equ = "=="
80 op2_cmp_neq = "!="
81 op2_cmp_leq = "<="
82 op2_cmp_geq = ">="
83 op2_cmp_lss = "<"
84 op2_cmp_grt = ">"

85 # Bitwise integer manipulation operators.
86 op2_bit = op2_bit_or / op2_bit_xor / op2_bit_and
87 op2_bit_or = "|"
88 op2_bit_xor = "^"
89 op2_bit_and = "&"

90 # Additive operators.
91 op2_add = op2_add_add / op2_add_sub
92 op2_add_add = "+"
93 op2_add_sub = "-"

94 # Multiplicative operators.
95 op2_mul = op2_mul_mul / op2_mul_div / op2_mul_mod # Ordering is important.
96 op2_mul_mul = "*"
97 op2_mul_div = "/"
98 op2_mul_mod = "%"

99 # Exponential operators.
100 op2_exp = op2_exp_pow
101 op2_exp_pow = "**"

102 # The most tightly bound binary operator - attribute reference.
103 op2_attrib = "."

104 # === Literals ===

105 literal = literal_set # Ordering is important to avoid ambiguities.
106 / literal_real
107 / literal_integer
108 / literal_string
109 / literal_boolean

110 # Set.
111 literal_set = "{" _? expression_list _? "}"

112 # Integer.
113 literal_integer = literal_integer_binary
114 / literal_integer_octal
115 / literal_integer_hexadecimal
116 / literal_integer_decimal
117 literal_integer_binary = ~r"0[bB](_?(0|1))+"
118 literal_integer_octal = ~r"0[oO](_?[0-7])+"
119 literal_integer_hexadecimal = ~r"0[xX](_?[0-9a-fA-F])+"
120 literal_integer_decimal = ~r"(0(_?0)*)+|([1-9](_?[0-9])*)"

121 # Real. Exponent notation is defined first to avoid ambiguities.
122 literal_real = literal_real_exponent_notation
123 / literal_real_point_notation
124 literal_real_exponent_notation = (literal_real_point_notation / literal_real_digits) literal_real_exponent
125 literal_real_point_notation = (literal_real_digits? literal_real_fraction) / (literal_real_digits ".")
126 literal_real_fraction = "." literal_real_digits
127 literal_real_exponent = ~r"[eE][+-]?" literal_real_digits
128 literal_real_digits = ~r"[0-9](_?[0-9])*"

129 # String.
130 literal_string = literal_string_single_quoted
131 / literal_string_double_quoted
132 literal_string_single_quoted = ~r"’[^’\\]*(\\[^\r\n][^’\\]*)*’"
133 literal_string_double_quoted = ~r’"[^"\\]*(\\[^\r\n][^"\\]*)*"’

134 # Boolean.
135 literal_boolean = literal_boolean_true
136 / literal_boolean_false
137 literal_boolean_true = "true"
138 literal_boolean_false = "false"

3. Data structure description language 13/132

DRAFT

Specification v1.0 2019-11-15

3.2.3 Expressions

Symbols representing operators belong to the ASCII (basic Latin) character set.

Operators of the same precedence level are evaluated from left to right.

The attribute reference operator is a special case: it is defined for an instance of any type on its left side and
an attribute identifier on its right side. The concept of “attribute identifier” is not otherwise manifested in
the type system. The attribute reference operator is not explicitly documented for any data type; instead, the
documentation specifies the set of available attributes for instances of said type, if there are any.

Table 3.2: Unary operators

Symbol Precedence Description

+ 3 Unary plus

- (hyphen-minus) 3 Unary minus

! 8 Logical not

Table 3.3: Binary operators

Symbol Precedence Description

. (full stop) 1 Attribute reference (parent object on the left side, attribute identifier on the
right side)

** 2 Exponentiation (base on the left side, power on the right side)

* 4 Multiplication

/ 4 Division

% 4 Modulo

+ 5 Addition

- (hyphen-minus) 5 Subtraction

| (vertical line) 6 Bitwise or

^ (circumflex accent) 6 Bitwise xor

& 6 Bitwise and

== (dual equals sign) 7 Equality

!= 7 Inequality

<= 7 Less or equal

>= 7 Greater or equal

< 7 Less

> 7 Greater

|| (dual vertical line) 9 Logical or

&& 9 Logical and

3.2.4 Literals

Upon its evaluation, a literal yields an object of a particular type depending on the syntax of the literal, as
specified in this section.

3.2.4.1 Boolean literals

A boolean literal is denoted by the keyword “true” or “false” represented by an instance of primitive type
“bool” (section 3.4.2) with an appropriate value.

3.2.4.2 Numeric literals

Integer and real literals are represented as instances of type “rational” (section 3.3.1).

The digit separator character “_” (underscore) does not affect the interpretation of numeric literals.

The significand of a real literal is formed by the integer part, the optional decimal point, and the optional
fraction part; either the integer part or the fraction part (not both) can be omitted. The exponent is optionally
specified after the letter “e” or “E”; it indicates the power of 10 by which the significand is to be scaled. Either
the decimal point or the letter “e”/“E” with the following exponent (not both) can be omitted from a real
literal.

An integer literal 0x123 is represented internally as 291
1 .

A real literal .3141592653589793e+1 is represented internally as 3141592653589793
1000000000000000 .

14/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

3.2.4.3 String literals

String literals are represented as instances of type “string” (section 3.3.2).

A string literal is allowed to contain an arbitrary sequence of Unicode characters, excepting escape sequences
defined in the table 3.4 which must follow one of the specified therein forms. An escape sequence begins with
the ASCII backslash character “\”.

Table 3.4: String literal escape sequences

Sequence Interpretation

\\ Backslash, ASCII code 92. Same as the escape character.

\r Carriage return, ASCII code 13.

\n Line feed, ASCII code 10.

\t Horizontal tabulation, ASCII code 9.

\' Apostrophe (single quote), ASCII code 39. Regardless of the type of quotes around the literal.

\" Quotation mark (double quote), ASCII code 34. Regardless of the type of quotes around the literal.

\u???? Unicode symbol with the code point specified by a four-digit hexadecimal number. The placeholder
“?” represents a hexadecimal character [0-9a-fA-F].

\U???????? Like above, the code point is specified by an eight-digit hexadecimal number.

1 @assert "oh,\u0020hi\U0000000aMark" == ’oh, hi\nMark’

3.2.4.4 Set literals

Set literals are represented as instances of type “set” (section 3.3.3) parametrized by the type of the contained
elements which is determined automatically.

A set literal declaration must specify at least one element, which is used to determine the element type of the
set.

The elements of a set literal are defined as DSDL expressions which are evaluated before a set is constructed
from the corresponding literal.

1 @assert {"cells", ’interlinked’} == {"inter" + "linked", ’cells’}

3.2.5 Reserved identifiers

DSDL identifiers and data type name components that match any of the case-insensitive patterns specified
in the table 3.5 cannot be used to name new entities. The semantics of such identifiers is predefined by the
DSDL specification, and as such, they cannot be used for other purposes. Some of the reserved identifiers do
not have any functions associated with them in this version of the DSDL specification, but this may change
in the future.

3. Data structure description language 15/132

DRAFT

Specification v1.0 2019-11-15

Table 3.5: Reserved identifier patterns (POSIX ERE notation, ASCII character set, case-insensitive)

POSIX ERE ASCII pattern Example Special meaning

truncated Cast mode specifier

saturated Cast mode specifier

true Boolean literal

false Boolean literal

bool Primitive type category

u?int\d* uint8 Primitive type category

float\d* float Primitive type category

u?q\d+_\d+ q16_8 Primitive type category (future)

void\d* void Void type category

optional Reserved for future use

aligned Reserved for future use

const Reserved for future use

struct Reserved for future use

super Reserved for future use

template Reserved for future use

enum Reserved for future use

self Reserved for future use

and Reserved for future use

or Reserved for future use

not Reserved for future use

auto Reserved for future use

type Reserved for future use

con Compatibility with Microsoft Windows

prn Compatibility with Microsoft Windows

aux Compatibility with Microsoft Windows

nul Compatibility with Microsoft Windows

com\d com1 Compatibility with Microsoft Windows

lpt\d lpt9 Compatibility with Microsoft Windows

.* _offset_ Special-purpose intrinsic entities

3.3 Expression types
Expression types are a special category of data types whose instances can only exist and be operated upon at
the time of DSDL definition processing. As such, expression types cannot be used to define attributes, and
their instances cannot be exchanged between nodes.

Expression types are used to represent values of constant expressions which are evaluated when a DSDL
definition is processed. Results of such expressions can be used to define various constant properties, such
as array length boundaries or values of constant attributes.

Expression types are specified in this section. Each expression type has a formal DSDL name for complete-
ness; even if such types can’t be used to define attributes, a well-defined formal name allows DSDL processing
tools to emit well-formed and understandable diagnostic messages.

3.3.1 Rational number

At the time of DSDL definition processing, integer and real numbers are represented internally as rational
numbers where the range of numerator and denominator is unlimited24. DSDL processing tools are not
permitted to introduce any implicit rational number transformations that may result in a loss of information.

The DSDL name of the rational number type is “rational”.

Rational numbers are assumed to be stored in a normalized form, where the denominator is positive and the
greatest common divisor of the numerator and the denominator is one.

A rational number can be used in a context where an integer value is expected only if its denominator equals
one.

24Technically, the range may only be limited by the memory resources available to the DSDL processing tool.

16/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

Implicit conversions between boolean-valued entities and rational numbers are not allowed.

Table 3.6: Operators defined on instances of rational numbers

Op Type Constraints Description

+ (rational) → rational No effect.

- (rational) → rational Negation.

** (rational,rational) → rational Power denominator equals one Exact exponentiation.

** (rational,rational) → rational Power denominator greater than
one

Exponentiation with implementa-
tion-defined accuracy.

* (rational,rational) → rational Exact multiplication.

/ (rational,rational) → rational Non-zero divisor Exact division.

% (rational,rational) → rational Non-zero divisor Exact modulo.

+ (rational,rational) → rational Exact addition.

- (rational,rational) → rational Exact subtraction.

| (rational,rational) → rational Denominators equal one Bitwise or.

^ (rational,rational) → rational Denominators equal one Bitwise xor.

& (rational,rational) → rational Denominators equal one Bitwise and.

!= (rational,rational) → bool Exact inequality.

== (rational,rational) → bool Exact equality.

<= (rational,rational) → bool Less or equal.

>= (rational,rational) → bool Greater or equal.

< (rational,rational) → bool Strictly less.

> (rational,rational) → bool Strictly greater.

3.3.2 Unicode string

This type contains a sequence of Unicode characters. It is used to represent string literals internally.

The DSDL name of the Unicode string type is “string”.

A Unicode string containing one symbol whose code point is within [0,127] (i.e., an ASCII character) is im-
plicitly convertible into a uint8-typed constant attribute value, where the value of the constant is to be equal
the code point of the symbol.

Table 3.7: Operators defined on instances of Unicode strings

Op Type Description

+ (string,string) → string Concatenation.

!= (string,string) → bool Inequality of Unicode NFC normalized forms. NFC stands for Normalization
Form Canonical Composition – one of standard Unicode normalization forms
where characters are recomposed by canonical equivalence.

== (string,string) → bool Equality of Unicode NFC normalized forms.

The set of operations and conversions defined for Unicode strings is to be extended in future versions of the
specification.

3.3.3 Set

A set type represents an unordered collection of unique objects. All objects must be of the same type. Unique-
ness of elements is determined by application of the equality operator “==”.

The DSDL name of the set type is “set”.

A set can be constructed from a set literal, in which case such set must contain at least one element.

The attributes and operators defined on set instances are listed in the tables 3.8 and 3.9, where E represents
the set element type.

3. Data structure description language 17/132

DRAFT

Specification v1.0 2019-11-15

Table 3.8: Attributes defined on instances of sets

Name Type Constraints Description

min E Operator “<” is defined (E ,E) → bool Smallest element in the set determined by se-
quential application of the operator “<”.

max E Operator “>” is defined (E ,E) → bool Greatest element in the set determined by se-
quential application of the operator “>”.

count rational Cardinality.

Table 3.9: Operators defined on instances of sets

Op Type Constraints Description

== (set<E>,set<E>) → bool Left equals right.

!= (set<E>,set<E>) → bool Left does not equal right.

<= (set<E>,set<E>) → bool Left is a subset of right.

>= (set<E>,set<E>) → bool Left is a superset of right.

< (set<E>,set<E>) → bool Left is a proper subset of right.

> (set<E>,set<E>) → bool Left is a proper superset of right.

| (set<E>,set<E>) → set<E> Union.

^ (set<E>,set<E>) → set<E> Disjunctive union.

& (set<E>,set<E>) → set<E> Intersection.

** (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

** (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

* (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

* (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

/ (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

/ (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

% (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

% (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

+ (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

+ (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

- (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

- (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

3.3.4 Serializable metatype

Serializable types (which are reviewed in section 3.4) are instances of the serializable metatype. This
metatype is convenient for expression of various relations and attributes defined on serializable types.

The DSDL name of the serializable metatype is “metaserializable”.

Available attributes are defined on a per-instance basis.

3.4 Serializable types
Values of the serializable type category can be exchanged between nodes over the UAVCAN network. This is
opposed to the expression types (section 3.3), instances of which can only exist while DSDL definitions are
being evaluated. The data serialization rules are defined in the section 3.7.

3.4.1 Void types

Void types are used for padding purposes. As will be explained in later sections, it is desirable to align field
attributes at byte boundaries; void types can be used to facilitate that.

Void-typed field attributes are set to zero when an object is serialized and ignored when it is deserialized.
Void types can be used to reserve space in data type definitions for possible use in later versions of the data
type.

The DSDL name pattern for void types is as follows: “void[1-9]\d*”, where the trailing integer represents
its width, in bits, ranging from 1 to 64, inclusive.

Void types can be referred to directly by their name from any namespace.

18/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

3.4.2 Primitive types

Primitive types are assumed to be known to DSDL processing tools a priori, and as such, they need not be
defined by the user. Primitive types can be referred to directly by their name from any namespace.

3.4.2.1 Hierarchy

The hierarchy of primitive types is documented below.

• Boolean types. A boolean-typed value represents a variable of the Boolean algebra. A Boolean-typed value
can have two values: true and false. The corresponding DSDL data type name is “bool”.
• Algebraic types. Those are types for which conventional algebraic operators are defined.

• Integer types are used to represent signed and unsigned integer values. See table 3.10.
• Signed integer types. These are used to represent values which can be negative. The corre-
sponding DSDL data type name pattern is “int[1-9]\d*”, where the trailing integer represents
the length of the serialized representation of the value, in bits, ranging from 2 to 64, inclusive.
• Unsigned integer types. These are used to represent non-negative values. The corresponding
DSDL data type name pattern is “uint[1-9]\d*”, where the trailing integer represents the length
of the serialized representation of the value, in bits, ranging from 1 to 64, inclusive.

• Floating point types are used to approximately represent real values. The underlying serialized
representation follows the IEEE 754 standard. The corresponding DSDL data type name pattern is
“float(16|32|64)”, where the trailing integer represents the type of the IEEE 754 representation. See
table 3.11.

Table 3.10: Properties of integer types

Category DSDL names Range, X is bit length

Signed integers int2, int3, int4 . . . int62, int63, int64
[
− 2X

2 , 2X

2 −1
]

Unsigned integers uint1, uint2, uint3 . . . uint62, uint63, uint64
[
0,2X −1

]
Table 3.11: Properties of floating point types

DSDL name Representation Approximate epsilon Approximate range

float16 IEEE 754 binary16 0.001 ±65504

float32 IEEE 754 binary32 10−7 ±1039

float64 IEEE 754 binary64 2×10−16 ±10308

3.4.2.2 Cast mode

The concept of cast mode is defined for all primitive types. The cast mode defines the behavior when a
primitive-typed entity is assigned a value that exceeds its range. Such assignment requires some of the infor-
mation to be discarded; due to the loss of information involved, it is called a lossy assignment.

The following cast modes are defined:

Truncated mode — denoted with the keyword “truncated” placed before the primitive type name.

Saturated mode — denoted with the optional keyword “saturated” placed before the primitive type
name. If neither cast mode is specified, saturated mode is assumed by default. This essentially makes the
“saturated” keyword redundant; it is provided only for consistency.

When a primitive-typed entity is assigned a value that exceeds its range, the resulting value is chosen accord-
ing to the lossy assignment rules specified in the table 3.12. Cases that are marked as illegal are not permitted
in DSDL definitions.

Table 3.12: Lossy assignment rules per cast mode

Type category Truncated mode Saturated mode (default)

Boolean Illegal: boolean type with truncated cast mode
is not allowed.

Falsity if the value is zero or false, truth other-
wise.

Signed integer Illegal: signed integer types with truncated cast
mode are not allowed.

Nearest reachable value.

Unsigned integer Most significant bits are discarded. Nearest reachable value.

Floating point Infinity with the same sign, unless the original
value is not-a-number, in which case it will be
preserved.

If the original value is finite, the nearest finite
value will be used. Otherwise, in the case of in-
finity or not-a-number, the original value will
be preserved.

3. Data structure description language 19/132

DRAFT

Specification v1.0 2019-11-15

Rules of conversion between values of different type categories do not affect compatibility at the protocol
level, and as such, they are to be implementation-defined.

3.4.2.3 Expressions

At the time of DSDL definition processing, values of primitive types are represented as instances of the
rational type (section 3.3.1), with the exception of the type bool, instances of which are usable in DSDL
expressions as-is.

Table 3.13: Operators defined on instances of type boolean

Op Type Description

! (bool) → bool Logical not.

|| (bool,bool) → bool Logical or.

&& (bool,bool) → bool Logical and.

== (bool,bool) → bool Equality.

!= (bool,bool) → bool Inequality.

3.4.2.4 Reference list

An exhaustive list of all void and primitive types ordered by bit length is provided below for reference. Note
that the cast mode specifier is omitted intentionally.

1. void1 uint1 bool
2. void2 int2 uint2
3. void3 int3 uint3
4. void4 int4 uint4
5. void5 int5 uint5
6. void6 int6 uint6
7. void7 int7 uint7
8. void8 int8 uint8
9. void9 int9 uint9

10. void10 int10 uint10
11. void11 int11 uint11
12. void12 int12 uint12
13. void13 int13 uint13
14. void14 int14 uint14
15. void15 int15 uint15
16. void16 int16 uint16 float16
17. void17 int17 uint17
18. void18 int18 uint18
19. void19 int19 uint19
20. void20 int20 uint20
21. void21 int21 uint21
22. void22 int22 uint22
23. void23 int23 uint23
24. void24 int24 uint24
25. void25 int25 uint25
26. void26 int26 uint26
27. void27 int27 uint27
28. void28 int28 uint28
29. void29 int29 uint29
30. void30 int30 uint30
31. void31 int31 uint31
32. void32 int32 uint32 float32
33. void33 int33 uint33
34. void34 int34 uint34
35. void35 int35 uint35
36. void36 int36 uint36
37. void37 int37 uint37
38. void38 int38 uint38
39. void39 int39 uint39
40. void40 int40 uint40
41. void41 int41 uint41

20/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

42. void42 int42 uint42
43. void43 int43 uint43
44. void44 int44 uint44
45. void45 int45 uint45
46. void46 int46 uint46
47. void47 int47 uint47
48. void48 int48 uint48
49. void49 int49 uint49
50. void50 int50 uint50
51. void51 int51 uint51
52. void52 int52 uint52
53. void53 int53 uint53
54. void54 int54 uint54
55. void55 int55 uint55
56. void56 int56 uint56
57. void57 int57 uint57
58. void58 int58 uint58
59. void59 int59 uint59
60. void60 int60 uint60
61. void61 int61 uint61
62. void62 int62 uint62
63. void63 int63 uint63
64. void64 int64 uint64 float64

3.4.3 Array types

An array type represents an ordered collection of values. All values in the collection share the same type,
which is referred to as array element type. The array element type can be any type except:

• void type;
• array type25.

The number of elements in the array can be specified as a constant expression at the data type definition
time, in which case the array is said to be a fixed-length array. Alternatively, the number of elements can vary
between zero and some static limit specified at the data type definition time, in which case the array is said
to be a variable-length array. Variable-length arrays with unbounded maximum number of elements are not
allowed.

Arrays are defined by adding a pair of square brackets after the array element type specification, where the
brackets contain the array capacity expression. The array capacity expression must yield a positive integer of
type “rational” upon its evaluation; any other value or type renders the current DSDL definition invalid.

The array capacity expression can be prefixed with the following character sequences in order to define a
variable-length array:

• “<” (ASCII code 60) — indicates that the integer value yielded by the array capacity expression specifies the
non-inclusive upper boundary of the number of elements. In this case, the integer value yielded by the array
capacity expression must be greater than one.
• “<=” (ASCII code 60 followed by 61) — same as above, but the upper boundary is inclusive.

If neither of the above prefixes are provided, the resultant definition is that of a fixed-length array.

3.4.4 Composite types

3.4.4.1 Kinds

There are two kinds of composite data type definitions: message types and service types. All versions of a
data type must be of the same kind26.

A message data type defines one data schema.

A service data type contains two data schema definitions: one for service request object, and one for service
response object, in that order. The two schemas are separated by the service response marker (“---”) on a
separate line.

25Meaning that nested arrays are not allowed; however, the array element type can be a composite type which in turn may contain arrays. In other
words, indirect nesting of arrays is permitted.

26For example, if a data type version 0.1 is of a message kind, all later versions of it must be messages, too.

3. Data structure description language 21/132

DRAFT

Specification v1.0 2019-11-15

The presence of the service response marker indicates that the data type definition at hand is of the service
kind. At most one service response marker shall appear in a given definition.

3.4.4.2 Dependencies

In order to refer to a composite type from another composite type definition (e.g., for nesting or for referring
to an external constant), one has to specify the full data type name of the referred data type followed by its
major and minor version numbers separated by the namespace separator character, as demonstrated on the
figure 3.4.

To facilitate look-up of external dependencies, implementations are expected to obtain from external
sources27 the list of directories that are the roots of namespaces containing the referred dependencies.

uavcan.node.Heartbeat︸ ︷︷ ︸
full data type name

.1.0︸ ︷︷ ︸
version

numbers

Figure 3.4: Reference to an external composite data type definition.

If the referred data type and the referring data type share the same full namespace name, it is allowed to omit
the namespace from the referred data type specification leaving only the short data type name, as demon-
strated on the figure 3.5. In this case, the referred data type will be looked for in the namespace of the referrer.
Partial omission of namespace components is not permitted.

Heartbeat︸ ︷︷ ︸
short data type name

.1.0︸ ︷︷ ︸
version

numbers

Figure 3.5: Reference to an external composite data type definition located in the same namespace.

Circular dependencies are not permitted. A circular dependency renders all of the definitions involved in the
dependency loop invalid.

If any of the referred definitions are marked as deprecated, the referring definition must be marked depre-
cated as well28. If a non-deprecated definition refers to a deprecated definition, the referring definition is
malformed29.

When a data type is referred to from within an expression context, it constitutes a literal of type
“metaserializable” (section 3.3.4). If the referred data type is of the message kind, its attributes are
accessible in the referring expression through application of the attribute reference operator “.”. The
available attributes and their semantics are documented in the section 3.5.2.

1 uint64 MY_CONSTANT = vendor.MessageType.1.0.OTHER_CONSTANT
2 # The following is valid if the referring definition and the referred definition
3 # are located inside the root namespace "vendor":
4 uint64 MY_CONSTANT = MessageType.1.0.OTHER_CONSTANT
5 @print MessageType.1.0

3.4.4.3 Unions

Any data schema definition can be supplied with a special directive (section 3.6) indicating that it forms a
tagged union.

A tagged union schema shall contain at least two field attributes. A tagged union shall not contain padding
field attributes.

The value of a tagged union object is a function of the field attribute which value it is currently holding and
the value of the field attribute itself.

3.5 Attributes
An attribute is a named (excepting padding fields) entity associated with a particular object or type.

27For example, from user-provided configuration options.
28Deprecation is indicated with the help of a special directive, as explained in section 3.6
29This tainting behavior is designed to prevent unexpected breakage of type hierarchies when one of the deprecated dependencies reaches its end of

life.

22/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

3.5.1 Composite type attributes

A composite type attribute that has a value assigned at the data type definition time is called a constant
attribute; a composite type attribute that does not have a value assigned at the definition time is called a field
attribute.

The name of a composite type attribute must be unique within its data schema definition and it shall not
match any of the reserved name patterns specified in the table 3.5. This requirement does not apply to
padding fields.

3.5.1.1 Field attributes

A field attribute represents a named dynamically assigned value of a statically defined type that can be ex-
changed over the network as a member of its containing object. The data type of a field attribute must be of
the serializable type category (section 3.4), excepting the void type category, which is not allowed.

Exception applies to the special kind of field attributes — padding fields. The type of a padding field attribute
must be of the void category. A padding field attribute may not have a name.

Example:

1 uint8[<=10] regular_field # A field named "regular field"
2 void16 # A padding field; no name is permitted

3.5.1.2 Constant attributes

A constant attribute represents a named statically assigned value of a statically defined type. Values of con-
stant attributes are never exchanged over the network, since they are assumed to be known to all involved
nodes by virtue of them sharing the same definition of the data type.

The data type of a constant attribute must be of the primitive type category (section 3.4).

The value of the constant attribute is determined at the DSDL definition processing time by evaluating its
initialization expression. The expression must yield a compatible type upon its evaluation in order to ini-
tialize the value of its constant attribute. The set of compatible types depends on the type of the initialized
constant attribute, as specified in the table 3.14.

Table 3.14: Permitted constant attribute value initialization patterns

Constant

type

category

Expression

type

bool rational string

Boolean Allowed. Not allowed. Not allowed.

Integer Not allowed. Allowed if the denominator equals
one and the numerator value is
within the range of the constant
type.

Allowed if the target type is uint8
and the source string contains one
symbol whose code point falls into
the range [0,127].

Floating point Not allowed. Allowed if the source value does
not exceed the finite range of the
constant type. The final value is
computed as the quotient of the
numerator and the denominator
with implementation-defined ac-
curacy.

Not allowed.

Due to the value of a constant attribute being defined at the data type definition time, the cast mode of
primitive-typed constants has no observable effect.

3. Data structure description language 23/132

DRAFT

Specification v1.0 2019-11-15

A real literal 1234.5678 is represented internally as 6172839
5000 , which can be used to initialize a float16

value, resulting in 1235.0.

The specification states that the value of a floating-point constant should be computed with an
implementation-defined accuracy. UAVCAN avoids strict accuracy requirements in order to ensure com-
patibility with implementations that rely on non-standard floating point formats. Such laxity in the spec-
ification is considered acceptable since the uncertainty is always confined to a single division expression
per constant; all preceding computations, if any, are always performed by the DSDL compiler using exact
rational arithmetic.

3.5.2 Local attributes

Local attributes are available at the DSDL definition processing time.

As defined in the section 3.2, a DSDL definition is an ordered collection of statements; a statement may
contain DSDL expressions. An expression contained in a statement number E may refer to a composite type
attribute introduced in a statement number A by its name, where A < E and both statements belong to the
same data schema definition. The representation of the referred attribute in the context of the referring DSDL
expression is specified in the table 3.15.

Table 3.15: Local attribute representation

Attribute category Value type Value

Constant attribute Type of the constant attribute Value of the constant attribute

Field attribute Illegal Illegal

1 uint8 FOO = 123
2 uint16 BAR = FOO ** 2
3 @assert BAR == 15129
4 --- # The request data schema definition ends here; its attributes are no longer accessible.
5 #uint16 BAZ = BAR # Would fail - BAR is not accessible here.
6 float64 FOO = 3.14
7 @assert FOO == 3.14

3.5.3 Intrinsic attributes

Intrinsic attributes are available in any expression. Their values are constructed by the DSDL processing tool
depending on the context, as specified in this section.

3.5.3.1 Offset attribute

The offset attribute is referred to by its identifier “_offset_”. Its value is of type set<rational>.

In the following text, the term referring statement denotes a statement containing an expression which refers
to the offset attribute. The term bit length set is defined in section 3.1.5.

The value of the attribute is a function of the field attribute declarations preceding the referring statement
and the category of the containing data schema definition.

If the current data schema definition belongs to the tagged union category, the referring statement must be
located after the last field attribute definition. A field attribute definition following the referring statement
renders the current definition invalid. For tagged unions, the value of the offset attribute is defined as:

_offset_union =
n⋃

i=1

{d log2 ne+b : b ∈ Bi
}

where n is the number of fields defined in the current union definition, and Bi is the bit length set of the data
type of the field number i .

If the current data schema definition does not belong to the tagged union category, the referring statement
may be located anywhere within the current data schema definition. The value of the offset attribute is de-
fined as:

offset=

{∑

s : s ∈
n∏

i=1
Bi

}
| n > 0

{0} | n = 0

where n is the number of fields defined in statements preceding the referring statement (see section 3.2 on
statement ordering), Bi is the bit length set of the data type of the field number i , and

∏
is the Cartesian

product operator.

24/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

1 @union
2 uint8 a
3 #@print _offset_ # Would fail: it’s a tagged union, _offset_ is undefined until after the last field
4 uint16 b
5 @assert _offset_ == {1 + 8, 1 + 16}
6 ---
7 @assert _offset_ == {0}
8 float16 a
9 @assert _offset_ == {16}
10 void4
11 @assert _offset_ == {20}
12 int4 b
13 @assert _offset_ == {24}
14 uint8[<4] c
15 @assert _offset_ == 2 + {24, 32, 40, 48}
16 void6
17 # One of the main usages for _offset_ is statically proving that the following field is byte-aligned
18 # for all possible valid serialized representations of the preceding fields. It is done by computing
19 # a remainder as shown below. If the field is aligned, the remainder set will equal {0}. If the
20 # remainder set contains other elements, the field may be misaligned under some circumstances.
21 # If the remainder set does not contain zero, the field is never aligned.
22 @assert _offset_ % 8 == {0}
23 uint8 well_aligned # Proven to be byte-aligned.

3.6 Directives
Per the DSDL grammar specification (section 3.2), a directive may or may not have an associated expression.
In this section, it is assumed that a directive does not expect an expression unless explicitly stated otherwise.

If the expectation of an associated directive expression or lack thereof is violated, the containing DSDL defi-
nition is malformed.

3.6.1 Tagged union marker

The identifier of the tagged union marker directive is “union”. Presence of this directive in a data type defini-
tion indicates that the data schema definition containing this directive belongs to the tagged union category
(section 3.4.4.3).

Usage of this directive is subject to the following constraints:

• The directive shall not be used more than once per data schema definition.
• The directive shall be placed before the first composite type attribute definition in the current data schema.

1 uint8[<64] name # Request is not a union
2 ---
3 @union # Response is a union
4 uint64 natural
5 #@union # Would fail - @union is not allowed after the first attribute definition
6 float64 real

3.6.2 Deprecation marker

The identifier of the deprecation marker directive is “deprecated”. Presence of this directive in a data type
definition indicates that the current version of the data type definition is nearing the end of its life cycle and
may be removed soon. The data type versioning principles are explained in the section 3.8.

Code generation tools should use this directive to reflect the impending removal of the current data type
version in the generated code.

Usage of this directive is subject to the following constraints:

• The directive shall not be used more than once per data type definition.
• The directive shall be placed before the first composite type attribute definition in the first data schema
definition.

3. Data structure description language 25/132

DRAFT

Specification v1.0 2019-11-15

1 @deprecated # Applies to the entire definition
2 uint8 FOO = 123
3 #@deprecated # Would fail - must be placed before the first attribute definition
4 ---
5 #@deprecated # Would fail - must be placed in the first data schema definition

A C++ class generated from the above definition could be annotated with the [[deprecated]] attribute.

A Rust structure generated from the above definition could be annotated with the #[deprecated] at-
tribute.

A Python class generated from the above definition could raise DeprecationWarning upon usage.

3.6.3 Assertion check

The identifier of the assertion check directive is “assert”. The assertion check directive expects an expres-
sion which must yield a value of type “bool” (section 3.4.2) upon its evaluation.

If the expression yields truth, the assertion check directive has no effect.

If the expression yields falsity, a value of type other than “bool”, or fails to evaluate, the containing DSDL
definition is malformed.

1 float64 real
2 @assert _offset_ == {32} # Would fail: {64} != {32}

3.6.4 Print

The identifier of the print directive is “print”. The print directive may or may not be provided with an asso-
ciated expression.

If the expression is not provided, the behavior is implementation-defined.

If the expression is provided, it is evaluated and its result is displayed by the DSDL processing tool in a
human-readable implementation-defined form. Implementations should strive to produce textual represen-
tations that form valid DSDL expressions themselves, so that they would produce the same value if evaluated
by a DSDL processing tool.

If the expression is provided but cannot be evaluated, the containing DSDL definition is malformed.

1 float64 real
2 @print _offset_ / 6 # Possible output: {32/3}
3 @print uavcan.node.Heartbeat.1.0 # Possible output: uavcan.node.Heartbeat.1.0
4 @print bool[<4] # Possible output: saturated bool[<=3]
5 @print float64 # Possible output: saturated float64
6 @print {123 == 123, false} # Possible output: {true, false}
7 @print ’we all float64 down here\n’ # Possible output: ’we all float64 down here\n’

3.7 Data serialization

3.7.1 General principles

3.7.1.1 Design goals

The main design principle behind the serialized representations described in this section is the maximization
of compatibility with native representations used by currently existing and likely future computer microar-
chitectures. The goal is to ensure that the serialized representations defined by DSDL match internal data
representations of modern computers, so that, ideally, a typical system will not have to perform any data
conversion whatsoever while exchanging data over a UAVCAN network.

The implicit truncation and implicit zero extension rules introduced in this section are designed to facilitate
structural subtyping and to enable extensibility of data types while retaining backward compatibility. This is a
conscious trade-off between runtime type checking and long-term stability guarantees. This model assumes
that data type compatibility is to be enforced not at runtime, but beforehand.

3.7.1.2 Bit and byte ordering

The smallest atomic data entity is a bit. Eight bits form one byte; within the byte, the bits are ordered so that
the most significant bit is considered first (0-th index), and the least significant bit is considered last (7-th
index).

26/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

Numeric values consisting of multiple bytes are arranged so that the least significant byte is encoded first;
such format is also known as little-endian.

bit index
0

0
1

1
2

0
3

1
4

0
5

1
6

0
7

1︸ ︷︷ ︸
least significant byte

...
bit index

0

0
1

1
2

0
3

1
4

0
5

1
6

0
7

1︸ ︷︷ ︸
most significant byte

Figure 3.6: Bit and byte ordering.

3.7.1.3 Implicit padding

Excepting one edge case reviewed below, serialized representations of DSDL entities never include implicit
data padding. Unaligned data may lead to suboptimal serialization and deserialization performance; there-
fore, the data type designer should manually align elements as necessary to prevent performance degrada-
tion. It is guaranteed, however, that unaligned data cannot result in unspecified or otherwise unexpected
behavior of the data handling routines. The manual approach to data alignment allows the data type de-
signer to trade-off serialization efficiency over network bandwidth utilization and data transfer latency as
necessary without compromising functional safety.

The exceptional edge case mentioned above when implicit padding is introduced is as follows. Serialized
representations of DSDL entities operate at the bit level, whereas the transport protocols supported by
UAVCAN30 use byte as the smallest atomic data element. The resulting mismatch of the data granularity
levels is resolved by appending the serialized representation of the top-level composite type object with
zero (0) bits until the length of its bit sequence is an integer multiple of eight (8). The term top-level object
denotes an object that is not nested inside another DSDL entity. In other words, padding bits may only be
added before a fully constructed serialized representation is handed over for transmission over the UAVCAN
network (or any other destination which does not support bit-level data granularity).

3.7.1.4 Implicit truncation of excessive data

When a serialized representation is deserialized, implementations shall silently31 ignore any excessive (un-
used) data remaining upon deserialization, irrespective of its amount.

One of the consequences of the above requirement is that the transport layer will be able to introduce addi-
tional padding at the end of the serialized representation to satisfy its data size granularity constraints. The
specifics of such padding behavior fall outside of the scope of the DSDL specification as they belong to the
domain of network transports rather than data presentation.

Another consequence is that a serialized representation constructed from an instance of type B can be dese-
rialized into an instance of type A as long as B is a structural subtype of A. The topic of data type compatibility
is explored in section 3.8.

Let X be an instance of data type B , which is defined as follows:

1 float32 parameter
2 float32 variance

Let A be a structural supertype of B , being defined as follows:

1 float32 parameter

Then the serialized representation of X can be deserialized into an instance of A.

The implicit truncation rule is introduced to permit extension of data types by introducing additional
fields without breaking backward compatibility with existing deployments, and to permit introduction of
more specific derived types while retaining compatibility with their base types. The topic of data type
compatibility is explored in detail in section 3.8.

3.7.1.5 Implicit zero extension of missing data and trailing zero bits

For the purposes of deserialization routines, the serialized representation of any instance of any data type
shall be considered to contain an implicit sequence of trailing zero (0) bits of infinite length.

30As well as the majority of network protocols in general.
31I.e., without registering an error of any kind.

3. Data structure description language 27/132

DRAFT

Specification v1.0 2019-11-15

Consequently, trailing zero bits can be truncated upon construction of a serialized representation for pur-
poses of data compression, if such behavior is found to be beneficial for the application.

The extreme case of the described behavior is the equality between a serialized representation consisting of
an empty list of bits and a serialized representation consisting of a positive number of zero bits.

This example assumes that the reader is familiar with the variable-length array serialization rules, ex-
plained later in this section.

Let the data type A be defined as follows:

1 uint8 scalar

Let X be an instance of A, where the value of scalar is 4. Let the data type B be defined as follows:

1 uint8[<256] array

Then the serialized representation of X can be deserialized into an instance of B where the field array
contains a sequence of four zeros: 0,0,0,0.

The implicit truncation rule is introduced to permit extension of data types by introducing additional
fields without breaking backward compatibility with existing deployments, and to enable trivial data com-
pression by truncating trailing zeros from serialized representations. The topic of data type compatibility
is explored in detail in section 3.8.

3.7.2 Void types

The serialized representation of a void-typed field attribute is constructed as a sequence of zero bits. The
length of the sequence equals the numeric suffix of the type name.

When a void-typed field attribute is decoded, the values of respective bits are ignored; in other words, any bit
sequence of correct length is a valid serialized representation of a void-typed field attribute. This behavior
facilitates usage of void fields as placeholders for non-void fields introduced in newer versions of the data
type (section 3.8).

The following data schema will be serialized as a sequence of three zero bits 0002:

1 void3

The following bit sequences are valid serialized representations of the schema: 0002, 0012, 0102, 0112,
1002, 1012, 1102, 1112.

Shall the padding field be replaced with a non-void-typed field in a future version of the data type, nodes
utilizing the newer definition may be able to retain compatibility with nodes using older types, since the
specification guarantees that padding fields are always initialized with zeros:

1 # Version 1.1
2 float64 a
3 void64

1 # Version 1.2
2 float64 a
3 float32 b # Messages v1.1 will be interpreted such that b = 0.0
4 void32

3.7.3 Primitive types

3.7.3.1 General principles

Implementations where native data formats are incompatible with those adopted by UAVCAN must perform
implicit conversions between the native formats and the corresponding UAVCAN formats during serializa-
tion and deserialization. Implementations shall strive to avoid or minimize information loss and/or distor-
tion caused by such conversions.

Serialized representations of instances of the primitive type category that are longer than one byte (8 bits)
are constructed as follows. First, only the least significant bytes that contain the used bits of the value are

28/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

preserved; the rest are discarded following the lossy assignment policy selected by the specified cast mode.
Then the bytes are arranged in the least-significant-byte-first order32. If the bit width of the value is not an
integer multiple of eight (8), the rightmost byte (i.e., the most significant byte) is shifted left until the most
significant bit of the value is aligned with the most significant bit of the byte.

The value 1110110110102 (3802 in base-10) of type uint12 is encoded as follows. The bit sequence is
shown in the base-2 system, where bytes (octets) are comma-separated:

The value 380210︷ ︸︸ ︷
11011010︸ ︷︷ ︸

Least significant
bits/byte

,1110︸ ︷︷ ︸
Most

significant
bits

????︸ ︷︷ ︸
Next object

or zero
padding bits

3.7.3.2 Boolean types

The serialized representation of a value of type bool is a single bit. If the value represents falsity, the value of
the bit is zero (0); otherwise, the value of the bit is one (1).

3.7.3.3 Unsigned integer types

The serialized representation of an unsigned integer value of length n bits (which is reflected in the numerical
suffix of the data type name) is constructed as if the number were to be written in base-2 numerical system
with leading zeros preserved so that the total number of binary digits would equal n.

The serialized representation of integer 123 of type uint9 is 0011110112.

3.7.3.4 Signed integer types

The serialized representation of a non-negative value of a signed integer type is constructed as described in
section 3.7.3.3.

The serialized representation of a negative value of a signed integer type is computed by applying the follow-
ing transformation:

2n +x

where n is the bit length of the serialized representation (which is reflected in the numerical suffix of the
data type name) and x is the value whose serialized representation is being constructed. The result of the
transformation is a positive number, whose serialized representation is then constructed as described in
section 3.7.3.3.

The representation described here is widely known as two’s complement.

The serialized representation of integer -123 of type int9 is 1100001012.

3.7.3.5 Floating point types

The serialized representation of floating point types follows the IEEE 754 series of standards as follows:

• float16— IEEE 754 binary16;
• float32— IEEE 754 binary32;
• float64— IEEE 754 binary64.

Implementations that model real numbers using any method other than IEEE 754 must be able to model
positive infinity, negative infinity, signaling NaN33, and quiet NaN.

3.7.4 Array types

3.7.4.1 Fixed-length array types

Serialized representations of a fixed-length array of n elements of type T and a sequence of n field attributes
of type T are equivalent.

32Also known as “little endian”.
33Per the IEEE 754 standard, NaN stands for “not-a-number” – a set of special bit patterns that represent lack of a meaningful value.

3. Data structure description language 29/132

DRAFT

Specification v1.0 2019-11-15

Serialized representations of the following two data schema definitions are equivalent:

1 AnyType[3] array

1 AnyType item_0
2 AnyType item_1
3 AnyType item_2

3.7.4.2 Variable-length array types

A serialized representation of a variable-length array consists of two segments: the implicit length field fol-
lowed by the array elements.

The implicit length field is of an unsigned integer type. The serialized representation of the implicit length
field is injected in the beginning of the serialized representation of its array. The bit length of the unsigned
integer value is determined as follows:

d log2(c +1)e

where c is the capacity (i.e., the maximum number of elements) of the variable-length array. The number of
elements n contained in the variable-length array is encoded in the serialized representation of the implicit
length field34 as described in section 3.7.3.3.

The rest of the serialized representation is constructed as if the variable-length array was a fixed-length array
of n elements.

It is recommended to manually align variable-length arrays by prepending them with padding field at-
tributes so that the first element is byte-aligned, as that facilitates more efficient serialization and deseri-
alization.

1 void2 # Padding - good practice but not required
2 AnyType.1.0[<42] array # The implicit length field is 6 bits wide
3 @assert _offset_.min == 8 # Ensuring that the first element is byte-aligned

If the array contained three elements, the resulting set of its serialized representations would be equivalent
to that of the following definition:

1 void2 # Padding - good practice but not required
2 uint6 implicit_length_field # Set to 3, because the array contains three elements
3 AnyType.1.0 item_0
4 AnyType.1.0 item_1
5 AnyType.1.0 item_2

3.7.5 Composite types

As explained in the section 3.4.4, a data type of the service kind contains two data schema definitions: one
for request object, one for response object. Unless explicitly specified otherwise, any reference to serialized
representations of a service type implies either or both of its data schema definitions, depending on context.

A serialized representation of an object of a composite type is a sequence of serialized representations of its
field attribute values joined into a bit sequence. The ordering of the serialized representations of the field
attribute values follows the order of field attribute declaration.

34Seeing as n ≤ c always holds, bit sequences where the implicit length field contains values greater than c do not belong to the set of serialized
representations of the array.

30/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

Consider the following data schema definition, where the fields are assigned runtime values shown in the
comments:

1 # decimal bit sequence comment
2 truncated uint12 first # +48858 1011_1110_1101_1010 overflow, MSB truncated
3 saturated int3 second # -1 111 two’s complement
4 saturated int4 third # -5 1011 two’s complement
5 saturated int2 fourth # -1 11 two’s complement
6 truncated uint4 fifth # +136 1000_1000 overflow, MSB truncated

It can be seen that the bit layout is rather complicated because the field boundaries do not align with byte
boundaries, which makes it a good case study. The resulting serialized byte sequence is shown below in
the base-2 system, where bytes (octets) are comma-separated:

first︷ ︸︸ ︷
11011010,1110111︸ ︷︷ ︸

second

third︷ ︸︸ ︷
1,01111︸ ︷︷ ︸

fourth

fifth︷ ︸︸ ︷
100,0???????︸ ︷︷ ︸

Next object or
zero padding bits

3.7.5.1 Tagged unions

Similar to variable-length arrays, a serialized representation of a tagged union consists of two segments: the
implicit union tag value followed by the selected field attribute value.

The implicit union tag is an unsigned integer value whose serialized representation is implicitly injected in
the beginning of the serialized representation of its tagged union. The bit length of the implicit union tag is
determined as follows:

d log2 ne
where n is the number of field attributes in the union, n ≥ 2.

Each of the tagged union field attributes is assigned an index according to the order of their definition; the
order follows that of the DSDL statements (see section 3.2 on statement ordering). The first defined field
attribute is assigned the index 0 (zero), the index of each following field attribute is incremented by one.

The index of the field attribute whose value is currently held by the tagged union is encoded in the serialized
representation of the implicit union tag35 as described in section 3.7.3.3.

The serialized representation of the implicit union tag is immediately followed by the serialized representa-
tion of the currently selected field attribute value.

35Seeing as i < n always holds, where i is the index of the current field attribute, bit sequences where the implicit union tag field contains values that
are greater than or equal n do not belong to the set of serialized representations of the tagged union.

3. Data structure description language 31/132

DRAFT

Specification v1.0 2019-11-15

Consider the following example:

1 @union # In this case, the implicit union tag is 2 bit wide
2 uint16 FOO = 42 # A regular constant attribute
3 uint16 a # Field index 0
4 uint8 b # Field index 1
5 uint32 BAR = 42 # Another regular constant attribute
6 float64 c # Field index 2

In order to encode the field b, the implicit union tag shall be assigned the value 1. The following data
schema will have an identical layout:

1 uint2 implicit_union_tag # Set to 1
2 uint8 b # The actual value

Suppose that the value of b is 7. The resulting serialized representation is shown below in the base-2
system:

01︸ ︷︷ ︸
union

tag

00000111︸ ︷︷ ︸
field b

It is recommended to manually align tagged unions when they are nested into outer objects by prepending
them with a padding field attribute so that the value contained in the union is byte-aligned after the tag,
as that facilitates more efficient serialization and deserialization.

Let the following data type be defined under the short name Empty and version 1.0:

1 # Empty. The only valid serialized representation is an empty bit sequence.

Consider the following union schema definition:

1 @union
2 Empty.1.0 none
3 AnyType.1.0 some

The set of serialized representations of the union schema definition given above is equivalent to that of
the following variable-length array:

1 AnyType.1.0[<=1] maybe_some

3.8 Data type compatibility and versioning

3.8.1 Rationale

Data type definitions may evolve over time as they are refined to better address the needs of their applica-
tions. UAVCAN defines a set of rules that allow data type designers to modify and advance their data type
definitions while ensuring backward compatibility and functional safety.

3.8.2 Compatibility

3.8.2.1 Bit compatibility

A data type or schema A is bit-compatible with a data type or schema B if and only if the set of serialized
representations36 of A is a superset of the set of serialized representations of B .

Consequently, a type is bit-compatible with its structural supertype.

A and B are said to be mutually bit-compatible if their sets of serialized representations are equal.

A variable-length data type or schema is a serializable data type or schema whose set of serialized represen-
tations contains bit sequences of different lengths. Conversely, any data type or schema that is not variable-
length is fixed-length.

36The serialization rules are reviewed in detail in the section 3.7.

32/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

The following two definitions are mutually bit-compatible:

1 uint32 a
2 uint32 b

1 uint64 c

Consider the following example data type definition; assume that its full data type name is demo.Pair:

1 # demo.Pair.1.0
2 float16 first
3 float16 second

Further, let the following define a data type named demo.PairVector:

1 # demo.PairVector.1.0
2 demo.Pair.1.0[3] vector

Then the following two definitions are bit-compatible:

1 demo.PairVector.1.0 pair_vector

1 float16 first_0 # pair_vector.vector[0].first
2 float16 second_0 # pair_vector.vector[0].second
3 float16 first_1 # pair_vector.vector[1].first
4 float16 second_1 # pair_vector.vector[1].second
5 float16 first_2 # pair_vector.vector[2].first
6 float16 second_2 # pair_vector.vector[2].second

The latter definition in the example above is a flattened unrolled form of the former definition. As such,
in that particular example, both definitions can be used interchangeably; an object serialized using one
definition can be deserialized using the other definition. However, it is also possible to construct bit-
compatible definitions that are not functionally equivalent:

1 float16 a
2 float32 b

1 float32 a
2 float16 b

Even though the above definitions are bit-compatible, one cannot be substituted with the other. The
problem of functional equivalency is addressed by the concept of semantic compatibility, explored in the
section 3.8.2.2.

Complicated scenarios are possible when a bit belonging to a primitive-typed field attribute is handed
over to a constrained field such as an implicit array length field or an implicit union tag field. Some in-
teresting examples are shown in the table 3.16, together with a set of serialized representation patterns.
Remember that the bits belonging to void-typed field attributes are ignored during deserialization.

Table 3.16: Complex bit compatibility examples

A B C D E

Definition
void1 bool x void1 bool x bool[<5] a

bool[<3] a bool[<3] a bool[<4] a bool[<4] a

Serialized
representations

000 000 000

001a 001a 001a

010aa 010aa 010aa

011aaa 011aaa

100 100 100aaaa

101a 101a

110aa 110aa

111aaa

Bit-compatible
with

B A A, B, D A, B, C (none)

3. Data structure description language 33/132

DRAFT

Specification v1.0 2019-11-15

3.8.2.2 Semantic compatibility

A data type A is semantically compatible with a data type B if an application that correctly uses A exhibits a
functionally equivalent behavior to an application that correctly uses B . The property of semantic compati-
bility is commutative.

Due to the implicit truncation and implicit zero-extension rules, semantic compatibility is orthogonal to bit-
compatibility.

Despite using different binary layouts, the following two definitions are semantically compatible and also
bit-compatible:

1 uint16 FLAG_A = 1
2 uint16 FLAG_B = 256
3 uint16 flags

1 uint8 FLAG_A = 1
2 uint8 FLAG_B = 1
3 uint8 flags_a
4 uint8 flags_b

Therefore, the definitions can be used interchangeably. It should be noted here that due to different set
of field and constant attributes, the source code auto-generated from the provided definitions may be not
drop-in replaceable, requiring changes in the application; however, source-code-level application com-
patibility is orthogonal to data type compatibility.

3.8.2.3 Variabilities

Compatibility of a set of data types is a function of their structural properties only.

Whether a set of data types are bit-compatible and/or semantically compatible with each other is deter-
mined by their DSDL definitions and is invariant to their name, version, and/or the fixed port-ID. Data type
definitions that differ in name, version, and/or fixed port-ID may still be bit-compatible and semantically
compatible.

The invariance of data type compatibility to the above properties permits free migration of data types be-
tween namespaces, their renaming, re-versioning, and update of their fixed port-ID values. The practical
outcome is that UAVCAN interfaces codified by DSDL definitions can survive major changes in the outer
data type ecosystem without breakage.

For example, a vendor may publish a data type under its unregulated namespace. Shall it be found sensi-
ble to transfer it into a differently named public regulated namespace, it can be done so without breaking
the compatibility with existing deployments. Alternatively, nodes provided by different vendors that uti-
lize differently named data types may still interoperate if such data types happen to be compatible. Under
this example, the duty of ensuring the compatibility lies on the system integrator.

3.8.3 Versioning

3.8.3.1 General assumptions

The concept of versioning applies only to composite data types. As such, unless specifically stated otherwise,
every reference to “data type” in this section implies a composite data type.

A data type is uniquely identified by its full name, assuming that every root namespace is uniquely named.
There is one or more versions of every data type.

A data type definition is uniquely identified by its full name and the version number pair. In other words,
there may be multiple definitions of a data type differentiated by their version numbers.

3.8.3.2 Versioning principles

Every data type definition has a pair of version numbers — a major version number and a minor version
number, following the principles of semantic versioning.

For the purposes of the following definitions, a release of a data type definition stands for the disclosure of
the data type definition to its intended users or to the general public, or for the commencement of usage of
the data type definition in a production system.

In order to ensure a deterministic application behavior and ensure a robust migration path as data type

34/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

definitions evolve, UAVCAN requires that all data type definitions that share the same full name and the
same major version number must be semantically compatible with each other and mutually bit-compatible
with each other.

The versioning rules do not extend to scenarios where the name of a data type is changed, because that
would essentially construe the release of a new data type, which relieves its designer from all compatibility
requirements. When a new data type is first released, the version numbers of its first definition must be
assigned “1.0” (major 1, minor 0).

In order to ensure predictability and functional safety of applications that leverage UAVCAN, the standard
requires that once a data type definition is released, its DSDL source text, name, version numbers, fixed port-
ID, and other properties cannot undergo any modifications whatsoever, with the following exceptions:

• Whitespace changes of the DSDL source text are allowed, excepting string literals and other semantically
sensitive contexts.
• Comment changes of the DSDL source text are allowed as long as such changes do not affect semantic
compatibility of the definition.
• A deprecation marker directive (section 3.6) can be added or removed37.

Addition or removal of the fixed port identifier is not permitted after a data type definition of a particular
version is released.

Therefore, substantial changes can be introduced only by releasing new definitions (i.e., new versions) of the
same data type. If it is desired and possible to keep the same major version number for a new definition of
the data type, the minor version number of the new definition shall be one greater than the newest existing
minor version number before the new definition is introduced. Otherwise, the major version number shall
be incremented by one and the minor version shall be set to zero.

An exception to the above rules applies when the major version number is zero. Data type definitions bearing
the major version number of zero are not subjected to any compatibility requirements. Released data type
definitions with the major version number of zero are permitted to change in arbitrary ways without any
regard for compatibility. It is recommended, however, to follow the principles of immutability, releasing
every subsequent definition with the minor version number one greater than the newest existing definition.

For any data type, there shall be at most one definition per version. In other words, there must be exactly one
or zero definitions per combination of data type name and version number pair.

All data types under the same name must be also of the same kind. In other words, if the first released
definition of a data type is of the message kind, all other versions must also be of the message kind.

3.8.3.3 Port identifier assignment constraints

A port identifier of a given kind (subject or service)38 shall only be used with semantically compatible data
types in a given UAVCAN network. Semantic compatibility shall be enforced before runtime, either by the
integrator or by the architect of the system. Implementers may take advantage of the implicit truncation
and implicit zero extension rules to facilitate semantic compatibility of data types even if they are not bit-
compatible.

The mapping from port-ID to its data type may be non-injective. In other words, a data type may be simul-
taneously used with more than one port-ID.

The following constraints apply to fixed port-ID assignments:

∃P (xa.b) →∃P (xa.c) | b < c; x ∈ (M ∪S)

∃P (xa.b) → P (xa.b) = P (xa.c) | b < c; x ∈ (M ∪S)

∃P (xa.b)∧∃P (xc.d) → P (xa.b) 6= P (xc.d) | a 6= c; x ∈ (M ∪S)

∃P (xa.b)∧∃P (yc.d) → P (xa.b) 6= P (yc.d) | x 6= y ; x ∈ T ; y ∈ T ; T = {M ,S}

where ta.b denotes a data type t version a.b (a major, b minor); P (t) denotes the fixed port-ID (whose exis-
tence is optional) of data type t ; M is the set of message types, and S is the set of service types.

3.8.3.4 Data type version selection

DSDL compilers should compile every available data type version separately, allowing the application to
choose from all available major and minor version combinations.

37Removal is useful when a decision to deprecate a data type definition is withdrawn.
38The kind is specified explicitly due to the fact that the sets of subject-ID and service-ID are orthogonal. In other words, the numeric value of a

port-ID may refer to different data types if they are of different kinds.

3. Data structure description language 35/132

DRAFT

Specification v1.0 2019-11-15

When emitting a transfer, the major version of the data type is chosen at the discretion of the application.
The minor version should be the newest available one under the chosen major version.

When receiving a transfer, the node deduces which major version of the data type to use from its port iden-
tifier (either fixed or non-fixed). The minor version should be the newest available one under the deduced
major version39.

It follows from the above two rules that when a node is responding to a service request, the major data type
version used for the response transfer shall be the same that is used for the request transfer. The minor
versions may differ, which is acceptable due to the major version compatibility requirements.

A simple usage example is provided in this intermission.

Suppose a vendor named “Sirius Cybernetics Corporation” is contracted to design a cryopod manage-
ment data bus for a colonial spaceship “Golgafrincham B-Ark”. Having consulted with applicable speci-
fications and standards, an engineer came up with the following definition of a cryopod status message
type (named sirius_cyber_corp.b_ark.cryopod.Status):

1 # sirius_cyber_corp.b_ark.cryopod.Status.0.1

2 float16 internal_temperature # [kelvin]
3 float16 coolant_temperature # [kelvin]

4 # Status flags in the lower bits
5 uint8 FLAG_COOLING_SYSTEM_A_ACTIVE = 1
6 uint8 FLAG_COOLING_SYSTEM_B_ACTIVE = 2
7 # Error flags in the higher bits
8 uint8 FLAG_PSU_MALFUNCTION = 32
9 uint8 FLAG_OVERHEATING = 64
10 uint8 FLAG_CRYOBOX_BREACH = 128
11 # Storage for the above defined flags (this is not the recommended practice)
12 uint8 flags

The definition is then deployed to the first prototype for initial laboratory testing. Since the definition
is experimental, the major version number is set to zero in order to signify the tentative nature of the
definition. Suppose that upon completion of the first trials it is identified that the units must track their
power consumption in real time for each of the three redundant power supplies independently.

It is easy to see that the amended definition shown below is neither semantically compatible nor bit-
compatible with the original definition; however, it shares the same major version number of zero,
because the backward compatibility rules do not apply to zero-versioned data types to allow for low-
overhead experimentation before the system is deployed and fielded.

1 # sirius_cyber_corp.b_ark.cryopod.Status.0.2

2 truncated float16 internal_temperature # [kelvin]
3 truncated float16 coolant_temperature # [kelvin]

4 saturated float32 power_consumption_0 # [watt] Power consumption by the redundant PSU 0
5 saturated float32 power_consumption_1 # [watt] likewise for PSU 1
6 saturated float32 power_consumption_2 # [watt] likewise for PSU 2

7 # Status flags in the lower bits
8 uint8 FLAG_COOLING_SYSTEM_B_ACTIVE = 1
9 uint8 FLAG_COOLING_SYSTEM_A_ACTIVE = 2
10 # Error flags in the higher bits
11 uint8 FLAG_PSU_MALFUNCTION = 32
12 uint8 FLAG_OVERHEATING = 64
13 uint8 FLAG_CRYOBOX_BREACH = 128
14 # Storage for the above defined flags (this is not the recommended practice)
15 uint8 flags

The last definition is deemed sufficient and is deployed to the production system under the version num-
ber of 1.0: sirius_cyber_corp.b_ark.cryopod.Status.1.0.

Having collected empirical data from the fielded systems, the Sirius Cybernetics Corporation has identi-
fied a shortcoming in the v1.0 definition, which is corrected in an updated definition. Since the updated

39Such liberal minor version selection policy poses no compatibility risks since all definitions under the same major version are compatible with
each other.

36/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

definition, which is shown below, is mutually semantically compatiblea with v1.0, the major version num-
ber is kept the same and the minor version number is incremented by one:

1 # sirius_cyber_corp.b_ark.cryopod.Status.1.1

2 saturated float16 internal_temperature # [kelvin]
3 saturated float16 coolant_temperature # [kelvin]

4 float32[3] power_consumption # [watt] Power consumption by the PSU

5 # Error flags (this is the recommended practice)
6 bool flag_cryobox_breach
7 bool flag_overheating
8 bool flag_psu_malfunction

9 void3 # Reserved for other flags

10 # Status flags (this is the recommended practice)
11 bool flag_cooling_system_a_active
12 bool flag_cooling_system_b_active

Since the definitions v1.0 and v1.1 are mutually bit-compatible and semantically compatible, UAVCAN
nodes using either of them can successfully interoperate on the same bus.

Suppose further that at some point a newer version of the cryopod module, equipped with better temper-
ature sensors, is released. The definition is updated accordingly to use float32 for the temperature fields
instead of float16. Seeing as that change breaks the bit compatibility, the major version number has to
be incremented by one, and the minor version number has to be reset back to zero:

1 # sirius_cyber_corp.b_ark.cryopod.Status.2.0

2 float32 internal_temperature # [kelvin]
3 float32 coolant_temperature # [kelvin]

4 float32[3] power_consumption # [watt] Power consumption by the PSU

5 # Error flags (this is the recommended practice)
6 bool flag_cryobox_breach
7 bool flag_overheating
8 bool flag_psu_malfunction

9 void3 # Reserved for other flags

10 # Status flags (this is the recommended practice)
11 bool flag_cooling_system_a_active
12 bool flag_cooling_system_b_active

Nodes using v1.0, v1.1, and v2.0 definitions can still coexist on the same network, and they can interoper-
ate successfully as long as they all support at least v1.x or v2.x. The correct version can be determined at
runtime from the port identifier assignment as described in section 2.1.1.2.

In general, nodes that need to maximize their compatibility are likely to employ all existing major versions
of each used data type. If there are more than one minor versions available, the highest minor version
within the major version should be used in order to take advantage of the latest changes in the data type
definition. It is also expected that in certain scenarios some nodes may resort to publishing the same mes-
sage type using different major versions concurrently to circumvent compatibility issues (in the example
reviewed here that would be v1.1 and v2.0).

aThe topic of data serialization is explored in detail in the section 3.7.

3.9 Conventions and recommendations
This section is dedicated to conventions and recommendations intended to help data type designers main-
tain a consistent style across the ecosystem and avoid some common pitfalls. All of the conventions and
recommendations provided in this section are optional (not mandatory to follow).

3. Data structure description language 37/132

DRAFT

Specification v1.0 2019-11-15

3.9.1 Naming recommendations

The DSDL naming recommendations follow those that are widely accepted in the general software develop-
ment industry.

• Namespaces and field attributes should be named in the snake_case.
• Constant attribute should be named in the SCREAMING_SNAKE_CASE.
• Data types (excluding their namespaces) should be named in the PascalCase.
• Names of message types should form a declarative phrase or a noun. For example, BatteryStatus or
OutgoingPacket.
• Names of service types should form an imperative phrase or a verb. For example, GetInfo or
HandleIncomingPacket.
• Avoid short names, unnecessary abbreviations, and uncommon acronyms.

3.9.2 Comments

Every data type definition file should begin with a header comment that provides an exhaustive description
of the data type, its purpose, semantics, usage patterns, any related data exchange patterns, assumptions,
constraints, and all other information that may be necessary or generally useful for the usage of the data type
definition.

Every attribute of the data type definition, and especially every field attribute of it, should have an associated
comment explaining the purpose of the attribute, its semantics, usage patterns, assumptions, constraints,
and any other pertinent information. Exception applies to attributes supplied with sufficiently descriptive
and unambiguous names.

Trailing comments (i.e., comments that are located on the same line with a statement) should be separated
from the preceding text with at least two spaces.

3.9.3 Optional value representation

Data structures may include optional field attributes that are not always populated.

The recommended approach for representing optional field attributes is to use variable-length arrays with
the capacity of one element, prefixed with padding bits as necessary to retain byte alignment.

Alternatively, such one-element variable-length arrays can be replaced with two-field unions, where the
first field is empty and the second field contains the desired optional value. The described layout is bit-
compatible and semantically compatible with the one-element array described above, provided that the field
attributes are not swapped.

Floating-point-typed field attributes may be assigned the value of not-a-number (NaN) per IEEE 754 to indi-
cate that the value is not specified; however, this pattern is discouraged because the value would still have to
be transferred over the bus even if not populated, and special case values undermine type safety.

Array-based optional field:

1 void7 # It is recommended to ensure byte alignment.
2 MyType[<=1] optional_field

Union-based optional field:

1 @union # The implicit tag is one bit long.
2 uavcan.primitive.Empty none # Represents lack of value, unpopulated field.
3 MyType some # The field of interest; field ordering is important.

The defined above union can be used as follows (suppose it is named MaybeMyType):

1 void7 # It is recommended to ensure byte alignment.
2 MaybeMyType optional_field

The shown approaches are mutually bit-compatible and semantically compatible.

38/132 3. Data structure description language

DRAFT

2019-11-15 Specification v1.0

3.9.4 Bit flag representation

The recommended approach to defining a set of bit flags is to dedicate a bool-typed field attribute for each.
Representations based on an integer sum of powers of two40 are discouraged due to their obscurity and
failure to express the intent clearly.

Recommended approach:

1 void5
2 bool flag_foo
3 bool flag_bar
4 bool flag_baz

Not recommended:

1 uint8 flags # Not recommended
2 uint8 FLAG_BAZ = 1
3 uint8 FLAG_BAR = 2
4 uint8 FLAG_FOO = 4

40Which are popular in programming.

3. Data structure description language 39/132

DRAFT

Specification v1.0 2019-11-15

4 Transport layer
This chapter defines the transport layer of UAVCAN. First, general implementation-agnostic concepts are
introduced. Afterwards, they are further defined for each supported transport medium, e.g., CAN FD.

As the specification is extended to add support for new transport protocols, some of the generic aspects
may be pushed to lower-level transport-specific sections if they are found to map poorly on the newly added
transports. Such changes are guaranteed to preserve full backward compatibility of the existing transport
protocols.

4.1 Core concepts

4.1.1 Transfer

A transfer is an act of data transmission between nodes.

4.1.1.1 Broadcast and unicast transfers

A transfer that is addressed to any interested node except the source node is a broadcast transfer. A transfer
that is addressed to one particular node is a unicast transfer.

In the case of broadcast transfers, the sending node makes the data widely available on the bus, allowing any
interested node to freely opt-in and process it41. The decision of whether to process any given transfer or not
is made by receiving nodes.

In the case of unicast transfers, the addressing logic is inverted: the sending node decides which particular
remote node should receive the transfer. All other nodes remain unaffected by such transmission and take
no part in the addressing process.

4.1.1.2 Message and service transfers

A message transfer is a broadcast transfer that contains a serialized message and its metadata42.

A service transfer is a unicast transfer that contains either a service request or a service response with related
metadata.

4.1.1.3 Single-frame and multi-frame transfers

Both message and service transfers can be further distinguished between single-frame and multi-frame
transfers.

A single-frame transfer is a transfer that is entirely contained in a single transport frame. The amount of data
that can be exchanged using single-frame transfers is dependent on the transport protocol in use.

A multi-frame transfer is a transfer that has its payload distributed over multiple transport frames. The
UAVCAN protocol stack handles transfer decomposition and reassembly automatically.

The choice between single-frame and multi-frame transfers is made by the UAVCAN protocol logic on the
transmitting node based on the amount of payload data to be transferred. The application does not have
any control over the type of transfer that will be used except limiting the amount of payload data. UAVCAN
protocol implementations must always choose single-frame transfers if possible; multi-frame transfers can
be used only if all of the requested payload cannot be allocated in one transport frame.

4.1.1.4 Common properties

The properties listed in the table 4.1 are common to all types of transfers.

41The word “broadcast” should not lead one to believe that every node is required to process such transfers. The opt-in logic is facilitated by auto-
matic acceptance filtering features implemented on the transport layer.

42Such as the subject-ID and the source node-ID.

40/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

Table 4.1: Common transfer properties

Property Description

Payload The serialized object.

Port-ID A numerical identifier that indicates how the data should be processed. This is the subject-ID for
message transfers and service-ID for service transfers.

Source node-ID The node-ID of the transmitting node (excepting anonymous message transfers).

Priority A non-negative integer value that defines the transfer urgency. Higher priority transfers can pre-
empt lower priority transfers.

Transfer-ID A small overflowing integer that increments with every transfer of this data type from a given node.

4.1.2 Message publication

Message publication is the main method of communication between UAVCAN nodes.

A published message is carried by a single message transfer that contains the serialized message object. A
published message does not contain any additional fields besides those listed in the table 4.1.

In order to publish a message, the publishing node must have a node-ID that is unique within the network.
An exception applies to anonymous message publications.

4.1.2.1 Anonymous message publication

An anonymous message transfer is a transfer that can be sent from a node that does not have a node-ID. This
kind of message transfer is especially useful for facilitation of plug-and-play nodes (a high-level concept that
is reviewed in detail in chapter 5).

A node that does not have a node-ID is said to be in passive mode. Passive nodes are unable to initiate regular
data exchanges, but they can listen to the transfers exchanged over the bus, and they can emit anonymous
message transfers.

An anonymous message has the same properties as a regular message, except for the source node-ID.

An anonymous transfer can only be a single-frame transfer. Multi-frame anonymous message transfers are
not allowed. This restriction must be kept in mind when designing message data types intended for use
with anonymous message transfers: when used with anonymous transfers, the whole message must fit into a
single transport frame; however, the same data type can be used with multi-frame regular (non-anonymous)
transfers, if desired.

Anonymous messages may require special handling logic depending on the transport layer in use.

4.1.2.2 Message timing requirements

Generally, a message transmission should be aborted if it cannot be completed in 1 second. Applications are
allowed to deviate from this recommendation, provided that every such deviation is explicitly documented.
It is expected that high-frequency high-priority messages may opt for lower timeout values, whereas low-
priority delayable data may opt for higher timeout values to account for network congestion.

4.1.3 Service invocation

A service invocation sequence consists of two related service transfers: service request transfer and service
response transfer.

A service request transfer is sent from the invoking node – client node – to the node that provides the service –
server node. Upon handling the request, the server node responds to the client node with a service response
transfer. The client will match the response with the corresponding request by comparing the following
values: server node-ID, service-ID, and the transfer-ID.

The tables 4.2 and 4.3 describe the properties of service request and service response transfers, respectively.

Both the client and the server must have node-ID values that are unique within the network; service invoca-
tion is not available to passive nodes. The client and the server must be two distinct nodes.

4. Transport layer 41/132

DRAFT

Specification v1.0 2019-11-15

Table 4.2: Service request transfer properties

Property Description

Payload The serialized service request object.

Service-ID See the table 4.1.

Source node-ID The node-ID of the client (the invoking node).

Destination node-ID The node-ID of the server (the invoked node).

Priority See the table 4.1.

Transfer-ID An integer value that:
1. allows the server to distinguish the request from other requests from the same client;
2. allows the client to match the response with its request.

Table 4.3: Service response transfer properties

Property Description

Payload The serialized service response object.

Service-ID Same value as in the request transfer.

Source node-ID The node-ID of the server (the invoked node).

Destination node-ID The node-ID of the client (the invoking node).

Priority Same value as in the request transfer.

Transfer-ID Same value as in the request transfer.

4.1.3.1 Service timing requirements

Applications are recommended to follow the service invocation timing recommendations specified below.
Applications are allowed to deviate from these recommendations, provided that every such deviation is ex-
plicitly documented.

• Service transfer transmission should be aborted if does not complete in 1 second.
• The client should stop waiting for a response from the server if one has not arrived within 1 second.

If the server uses a significant part of the timeout period to process the request, the client might drop the
request before receiving the response. It is recommended to ensure that the server will be able to process any
request in less than 0.5 seconds.

4.1.4 Transfer priority

UAVCAN transfers are prioritized by means of the transfer priority property, which allows at least 8 (eight)
different priority levels for all types of transfers (some transports may support more than eight priority levels).
Transfers with higher priority levels preempt transfers with lower priority levels, delaying their transmission
until there are no more higher priority transfers to exchange.

The priority level mnemonics and their usage recommendations are specified in the following list. The
mapping between the mnemonics and actual numeric identifiers is transport-dependent.

Exceptional – The bus designer can ignore these messages when calculating bus load since they should
only be sent when a total system failure has occurred. For example, a self-destruct message on a rocket
would use this priority. Another analogy is an NMI on a microcontroller.

Immediate – Immediate is a “high priority message” but with additional latency constraints. Since ex-
ceptional messages are not considered when designing a bus, the latency of immediate messages can be
determined by considering only immediate messages.

Fast – Fast and immediate are both “high priority messages” but with additional latency constraints.
Since exceptional messages are not considered when designing a bus, the latency of fast messages can
be determined by considering only immediate and fast messages.

High – High priority messages are more important than nominal messages but have looser latency re-
quirements than fast messages. This priority is used so that, in the presence of rogue nominal messages,
important commands can be received. For example, one might envision a failure mode where a temper-
ature sensor starts to load a vehicle bus with nominal messages. The vehicle remains operational (for
a time) because the controller is exchanging fast and immediate messages with sensors and actuators.
A system safety monitor is able to detect the distressed bus and command the vehicle to a safe state by
sending high priority messages to the controller.

42/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

Nominal – This is what all messages should use by default. Specifically the heartbeat messages should
use this priority.

Low – Low priority messages are expected to be sent on a bus under all conditions but cannot prevent the
delivery of nominal messages. They are allowed to be delayed but latency should be constrained by the
bus designer.

Slow – Slow messages are low priority messages that have no time sensitivity at all. The bus designer need
only ensure that, for all possible system states, these messages will eventually be sent.

Optional – These messages might never be sent (theoretically) for some possible system states. The sys-
tem must tolerate never exchanging optional messages in every possible state. The bus designer can ig-
nore these messages when calculating bus load. This should be the priority used for diagnostic or debug
messages that are not required on an operational system.

4.1.5 Transfer descriptor

Transfer emission and reception processes rely on the concept of transfer descriptor.

A transfer descriptor is a set of properties that identify a particular set of transfers that originate from the
same source node, share the same port-ID, same kind (message or service), and are addressed to the same
destination node (the latter applies only to unicast transfers).

The properties that constitute a transfer descriptor are listed below:

• Transfer kind (message or service).
• Port-ID (subject-ID for message transfers, service-ID for service transfers).
• Source node-ID.
• Destination node-ID (only for service transfers).

For convenience, two derived definitions are introduced. Their objective is to simplify the description of
transfer reception and emission logic that appears later in this specification.

Emitted transfer descriptor – a transfer descriptor where the source node-ID equals the local node’s ID.

Received transfer descriptor – a transfer descriptor where the destination node-ID equals the local node’s
ID (for service transfers) or is not defined (for message transfers).

4.1.5.1 Hard real-time considerations

Hard real-time applications require a predictable and deterministic data processing time. The concept of
transfer descriptor plays an important role in communication; hence, its contribution to the worst case data
processing load should be carefully analyzed.

From the above definition of transfer descriptor it is easy to derive that for any message subject-ID or any
service subject-ID the maximum number of transfer descriptors that can be observed by the local node
will never exceed the number of nodes on the bus minus onea. If the number of nodes on the bus cannot
be known in advance, it can be considered to equal the maximum number of nodes permitted by the used
transport layerb.

The total number of distinct transfer descriptors that can be observed by a node on any valid UAVCAN bus
is a product of the number of distinct port-ID values utilized by the node and the number of other nodes
on the bus.

The transport emission and reception logic defined later in this specification relies on data structures
indexed by transfer descriptor values. Elements of such structures can be easily accessed via constant-
complexity static look-up tables because the worst case number of elements is always statically known.

aThe local node cannot exchange data with itself, hence minus one.
bE.g., 128 nodes for the CAN bus transport.

4. Transport layer 43/132

DRAFT

Specification v1.0 2019-11-15

4.2 Transfer emission

4.2.1 Transfer-ID computation

The transfer-ID is a small unsigned integer value in the range from 0 to 31, inclusive, that is provided for every
transfer. This value is crucial for many aspects of UAVCAN communication43; specifically:

Message sequence monitoring - the continuously increasing transfer-ID allows receiving nodes to detect
lost messages and detect when a message stream from any remote node is interrupted.

Service response matching - when a server responds to a request, it uses the same transfer-ID for the re-
sponse as in the request, allowing any node to emit concurrent requests to the same server while being able
to match each response with the corresponding request.

Transport frame deduplication - for single-frame transfers, the transfer-ID allows receiving nodes to work
around the transport frame duplication problem44 (multi-frame transfers combat the frame duplication
problem using the toggle bit, which is introduced later).

Multi-frame transfer reassembly - more info is provided in section 4.3.

Automatic management of redundant interfaces - the transfer-ID parameter allows the UAVCAN protocol
stack to perform automatic switchover to a back-up interface shall the primary interface fail. The switchover
logic can be completely transparent to the application, joining several independent redundant physical
transports into a highly reliable single virtual communication channel.

For message transfers and service request transfers the ID value should be computed as described below. For
service response transfers this value must be directly copied from the corresponding service request transfer.

Every node that is interested in emitting transfers must maintain a mapping (or a similar functionally equiva-
lent static structure45) from emitted transfer descriptors (section 4.1.5) to transfer-ID counters. This mapping
is referred to as the emitted transfer-ID map.

Whenever a node needs to emit a transfer, it will query its transfer-ID map for the appropriate transfer de-
scriptor. If the map does not contain such entry, a new entry will be created with the transfer-ID counter
initialized to zero. The node will use the current value of the transfer-ID from the map for the transfer, and
then the value stored in the map will be incremented by one. When the stored transfer-ID exceeds its maxi-
mum value, it will roll over to zero.

It is expected that some nodes will need to emit certain transfers aperiodically or on an ad-hoc basis, thereby
creating unused entries in the emitted transfer-ID map. If such aperiodic or ad-hoc transfers are of interest,
the worst case number of unused entries can be determined statically as a function of the number of port
identifiers used and the number of addressed nodes on the bus (the latter applies to services only). Nodes
are not allowed to remove any entries from the transfer-ID map as long as they are running.

4.2.2 Single frame transfers

If the size of the entire transfer payload does not exceed the space available for payload in a single transport
frame, the whole transfer will be contained in one transport frame. Such transfer is called a single-frame
transfer.

Single frame transfers are more efficient than multi-frame transfers in terms of throughput, latency, and data
overhead.

4.2.3 Multi-frame transfers

Multi-frame transfers are used when the size of the transfer payload exceeds the space available for payload
in a single transport frame.

43One might be tempted to use the transfer-ID value for temporal synchronization of parallel message streams originating from the same node, where
messages bearing the same transfer-ID value are supposed to correspond to the same moment in time. Such use is strongly discouraged because it is
impossible to detect if one node is more than 32 messages behind another. If temporal synchronization is necessary, explicit time stamping should be
used instead.

44This is a well-known issue that can be observed with certain transports such as CAN bus – a frame that appears valid to the receiver may under
certain (rare) conditions appear invalid to the transmitter, triggering the latter to retransmit the frame, in which case it will be duplicated on the side
of the receiver. Sequence counting mechanisms such as the transfer-ID or the toggle bit (both of which are used in UAVCAN) allow applications to
circumvent this problem.

45For example, simple static variables.

44/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

Two new concepts are introduced in the context of multi-frame transfers, both of which are reviewed below
in detail:

• Transfer CRC46.
• Toggle bit.

In order to emit a multi-frame transfer, the node must first compute the CRC for the entirety of the transfer
payload. The node appends the resulting CRC value at the end of the transfer payload in the big-endian byte
order, and then emits the resulting byte set in chunks as an ordered sequence of transport frames, where the
first transport frame contains the beginning of the payload bytes, and the last transport frame contains the
last bytes of the payload (possibly none) plus the transfer CRC.

The data field of all transport frames of a multi-frame transfer, except the last one, should be fully utilized.
Applications are allowed to limit the maximum amount of data transferred per transport frame in order to
improve the preemption granularity, thus reducing the worst case latency of higher priority transfers47. Re-
ceiving nodes must be prepared to reconstruct multi-frame transfers that utilize the available payload space
partially.

All frames of a multi-frame transfer should be pushed to the transmission queue at once, in the proper order
from the first frame to the last frame. Explicit gap time between transport frames belonging to the same
transfer should not be introduced; rather, implementations always should strive to minimize it. Re-ordering
of frames belonging to the same multi-frame transfer is prohibited.

4.2.3.1 Transfer CRC

Transfer CRC allows receiving nodes to ensure that a received multi-frame transfer has been reassembled
correctly.

It should be understood that the transfer CRC is not intended for bit-level data integrity checks, as that must
be managed by the transport layer implementation on a per-frame basis48. As such, the transfer CRC allows
receiving nodes to ensure that all of the frames of a multi-frame transfer were received, all of the received
frames were reassembled in the correct order, and that all of the received frames belong to the same multi-
frame transfer.

The transfer CRC is computed over the entire payload of the transfer. Certain transport implementations49

may require a short sequence of padding bytes to be added at the end of the transfer payload due to the low
granularity of the frame payload length property; in that case, the padding bytes must be included in the CRC
computation as well, as if they were part of the useful payload.

The resulting CRC value is appended to the transfer in the big-endian byte order (most significant byte first),
in order to take advantage of the CRC residue check intrinsic to the used algorithm.

The transfer CRC algorithm specification is provided in the table 4.4.

Table 4.4: Transfer CRC algorithm parameters

Property Value

Name CRC-16/CCITT-FALSE

Initial value FFFF16

Polynomial 102116

Reverse No

Output XOR 0

Residue 0

Check (49,50, . . . ,56,57) → 29B116

The following code snippet provides a basic implementation of the transfer CRC algorithm in C++.

46CRC stands for “cyclic redundancy check”, an error-detecting code added to data transmissions to reduce the likelihood of undetected data cor-
ruption.

47For example, some CAN FD applications may choose to restrict the maximum payload size to 32 bytes rather than the protocol limit of 64 bytes, as
that provides more opportunities for higher-priority frames to take over the bus. The trade-off is that smaller frames lead to higher transfer fragmenta-
tion, increase the bus load, and increase the overall average latency.

48Bit-level errors at the transport frame level may compromise the error-detecting properties of the transfer CRC.
49Such as CAN FD.

4. Transport layer 45/132

DRAFT

Specification v1.0 2019-11-15

1 // UAVCAN transfer CRC algorithm implementation in C++.
2 // License: CC0, no copyright reserved.

3 #include <iostream>
4 #include <cstdint>
5 #include <cstddef>

6 class TransferCRC
7 {
8 std::uint16_t value_ = 0xFFFFU;

9 public:
10 void add(std::uint8_t byte)
11 {
12 value_ ^= static_cast<std::uint16_t>(byte) << 8U;
13 for (std::uint8_t bit = 8; bit > 0; --bit)
14 {
15 if ((value_ & 0x8000U) != 0)
16 {
17 value_ = (value_ << 1U) ^ 0x1021U;
18 }
19 else
20 {
21 value_ = value_ << 1U;
22 }
23 }
24 }

25 void add(const std::uint8_t* bytes, std::size_t length)
26 {
27 while (length-- > 0)
28 {
29 add(*bytes++);
30 }
31 }

32 [[nodiscard]] std::uint16_t get() const { return value_; }
33 };

34 int main()
35 {
36 TransferCRC crc;
37 crc.add(reinterpret_cast<const std::uint8_t*>("123456789"), 9);
38 std::cout << std::hex << "0x" << crc.get() << std::endl; // Outputs 0x29B1
39 return 0;
40 }

4.2.3.2 Toggle bit

The toggle bit is a property defined at the transport frame level. Its purpose is to detect and avoid transport
frame duplication errors in multi-frame transfers50.

The toggle bit of the first transport frame of a multi-frame transfer must be set to one. The toggle bits of the
following transport frames of the transfer must alternate, i.e., the toggle bit of the second transport frame
must be zero, the toggle bit of the third transport frame must be one, and so on.

For single-frame transfers, the toggle bit must be set to one or removed completely, whichever option works
best for the particular transport.

Transfers where the initial value of the toggle bit is zero must be ignored. The initial state of the toggle bit
may be inverted in the future revisions of the protocol to facilitate automatic protocol version detection.

4.2.4 Redundant interface support

In configurations with redundant bus interfaces, nodes are required to submit every outgoing transfer to
the transmission queues of all available redundant interfaces simultaneously. It is recognized that perfectly
simultaneous transmission may not be possible due to different utilization rates of the redundant interfaces
and different phasing of their traffic; however, that is not an issue for UAVCAN. If perfectly simultaneous
frame submission is not possible, interfaces with lower numerical index should be handled in the first order.

An exception to the above rule applies if the payload of the transfer depends on some properties of the in-
terface through which the transfer is emitted. An example of such a special case is the time synchronization
algorithm leveraged by UAVCAN (documented in chapter 5 of the specification).

50In single-frame transfers, transport frame deduplication is based on the transfer-ID counter.

46/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

Redundant interfaces are used for increased fault tolerance, not for load sharing reasons. Whenever a node is
connected to an interface the likelihood of the interface failing is increased. This suggests that backup inter-
faces may only interconnect with mission-critical equipment, unless a homogeneous network architecture
is desired51. See section 7.2.1.

4.3 Transfer reception

4.3.1 Transfer-ID comparison

The following explanation relies on the concept of the transfer-ID forward distance. Transfer-ID forward
distance F is a function of two transfer-ID values, A and B , that defines the number of increment operations
that need to be applied to A so that A′ = B , assuming modulo 32 arithmetic52:

A+F = B (mod 32)

The half range of transfer-ID is 16.

The following code sample provides an example implementation of the transfer-ID comparison algorithm in
C++.

1 // UAVCAN transfer-ID forward distance computation algorithm implemented in C++.
2 // License: CC0, no copyright reserved.

3 #include <cstdint>
4 #include <iostream>
5 #include <cassert>

6 constexpr std::uint8_t TransferIDBitLength = 5; // Defined by the specification

7 [[nodiscard]]
8 constexpr std::uint8_t computeForwardDistance(std::uint8_t a, std::uint8_t b)
9 {
10 constexpr std::uint8_t MaxValue = (1U << TransferIDBitLength) - 1U;
11 assert((a <= MaxValue) && (b <= MaxValue));

12 std::int16_t d = static_cast<std::int16_t>(b) - static_cast<std::int16_t>(a);
13 if (d < 0)
14 {
15 d += 1U << TransferIDBitLength;
16 }

17 assert(d >= 0);
18 assert(d <= MaxValue);
19 assert(((a + d) & MaxValue) == b);
20 return static_cast<std::uint8_t>(d);
21 }

22 int main()
23 {
24 assert(0 == computeForwardDistance(0, 0));
25 assert(1 == computeForwardDistance(0, 1));
26 assert(7 == computeForwardDistance(0, 7));
27 assert(0 == computeForwardDistance(7, 7));
28 assert(31 == computeForwardDistance(31, 30)); // overflow
29 assert(1 == computeForwardDistance(31, 0)); // overflow
30 return 0;
31 }

4.3.2 Payload truncation

The deterministic nature of UAVCAN in general and DSDL in particular allows implementations to statically
determine the maximum amount of memory that is required to contain a data object of a particular type.
Consequently, an implementation that is interested in receiving data objects of a particular type53 can stati-
cally determine the maximum length of the transfer payload.

Implementations shall be able to handle incoming transfers containing a larger amount of payload data than
expected. In the event of such extra payload being received, a compliant implementation shall silently54

discard the excessive (unexpected) data at the end of the received payload. The transfer CRC, if applicable,
shall be validated regardless of the presence of the extra payload in the transfer.

51Heterogeneous transport configuration complicates the analysis of the network, which might make it impractical in safety-critical deployments.
In that case, a simpler configuration where each available redundant bus is connected to every node may be preferred.

52For example: A = 0,B = 0,F → 0; A = 0,B = 5,F → 5; A = 5,B = 0,F → 27; A = 31,B = 30,F → 31; A = 31,B = 0,F → 1.
53Messages, service requests, or service responses.
54Such occurrence is not indicative of a problem so it shall not be reported as such.

4. Transport layer 47/132

DRAFT

Specification v1.0 2019-11-15

The requirement to silently discard the excessive payload data at the end of the transfer is motivated by the
necessity to allow extensibility of data type definitions, as described in chapter 3. Additionally, excessive
payload data may contain padding bytes if required by the particular transport layer.

first byte

Transfer CRC is validated
for the entire transfer payload

before the truncation︷ ︸︸ ︷
������������︸ ︷︷ ︸

Expected, accepted
payload

��������︸ ︷︷ ︸
Excessive, discarded

payload

last byte

Figure 4.1: Transfer payload truncation.

Let node A publish an object of the following type over the subject X :

1 float32 parameter
2 float32 variance

Let node B subscribe to the subject X expecting an object of the following type:

1 float32 parameter

The payload truncation requirement guarantees that the two nodes will be able to interoperate despite
relying on incompatible data type definitions. Under this example, the duty of ensuring the semantic
compatibility lies on the system integrator.

Implementations shall not enforce the minimum payload size on received transfers. In other words, im-
plementations shall not discard a transfer even if it is determined that it contains less payload data than
expected. Serialization validity constraints are to be enforced by the object deserialization routines instead
of the transport layer.

4.3.3 State variables

4.3.3.1 Main principles

Nodes that receive transfers must keep a certain set of state variables for each received transfer descriptor
(section 4.1.5).

The set of state variables as documented in the table 4.5 will be referred to as the receiver state. For the
purposes of this specification, it is assumed that the node will maintain a mapping from transfer descriptors
to receiver states, which will be referred to as the receiver map. It is understood that implementations might
prefer different architectures, which is permitted as long as the resulting behavior of the node observable at
the protocol level is functionally equivalent.

Whenever a node receives a transfer, it will query its receiver map for the matching received transfer descrip-
tor. If the matching state does not exist, the node will add a new receiver state to the map and initialize it as
defined in section 4.3.3.2. The node then will proceed with the procedure of receiver state update, which is
defined in section 4.3.4 for redundant transports and section 4.3.5 for non-redundant transports.

It is expected that some transfers will be aperiodic or ad-hoc, which implies that the receiver map may over
time accumulate receiver states that are no longer used. Therefore, nodes are allowed, but not required, to
remove any receiver state from the receiver map as soon as the state reaches the transfer-ID timeout condi-
tion55, as defined in section 4.3.3.3.

Receiver state can only be modified when a new transport frame of a matching transfer is received. This
guarantee simplifies implementation, as it implies that the receiver states will not require any periodic back-
ground maintenance activities.

55Such behavior is not recommended for hard real-time applications, where deterministic static look-up tables should be preferred instead.

48/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

Table 4.5: Transfer reception state variables

State Description

Transfer payload Useful payload byte sequence; extended upon reception of new matching transport frames.

Transfer-ID The transfer-ID value of the next expected transport frame. Section 4.2.1.

Next toggle bit Expected value of the toggle bit in the next transport frame. Section 4.2.3.2.

Transfer timestamp The local monotonic timestamp sampled when the first frame of the transfer arrived. Here,
“monotonic” means that the reference clock does not change its rate or make leaps.

Interface index Only in the case of redundant transport interfaces.

4.3.3.2 Initial state

The initial state is reached when a new entry of the receiver map is created or an existing entry is reset. Like
any other state update, an entry can be created or reset only synchronously with the reception of a matching
transport frame.

Upon reset, the receiver state will meet the following conditions:

• The transfer payload buffer is empty.
• The transfer-ID state matches the actual transfer-ID value from the newly received transfer, unless this is
a non-first frame of a multi-frame transfer. In the latter case, the transfer-ID state will match the received
transfer-ID value incremented by one.
• The toggle bit is set to its initial state (section 4.2.3.2).
• The transfer timestamp matches the reception timestamp from the transport frame.
• The interface index matches the index of the interface that the new frame was received from (for nodes
with redundant interfaces only).

A receiver state must be reset when any of the following conditions are met:

• A new receiver state instance is created.
• A transfer-ID timeout condition is reached (section 4.3.3.3).
• A first frame of a transfer (either a multi-frame or a single-frame; in the latter case, the same frame would
also be the last frame of the transfer) is received from the same interface as the previous frame (does not
apply to non-redundantly interfaced nodes), and the transfer-ID forward distance (section 4.3.1) from the
received transfer-ID to the stored transfer-ID is greater than one.
• Only for redundantly interfaced nodes: A first frame of a transfer is received, an interface switchover con-
dition is reached (section 4.3.3.4), and the transfer-ID forward distance from the stored transfer-ID to the
received transfer-ID is less than the transfer-ID half range (section 4.3.1).

4.3.3.3 Transfer-ID timeout condition

A state is said to have reached the transfer-ID timeout condition if the last matching transfer was seen more
than 2 (two) seconds ago. When this condition is reached, the receiver must accept the next transfer disre-
garding its transfer-ID value.

Nodes are allowed to use different timeout values, if that is believed to benefit the application. If a different
timeout value is used, it must be explicitly documented.

Low timeout values increase the risk of undetected transfer duplication when such transfers are significantly
delayed due to bus congestion, which is possible with very low-priority transfers when the bus utilization is
high.

High timeout values increase the risk of an undetected transfer loss when a remote node suffers an emitted
transfer-ID map state loss (e.g., due to the whole node being restarted). However, the effects of such a transfer
loss caused by a loss of state on a remote node are always confined to the first transfer only.

4.3.3.4 Interface switchover condition

This condition is only applicable for configurations with redundant transport interfaces, which means the
node is allowed to receive the next transfer from an interface that is not the same the previous transfer was
received from.

The condition is reached when the last matching transfer was successfully received more than Tswitch seconds
ago. The value of Tswitch should not exceed the reception transfer ID timeout, as defined in section 4.3.3.3,
because if Tswitch were to exceed the transfer-ID timeout, an interface switchover would be performed by the
normal receiver state reset procedure, rendering Tswitch useless.

The actual value of Tswitch can be either a constant chosen by the designer according to the application re-
quirements (e.g., the maximum recovery time in the event of an interface failure), or the protocol stack can

4. Transport layer 49/132

DRAFT

Specification v1.0 2019-11-15

estimate this value automatically by analyzing the transfer intervals.

Nodes are required to let the first interface time out before using the next one because the transfer-ID field
is expected to wrap around frequently (every 32 transfers). Different interfaces are expected to exhibit dif-
ferent latencies even in a properly functioning system, especially if the system contains both redundantly-
interfaced and non-redundantly-interfaced nodes. If the latency of a backup interface relative to the primary
interface exceeds 32 transfer intervals, and receiving nodes were to be allowed to switch between interfaces
freely disregarding the timeout, the receiving node would skip the whole period of transfer-IDs (32 transfers
will be lost). The problem would primarily affect low-priority transfers where large latencies are more likely.

4.3.4 State update in a redundant interface configuration

The following pseudocode demonstrates the transfer reception process for a configuration with redundant
transport interfaces. Implementations are allowed to implement the reception logic differently as long as the
resulting behavior is equivalent.

50/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

1 // Constants:
2 tid_timeout := 2 seconds;
3 tid_half_range := 16;
4 iface_switch_delay := UserDefinedConstant; // Or autodetect

5 // State variables:
6 initialized := 0;
7 payload;
8 this_transfer_timestamp;
9 current_transfer_id;
10 iface_index;
11 toggle;

12 function receiveFrame(frame)
13 {
14 // Resolving the state flags:
15 tid_timed_out := (frame.timestamp - this_transfer_timestamp) > tid_timeout;
16 same_iface := frame.iface_index == iface_index;
17 start_of_transfer := frame.start_of_transfer;
18 non_wrapped_tid := computeForwardDistance(current_transfer_id, frame.transfer_id) < tid_half_range;
19 not_previous_tid := computeForwardDistance(frame.transfer_id, current_transfer_id) > 1;
20 iface_switch_allowed := (frame.timestamp - this_transfer_timestamp) > iface_switch_delay;
21 // Using the state flags from above, deciding whether we need to reset:
22 need_restart :=
23 (!initialized) or
24 (tid_timed_out) or
25 (same_iface and start_of_transfer and not_previous_tid) or
26 (iface_switch_allowed and start_of_transfer and non_wrapped_tid);

27 if (need_restart)
28 {
29 initialized := 1;
30 iface_index := frame.iface_index;
31 current_transfer_id := frame.transfer_id;
32 payload.clear();
33 toggle := frame.toggle;
34 if (!start_of_transfer)
35 {
36 current_transfer_id.increment();
37 return; // Ignore this frame, since the start of the transfer has already been missed
38 }
39 }

40 if (frame.iface_index != iface_index)
41 {
42 return; // Wrong interface, ignore
43 }

44 if (frame.toggle != toggle)
45 {
46 return; // Unexpected toggle bit, ignore
47 }

48 if (frame.transfer_id != current_transfer_id)
49 {
50 return; // Unexpected transfer-ID, ignore
51 }

52 if (start_of_transfer)
53 {
54 this_transfer_timestamp := frame.timestamp;
55 }

56 toggle := !toggle;
57 payload.append(frame.data);

58 if (frame.end_of_transfer)
59 {
60 // CRC validation for multi-frame transfers is intentionally omitted for brevity
61 processTransfer(payload, ...);
62 current_transfer_id.increment();
63 toggle := 1;
64 payload.clear();
65 }
66 }

4. Transport layer 51/132

DRAFT

Specification v1.0 2019-11-15

4.3.5 State update in a non-redundant interface configuration

The following pseudocode demonstrates the transfer reception process for a configuration with a non-
redundant transport interface. This is a specialization of the more general algorithm defined for redundant
transport. Implementations are allowed to implement the reception logic differently as long as the resulting
behavior is equivalent.

1 // Constants:
2 tid_timeout := 2 seconds;

3 // State variables:
4 initialized := 0;
5 payload;
6 this_transfer_timestamp;
7 current_transfer_id;
8 toggle;

9 function receiveFrame(frame)
10 {
11 // Resolving the state flags:
12 tid_timed_out := (frame.timestamp - this_transfer_timestamp) > tid_timeout;
13 start_of_transfer := frame.start_of_transfer;
14 not_previous_tid := computeForwardDistance(frame.transfer_id, current_transfer_id) > 1;
15 // Using the state flags from above, deciding whether we need to reset:
16 need_restart :=
17 (!initialized) or
18 (tid_timed_out) or
19 (start_of_transfer and not_previous_tid);

20 if (need_restart)
21 {
22 initialized := 1;
23 current_transfer_id := frame.transfer_id;
24 payload.clear();
25 toggle := frame.toggle;
26 if (!start_of_transfer)
27 {
28 current_transfer_id.increment();
29 return; // Ignore this frame, since the start of the transfer has already been missed
30 }
31 }

32 if (frame.toggle != toggle)
33 {
34 return; // Unexpected toggle bit, ignore
35 }

36 if (frame.transfer_id != current_transfer_id)
37 {
38 return; // Unexpected transfer-ID, ignore
39 }

40 if (start_of_transfer)
41 {
42 this_transfer_timestamp := frame.timestamp;
43 }

44 toggle := !toggle;
45 payload.append(frame.data);

46 if (frame.end_of_transfer)
47 {
48 // CRC validation for multi-frame transfers is intentionally omitted for brevity
49 processTransfer(payload, ...);
50 current_transfer_id.increment();
51 toggle := 1;
52 payload.clear();
53 }
54 }

52/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

4.4 CAN bus transport layer specification
This section specifies the CAN-based transport layer of UAVCAN.

Throughout this section, “CAN” implies both CAN 2.0 and CAN FD, unless specifically noted otherwise. CAN
FD should be considered the primary transport protocol.

UAVCAN utilizes only extended CAN frames with 29-bit identifiers. UAVCAN can share the same bus with
other protocols based on standard (non-extended) CAN frames with 11-bit identifiers. However, future revi-
sions of UAVCAN may utilize 11-bit identifiers as well so backward compatibility with other protocols is not
guaranteed.

4.4.1 CAN ID structure

UAVCAN utilizes two different CAN ID formats for message transfers and service transfers. The structure is
summarized on the figure 4.2.

The fields are described in detail in the following sections. The tables 4.6 and 4.7 summarize the purpose of
the fields and their permitted values for message transfers and service transfers, respectively.

Message
Service, not message Anonymous message

Subject-ID R Source node-ID
Priority R

Values [0,7] 0 B 0 [0,32767] 0 [0,127]

CAN ID bit 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CAN ID byte 3 2 1 0

Service
Service, not message Request, not response

Destination node-ID Source node-ID
Priority R Service-ID

Values [0,7] 1 B 0 [0,511] [0,127] [0,127]

CAN ID bit 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CAN ID byte 3 2 1 0

Figure 4.2: CAN ID structure

Table 4.6: CAN ID fields for message transfers

Field Width Permitted values Description

Transfer priority 3 [0,7] (any) Section 4.1.4.

Service not message 1 0 Always zero for message transfers.

Anonymous message 1 {0,1} (any) Zero for regular (non-anonymous) message transfers. One for
anonymous message transfers.

Reserved bit 23 1 0 Ignore frame (or use according to a newer specification) if this
field has a different value.

Subject-ID 15 [0,32767] (any) Subject identifier of the current message. The most significant
bit is always zero.

Reserved bit 7 1 0 Ignore frame (or use according to a newer specification) if this
field has a different value.

Source node-ID 7 [0,127] (any) Node-ID of the origin. For anonymous transfers, this field con-
tains a pseudo-ID instead, as described in section 4.4.1.2.

Table 4.7: CAN ID fields for service transfers

Field Width Permitted values Description

Transfer priority 3 [0,7] (any) Section 4.1.4.

Service not message 1 1 Always one for service transfers.

Request not response 1 {0,1} (any) 1 for service request, 0 for service response.

Reserved bit 23 1 0 Ignore frame (or use according to a newer specification) if this
field has a different value.

Service-ID 9 [0,511] (any) Service-ID of the encoded service object (request or response).

Destination node-ID 7 [0,127] (any) Node-ID of the destination (i.e., server for requests, client for
responses).

Source node-ID 7 [0,127] (any) Node-ID of the origin (i.e., client for requests, server for re-
sponses).

4.4.1.1 Transfer priority

Valid values for priority range from 0 to 7, inclusively, where 0 corresponds to the highest priority, and 7
corresponds to the lowest priority.

4. Transport layer 53/132

DRAFT

Specification v1.0 2019-11-15

In multi-frame transfers, the value of the priority field must be identical for all frames of the transfer.

When multiple transfers of different types with the same priority contest for bus access, the following prece-
dence is ensured (from higher priority to lower priority):

1. Message transfers.
2. Anonymous message transfers.
3. Service response transfers.
4. Service request transfers.

Message transfers take precedence over service transfers because message publication is the primary method
of communication in UAVCAN networks. Service responses take precedence over service requests in order to
make service invocations more atomic and reduce the number of pending states in the system.

Within the same type and the same priority level, transfers are prioritized according to the port-ID56: trans-
fers with lower port-ID values preempt those with higher port-ID values.

Mnemonics for transfer priority levels are provided in section 4.1.4, and their mapping to the priority field
for CAN bus is shown in the table 4.8.

Table 4.8: CAN transfer priority level mapping

Priority field value Mnemonic name

0 Exceptional

1 Immediate

2 Fast

3 High

4 Nominal

5 Low

6 Slow

7 Optional

4.4.1.2 Source node-ID field in anonymous message transfers

CAN bus does not allow different nodes to transmit CAN frames with different data field values under the
same CAN ID. Owing to the fact that the CAN ID includes the node-ID value of the transmitting node, this
restriction does not affect regular UAVCAN transfers. However, anonymous message transfers would violate
this restriction because they don’t have a unique node-ID.

In order to work around this problem, UAVCAN requires that the source node-ID field of anonymous mes-
sages57 is initialized with a pseudorandom pseudo-ID value, and defines special logic for handling CAN bus
errors during transmission of anonymous frames.

The source of the pseudorandom data used for the pseudo-ID must aim to produce different values for dif-
ferent payloads. A possible way of initializing the source node pseudo-ID value is to apply the transfer CRC
function (as defined in the section 4.2.3.1) to the payload of the anonymous message, and then use the seven
least significant bits of the result. Nodes that adopt this approach will be using the same pseudo-ID value for
identical messages, which is acceptable since this will not trigger an error on the bus.

Since the pseudo-ID is only seven bits long (128 possible values), a collision where multiple nodes emit CAN
frames with different data but the same CAN ID is likely to happen despite the randomization measures
described earlier. Therefore, the protocol must account for possible errors on the CAN bus triggered by CAN
ID collisions. In order to comply with this requirement, UAVCAN requires all nodes to immediately abort
transmission of all anonymous transfers once an error on the CAN bus is detected58. This measure allows
the protocol to prevent the bus deadlock that may occur if the automatic retransmission on bus error is
not suppressed. Some method of media access control59 should be used at the application level for further
conflict resolution60.

56Subject-ID or service-ID.
57Source node identifier is not defined for anonymous message transfers; see table 4.1.
58I.e., if the CAN controller uses automatic retransmission, it should be disabled for anonymous frames.
59E.g., CSMA/CD (carrier-sense multiple access with collision detection). Additional bus access control logic is needed at the application level

because the possibility of identifier collisions in anonymous frames undermines the access control logic implemented in CAN bus controller hardware.
60The described principles make anonymous messages highly non-deterministic and inefficient. This is considered acceptable because the scope

of anonymous messages is limited to a very narrow set of use cases which tolerate their downsides. The UAVCAN specification employs anonymous
messages only for the plug-and-play feature defined in section 5.3. Deterministic applications are advised to avoid reliance on anonymous messages
completely.

54/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

Nodes that receive anonymous transfers must ignore their source node identifiers.

4.4.2 CAN frame data

The CAN frame data field may contain the following segments, in the listed order:

1. The useful payload (serialized object). This segment may be empty.
2. Possible padding bytes. Padding bytes may be necessary if the transport layer does not provide byte-level
granularity of the data field length (e.g., CAN FD).
3. The last frame of multi-frame transfers always contains the transfer CRC (section 4.2.3.1).
4. The last byte of the data field always contains the tail byte.

The segments are documented below in this section.

4.4.2.1 Tail byte

UAVCAN adds one byte of overhead to every CAN frame regardless of the type of the transfer. The extra
byte contains certain metadata for the needs of the transport layer. It is named the tail byte, and as the
name suggests, it is always situated at the very last byte of the data field of every CAN frame. The tail byte
contains four fields: start of transfer, end of transfer, toggle bit, and the transfer-ID (described earlier in the
section 4.2.1). The placement of the fields and their usage for single-frame and multi-frame transfers are
documented in the table 4.9.

Table 4.9: Tail byte structure

Bit Field Single-frame transfers Multi-frame transfers

7 Start of transfer Always 1 First frame: 1, otherwise 0.

6 End of transfer Always 1 Last frame: 1, otherwise 0.

5 Toggle bit Always 1 First frame: 1, then alternates; section 4.2.3.2.

4

3 Modulo 32 (range [0, 31])

2 Transfer-ID section 4.2.1

1

0 (least significant bit)

The transfer-ID field is populated according to the specification provided in the section 4.2.1. The usage of
this field is independent of the type of the transfer.

For single-frame transfers, the fields start-of-transfer, end-of-transfer, and the toggle bit are all set to 1.

For multi-frame transfers, the fields start-of-transfer and end-of-transfer are used to state the boundaries of
the current transfer as described in the table. The transfer-ID value is identical for all frames of a multi-frame
transfer.

The toggle bit, as described in the section 4.2.3.2, serves two main purposes: CAN frame deduplication and
protocol version detection.

4.4.2.2 Padding bytes

Certain transports (such as CAN FD) may not provide byte-level granularity of the CAN data field length. In
that case, the useful payload is to be padded with the minimal number of padding bytes required to bring the
total length of the CAN data field to a value that can satisfy the length granularity constraints.

When transmitting, each padding byte must be set to 85 = 55hex = 0101 0101bin. This specific padding value
is chosen to avoid stuff bits and to facilitate CAN controller synchronization.

When receiving, the values of the padding bytes must be ignored. In other words, receiving nodes must not
make any assumptions about the values of the padding bytes.

Usage of padding bytes implies that when a serialized message is being deserialized by a receiving node,
the byte sequence used for deserialization may be longer than the actual byte sequence generated by the
emitting node during serialization. Therefore, nodes must ignore the trailing unused data bytes at the end of
serialized byte sequences; a length mismatch is only to be considered an error if the received byte sequence
is shorter than expected by the deserialization routine.

4.4.2.3 Single-frame transfers

For single-frame transfers, the data field of the CAN frame contains two or three segments: the useful payload
(which is the serialized object, may be empty), possible padding bytes, and the tail byte (the last byte of the

4. Transport layer 55/132

DRAFT

Specification v1.0 2019-11-15

data field).

The resulting data field segmentation is shown in the table 4.10.

Table 4.10: CAN frame data segments for single-frame transfers

Offset Length Segment

0 Lpayload ≥ 0 Useful payload (serialized object).

Lpayload Lpadding ≥ 0 Padding bytes (if necessary).

Lpayload +Lpadding 1 Tail byte.

4.4.2.4 Multi-frame transfers

For multi-frame transfers, all frames except the last one contain only a fragment of the useful payload and
the tail byte. Notice that the padding bytes are not used in multi-frame transfers, excepting the last frame;
instead of padding, every frame except the last one must use the number of payload bytes that satisfies the
length granularity constraints.

The useful payload is fragmented in the forward order: the first CAN frame of a multi-frame transfer contains
the beginning of the payload (the first fragment), the following frames contain the subsequent fragments of
the useful payload. The last CAN frame of a multi-frame transfer contains the last fragment, unless the last
fragment was fully accommodated by the second-to-last CAN frame of the transfer. In the latter case, the last
CAN frame will contain only the metadata, as specified below in this section.

Each CAN frame of a multi-frame transfer except the last one is recommended to use the maximum CAN data
length permitted by the transport. This is not a hard requirement; some systems that utilize CAN FD may opt
for shorter CAN frames in order to reduce the worst case preemption latency, as explained in section 4.2.3.
Therefore, UAVCAN implementations must be able to correctly process incoming multi-frame transfers with
arbitrary CAN frame data lengths.

The resulting data field segmentation for all frames of a multi-frame transfer except the last one is shown in
the table 4.11.

Table 4.11: CAN frame data segments for multi-frame transfers (except the last CAN frame of the transfer)

Offset Length Segment

0 Lpayload > 0 A fragment of the useful payload (serialized object). This segment occupies the entirety of
the CAN data field except the last byte, which is used by the tail byte. No padding is allowed.

Lpayload 1 Tail byte.

The last CAN frame of a multi-frame transfer contains one or two additional segments: the padding bytes
(if necessary) and the transfer CRC. The padding rules are identical to those of single-frame transfers. The
transfer CRC is to be allocated in the big-endian byte order61 immediately before the tail byte. The resulting
data field segmentation is shown in the table 4.12.

Table 4.12: CAN frame data segments for multi-frame transfers (the last CAN frame of the transfer)

Offset Length Segment

0 Lpayload ≥ 0 The last fragment of the useful payload (serialized object).

Lpayload Lpadding ≥ 0 Padding bytes (if necessary).

Lpayload +Lpadding 2
Transfer CRC, high byte.

Transfer CRC, low byte.

Lpayload +Lpadding +2 1 Tail byte.

4.4.3 Software design considerations

4.4.3.1 Ordered transmission

Multi-frame transfers use identical CAN ID for all frames of the transfer, and UAVCAN requires that all frames
of a multi-frame transfer should be transmitted in the correct order. Therefore, the CAN controller driver
software must ensure that CAN frames with identical CAN ID values must be transmitted in their order of
appearance in the transmission queue. Some CAN controllers will not meet this requirement by default, so
the designer must take special care to ensure the correct behavior, and apply workarounds if necessary.

61Most significant byte first. This byte order is used to allow faster CRC residue checks; more info in section 4.2.3.1.

56/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

4.4.3.2 Transmission timestamping

Certain advanced features of UAVCAN may require the driver to timestamp outgoing transport frames, e.g.,
the time synchronization feature.

A sensible approach to transmission timestamping is built around the concept of loop-back frames, which
is described here.

If the application needs to timestamp an outgoing frame, it sets a special flag – the loop-back flag – on
the frame before sending it to the driver. The driver would then automatically re-enqueue this frame back
into the reception queue once it is transmitted (keeping the loop-back flag set so that the application is
able to distinguish the loop-back frame from regular received traffic). The timestamp of the loop-backed
frame would be of the moment when it was delivered to the bus.

The advantage of the loop-back based approach is that it relies on the same interface between the appli-
cation and the driver that is used for regular communications. No complex and dangerous callbacks or
write-backs from interrupt handlers are involved.

4.4.3.3 Inner priority inversion

Implementations should take necessary precautions against the problem of inner priority inversion. The
following non-normative section provides an overview of the inner priority inversion problem and suggests
a possible solution.

Suppose the application needs to emit a frame with the CAN ID X . The frame is submitted to the CAN
controller’s registers and the transmission is started. Suppose that afterwards it turned out that there is a
new frame with the CAN ID (X −1) that needs to be sent, too, but the previous frame X is in the way, and
it is blocking the transmission of the new frame. This may turn into a problem if the lower-priority frame
is losing arbitration on the bus due to the traffic on the bus having higher priority than the current frame,
but lower priority than the next frame that is waiting in the queue.

A naive solution to this is to continuously check whether the priority of the frame that is currently being
transmitted by the CAN controller is lower than the priority of the next frame in the queue, and if it is, abort
transmission of the current frame, move it back to the transmission queue, and begin transmission of the
new one instead. This approach, however, has a hidden race condition: the old frame may be aborted at
the moment when it has already been received by remote nodes, which means that the next time it is re-
transmitted, the remote nodes will see it duplicated. Additionally, this approach increases the complexity
of the driver and can possibly affect its throughput and latency.

Most CAN controllers offer a proper solution to the problem: they have multiple transmission mailboxes
(usually at least 3), and the controller always chooses for transmission the mailbox which contains the
highest priority frame. This provides the application with a possibility to avoid the inner priority inversion
problem: whenever a new transmission is initiated, the application should check whether the priority of
the next frame is higher than any of the other frames that are already awaiting transmission. If there is
at least one higher-priority frame pending, the application doesn’t move the new one to the controller’s
transmission mailboxes, it remains in the queue. Otherwise, if the new frame has a higher priority level
than all of the pending frames, it is pushed to the controller’s transmission mailboxes and removed from
the queue. In the latter case, if a lower-priority frame loses arbitration, the controller would postpone its
transmission and try transmitting the higher-priority one instead. That resolves the problem.

There is an interesting extreme case, however. Imagine a controller equipped with N transmission mail-
boxes. Suppose the application needs to emit N frames in the increasing order of priority, which leads
to all of the transmission mailboxes of the controller being occupied. Now, if all of the conditions below
are satisfied, the system ends up with a priority inversion condition nevertheless, despite the measures
described above:

• The highest-priority pending CAN frame cannot be transmitted due to the bus being saturated with a
higher-priority traffic.
• The application needs to emit a new frame which has a higher priority than that which saturates the
bus.

If both hold, a priority inversion is afoot because there is no free transmission mailbox to inject the new
higher-priority frame into. The scenario is extremely unlikely, however; it is also possible to construct the
application in a way that would preclude the problem, e.g., by limiting the number of simultaneously used
distinct CAN ID values.

4. Transport layer 57/132

DRAFT

Specification v1.0 2019-11-15

The following pseudocode demonstrates the principles explained above:

1 // Returns the index of the TX mailbox that can be used for the transmission of the newFrame
2 // If none are available, returns -1.
3 getFreeMailboxIndex(newFrame)
4 {
5 chosen_mailbox = -1 // By default, assume that no mailboxes are available

6 for i = 0...NumberOfTxMailboxes
7 {
8 if isTxMailboxFree(i)
9 {
10 chosen_mailbox = i
11 // Note: cannot break here, must check all other mailboxes as well.
12 }
13 else
14 {
15 if not isFramePriorityHigher(newFrame, getFrameFromTxMailbox(i))
16 {
17 chosen_mailbox = -1
18 break // Denied - must wait until this mailbox has finished transmitting
19 }
20 }
21 }

22 return chosen_mailbox
23 }

4.4.3.4 Automatic hardware acceptance filter configuration

Most CAN controllers are equipped with hardware acceptance filters. Hardware acceptance filters reduce the
application workload by ignoring irrelevant CAN frames on the bus by comparing their ID values against the
set of relevant ID values configured by the application.

There exist two common approaches to CAN hardware filtering: list-based and mask-based. In the case
of the list-based approach, every CAN frame detected on the bus is compared against the set of reference
CAN ID values provided by the application; only those frames that are found in the reference set are ac-
cepted. Due to the complex structure of the CAN ID field used by UAVCAN, usage of the list-based filtering
method with this protocol is impractical.

Most CAN controller vendors implement mask-based filters, where the behavior of each filter is defined
by two parameters: the mask M and the reference ID R. Then, such filter accepts only those CAN frames
for which the following bitwise logical condition holds truea:

((X ∧M)⊕R) ↔ 0

where X is the CAN ID value of the evaluated frame.

Complex UAVCAN applications are often required to operate with more distinct transfers than there are
acceptance filters available in the hardware. That creates the challenge of finding the optimal configura-
tion of the available filters that meets the following criteria:

• All CAN frames needed by the application are accepted.
• The number of irrelevant frames (i.e., not used by the application) accepted from the bus is minimized.

The optimal configuration is a function of the number of available hardware filters, the set of distinct
transfers needed by the application, and the expected frequency of occurrence of all possible distinct
transfers on the bus. The latter is important because if there are to be irrelevant transfers, it makes sense
to optimize the configuration so that the acceptance of less common irrelevant transfers is preferred over
the more common irrelevant transfers, as that reduces the processing load on the application.

The optimal configuration depends on the properties of the network the node is connected to. In the
absence of the information about the network, or if the properties of the network are expected to change
frequently, it is possible to resort to a quasi-optimal configuration which assumes that the occurrence of
all possible irrelevant transfers is equally probable. As such, the quasi-optimal configuration is a function
of only the number of available hardware filters and the set of distinct transfers needed by the application.

The quasi-optimal configuration can be easily found automatically. Certain implementations of the
UAVCAN protocol stack include this functionality, allowing the application to easily adjust the configu-
ration of the hardware acceptance filters using a very simple API.

58/132 4. Transport layer

DRAFT

2019-11-15 Specification v1.0

The quasi-optimal hardware acceptance filter configuration algorithm is defined below.

First, the bitwise filter merge operation is defined on filter configurations A and B . The set of CAN frames
accepted by the merged filter configuration is a superset of those accepted by A and B . The definition is
as follows:

mM (RA ,RB , MA , MB) = MA ∧MB ∧¬(RA ⊕RB)

mR (RA ,RB , MA , MB) = RA ∧mM (RA ,RB , MA , MB)

The filter rank is a function of the mask of the filter. The rank of a filter is a unitless quantity that defines in
relative terms how selective the filter configuration is. The rank of a filter is proportional to the likelihood
that the filter will reject a random CAN ID. In the context of hardware filtering, this quantity is conveniently
representable via the number of bits set in the filter mask parameter:

r (M) =

0 | M < 1

r (bM
2 c) | M mod 2 = 0

r (bM
2 c)+1 | M mod 2 6= 0

Having the low-level operations defined, we can proceed to define the whole algorithm. First, construct
the initial set of CAN acceptance filter configurations according to the requirements of the application.
Then, as long as the number of configurations in the set exceeds the number of available hardware accep-
tance filters, repeat the following:

1. Find the pair A, B of configurations in the set for which r (mM (RA ,RB , MA , MB)) is maximized.
2. Remove A and B from the set of configurations.
3. Add a new configuration X to the set of configurations, where XM = mM (RA ,RB , MA , MB), and XR =
mR (RA ,RB , MA , MB).

The algorithm reduces the number of filter configurations by one at each iteration, until the number of
available hardware filters is sufficient to accommodate the whole set of configurations.

aNotation: ∧ – bitwise logical AND, ⊕ – bitwise logical XOR, ¬ – bitwise logical NOT.

4. Transport layer 59/132

DRAFT

Specification v1.0 2019-11-15

5 Application layer
Previous chapters of this specification define a set of basic concepts that are the foundation of the protocol:
they allow one to define data types and exchange data objects over the bus in a robust and deterministic man-
ner. This chapter is focused on higher-level concepts: rules, conventions, and standard functions that are to
be respected by applications utilizing UAVCAN to maximize cross-vendor compatibility, avoid ambiguities,
and prevent some common design pitfalls.

The rules, conventions, and standard functions defined in this chapter are designed to be an acceptable
middle ground for any sensible aerospace or robotic system. UAVCAN favors no particular domain or kind
of system among targeted applications.

• Section 5.1 contains a set of mandatory rules that must be followed by all UAVCAN implementations.
• Section 5.2 contains a set of conventions and recommendations that are not mandatory to follow. Every
deviation, however, should be justified and well-documented.
• Section 5.3 contains a full list of high-level functions defined on top of UAVCAN. Formal specification of
such functions is provided in the DSDL data type definition files that those functions are based on (see chap-
ter 6).

60/132 5. Application layer

DRAFT

2019-11-15 Specification v1.0

5.1 Application-level requirements
This section describes a set of high-level rules that must be obeyed by all UAVCAN implementations.

5.1.1 Port identifier distribution

An overview of related concepts is provided in chapter 2.

The subject and service identifier values are segregated into three ranges:

• unregulated port identifiers that can be freely chosen by users and integrators (both fixed and non-fixed);
• regulated fixed identifiers for non-standard data type definitions that are assigned by the UAVCAN main-
tainers for publicly released data types;
• regulated identifiers of the standard data types that are an integral part of the UAVCAN specification.

More information on the subject of data type regulation is provided in section 2.1.2.2.

The ranges are summarized in the table 5.1. Unused gaps are reserved for future expansion of adjacent
ranges.

Table 5.1: Port identifier distribution

Subject-ID Service-ID Purpose

[0,24575] [0,127] Unregulated identifiers (both fixed and non-fixed).

[28672,29695] [256,319] Non-standard fixed regulated identifiers (i.e., vendor-specific).

[31744,32767] [384,511] Standard fixed regulated identifiers.

5.1.2 Standard namespace

An overview of related concepts is provided in chapter 3.

This specification defines a set of standard regulated DSDL data types located under the root namespace
named “uavcan” (section 6).

Vendor-specific, user-specific, or any other data types not defined by this specification must not be defined
inside the standard root namespace62.

62Custom data type definitions shall be located inside vendor-specific or user-specific namespaces instead.

5. Application layer 61/132

DRAFT

Specification v1.0 2019-11-15

5.2 Application-level conventions
This section describes a set of high-level conventions designed to enhance compatibility of applications
leveraging UAVCAN. The conventions described here are not mandatory to follow; however, every deviation
should be justified and documented.

5.2.1 Node identifier distribution

An overview of related concepts is provided in chapter 2.

Valid values of node-ID range from 0 up to a transport-specific upper boundary which is guaranteed to be
above 127 for any transport.

The two uppermost node-ID values are reserved for diagnostic and debugging tools; these node-ID values
should not be used in fielded systems.

5.2.2 Coordinate frames

UAVCAN follows the conventions that are widely accepted in relevant applications. Adherence to the coor-
dinate frame conventions described here maximizes compatibility and reduces the amount of computations
for conversions between incompatible coordinate systems and representations. It is recognized, however,
that some applications may find the advised conventions unsuitable, in which case deviations are permitted.
Any such deviations must be explicitly documented.

All coordinate systems defined in this section are right-handed. If application-specific coordinate systems
are introduced, they should be right-handed as well.

North-East-Down (NED) frame and body frame conventions. All systems are right-handed.
Figure 5.1: Coordinate frame conventions.

5.2.2.1 World frame

For world fixed frames, the North-East-Down (NED) right-handed notation is preferred.

X — northward;

Y — eastward;

Z — down.

5.2.2.2 Body frame

In relation to a body, the convention is as defined below, right-handed. This convention is widely used in
aeronautic applications.

X — forward;

Y — right;

Z — down.

62/132 5. Application layer

DRAFT

2019-11-15 Specification v1.0

5.2.2.3 Optical frame

In the case of cameras, the right-handed convention specified below is preferred. It is widely used in various
applications involving computer vision systems.

X — right;

Y — down;

Z — towards the scene along the optical axis.

5.2.3 Rotation representation

All applications should represent rotations using quaternions with the elements ordered as follows63: W, X,
Y, Z. Other forms of rotation representation should be avoided.

Angular velocities should be represented using the right-handed, fixed-axis (extrinsic) convention: X (roll), Y
(pitch), Z (yaw).

Quaternions are considered to offer the optimal trade-off between bandwidth efficiency, computation
complexity, and explicitness:

• Euler angles are not self-contained, requiring applications to agree on a particular convention before-
hand; a convention would be difficult to establish considering different demands of various use cases.
• Euler angles and fixed axis rotations typically cannot be used for computations directly due to angular
interpolation issues and singularities; thus, to make use of such representations, one often has to convert
them to a different form (e.g., quaternion); such conversions are computationally heavy.
• Rotation matrices are highly redundant.

5.2.4 Matrix representation

5.2.4.1 General

Matrices should be represented as flat arrays in the row-major order.[
x11 x12 x13

x21 x22 x23

]
→ (x11, x12, x13, x21, x22, x23)

5.2.4.2 Square matrices

There are standard compressed representations of an n ×n square matrix.

An array of size n2 represents a full square matrix. This is equivalent to the general case reviewed above.

An array of (1+n)n
2 elements represents a symmetric matrix, where array members represent the elements of

the upper-right triangle arranged in the row-major order.a b c

b d e

c e f

→ (
a,b,c,d ,e, f

)
This form is well-suited for covariance matrix representation.

An array of n elements represents a diagonal matrix, where an array member at position i (where i = 1 for
the first element) represents the matrix element xi ,i (where x1,1 is the upper-left element).a 0 0

0 b 0

0 0 c

→ (a,b,c)

An array of one element represents a scalar matrix.a 0 0

0 a 0

0 0 a

→ a

63Assuming w +xi + y j + zk .

5. Application layer 63/132

DRAFT

Specification v1.0 2019-11-15

An empty array represents a zero matrix.

5.2.4.3 Covariance matrices

A zero covariance matrix represents an unknown covariance64.

Infinite error variance means that the associated value is undefined.

5.2.5 Physical quantity representation

All units should be SI65 units (base or derived). Usage of any other units is strongly discouraged.

When defining data types, fields and constants that represent unscaled quantities in SI units should not have
suffixes indicating the unit, since that would be redundant.

On the other hand, fields and constants that contain quantities in non-SI units66 or scaled SI units67 should
be suffixed with the standard abbreviation of the unit68 and its metric prefix69 (if any), maintaining the proper
letter case of the abbreviation. In other words, the letter case of the suffix is independent of the letter case of
the attribute it is attached to.

Scaling coefficients should not be chosen arbitrarily; instead, the choice should be limited to the standard
metric prefixes defined by the International System of Units.

All standard metric prefixes have well-defined abbreviations that are constructed from ASCII characters, ex-
cept for one: the micro prefix is abbreviated as a Greek letter “µ” (mu). When defining data types, “µ” should
be replaced with the lowercase Latin letter “u”.

Irrespective of the suffix, it is recommended to always specify units for every field in the comments.

1 float16 temperature # [kelvin] Suffix not needed because an unscaled SI unit is used here.

2 uint24 delay_us # [microsecond] Scaled SI unit, suffix required. Mu replaced with "u".
3 uint24 MAX_DELAY_us = 600000 # [microsecond] Notice the letter case.

4 float32 kinetic_energy_GJ # [gigajoule] Notice the letter case.

5 float16 estimated_charge_mAh # [milliampere hour] Scaled non-SI unit. Discouraged, use coulomb.
6 float16 MAX_CHARGE_mAh = 1e4 # [milliampere hour] Notice the letter case.

64As described above, an empty array represents a zero matrix, from which follows that an empty array represents unknown covariance.
65International System of Units.
66E.g., degree Celsius instead of kelvin.
67E.g., microsecond instead of second.
68E.g., kg for kilogram, J for joule.
69E.g., M for mega, n for nano.

64/132 5. Application layer

DRAFT

2019-11-15 Specification v1.0

5.3 Application-level functions
This section documents the high-level functionality defined by UAVCAN. The common high-level functions
defined by the specification span across different application domains. All of the functions defined in this
section are optional (not mandatory to implement), except for the node heartbeat feature (section 5.3.2),
which is mandatory for all UAVCAN nodes.

The detailed specifications for each function are provided in the DSDL comments of the data type definitions
they are built upon, whereas this section serves as a high-level overview and index.

5.3.1 Node initialization

UAVCAN does not require that nodes undergo any specific initialization upon connection to the bus — a
node is free to begin functioning immediately once it is powered up. The operating mode of the node (such
as initialization, normal operation, maintenance, and so on) is to be reflected via the mandatory heartbeat
message described in section 5.3.2.

5.3.2 Node heartbeat

Every UAVCAN node must report its status and presence by periodically publishing messages of type
uavcan.node.Heartbeat (section 6.4.4 on page 87) at a fixed rate specified in the message definition.

This is the only high-level protocol function that UAVCAN nodes are required to support. All other data types
and application-level functions are optional.

The DSDL source text of uavcan.node.Heartbeat version 1.0 (this is the only version) with a fixed subject
ID 32085 is provided below. More information is available in section 6.4.4 on page 87.

1 #
2 # Abstract node status information.
3 # This is the only high-level function that must be implemented by all nodes.
4 #
5 # All UAVCAN nodes that have a node-ID are required to publish this message periodically.
6 # Nodes that do not have a node-ID (also known as "anonymous nodes") shall not publish this message.
7 #
8 # The default subject ID 32085 is 111110101010101 in binary. The alternating bit pattern at the end
9 # helps transceiver synchronization (e.g., on CAN-based networks) and on some transports permits
10 # automatic bit rate detection.
11 #
12
13 # The publication period must not exceed this limit.
14 # The period should not change while the node is running.
15 uint16 MAX_PUBLICATION_PERIOD = 1 # [second]
16
17 # If the last message from the node was received more than this amount of time ago, it should be considered offline.
18 uint16 OFFLINE_TIMEOUT = 3 # [second]
19
20 # The uptime seconds counter should never overflow. The counter will reach the upper limit in ~136 years,
21 # upon which time it should stay at 0xFFFFFFFF until the node is restarted.
22 #
23 # Other nodes may detect that a remote node has restarted when this value leaps backwards.
24 uint32 uptime # [second]
25
26 # Abstract node health information. See constants below.
27 # Follows:
28 # https://www.law.cornell.edu/cfr/text/14/23.1322
29 # https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_25.1322-1.pdf section 6
30 truncated uint2 health
31
32 # The node is functioning properly (nominal).
33 uint2 HEALTH_NOMINAL = 0
34
35 # A critical parameter went out of range or the node encountered a minor failure that does not prevent
36 # the subsystem from performing any of its real-time functions.
37 uint2 HEALTH_ADVISORY = 1
38
39 # The node encountered a major failure and is performing in a degraded mode or outside of its designed limitations.
40 uint2 HEALTH_CAUTION = 2
41
42 # The node suffered a fatal malfunction and is unable to perform its intended function.
43 uint2 HEALTH_WARNING = 3
44
45 # The current operating mode. See constants below.
46 #
47 # The mode OFFLINE can be used for informing other network participants that the sending node has ceased its
48 # activities or about to do so. In this case, other nodes will not have to wait for the OFFLINE_TIMEOUT to
49 # expire before detecting that the sending node is no longer available.
50 #
51 # Reserved values can be used in future revisions of the specification.
52 truncated uint3 mode
53
54 # Normal operating mode.
55 uint3 MODE_OPERATIONAL = 0
56
57 # Initialization is in progress; this mode is entered immediately after startup.
58 uint3 MODE_INITIALIZATION = 1
59
60 # E.g. calibration, self-test, etc.
61 uint3 MODE_MAINTENANCE = 2
62

5. Application layer 65/132

DRAFT

Specification v1.0 2019-11-15

63 # New software/firmware is being loaded or the bootloader is running.
64 uint3 MODE_SOFTWARE_UPDATE = 3
65
66 # The node is no longer available.
67 uint3 MODE_OFFLINE = 7
68
69 # Optional, vendor-specific node status code, e.g. a fault code or a status bitmask.
70 truncated uint19 vendor_specific_status_code
71
72 @assert _offset_ % 8 == {0}
73 @assert _offset_.max <= 56 # Must fit into one CAN 2.0 frame (least capable transport, smallest MTU)

5.3.3 Generic node information

The service uavcan.node.GetInfo (section 6.4.2 on page 86) can be used to obtain generic information
about the node, such as the structured name of the node (which includes the name of its vendor), a 128-bit
globally unique identifier, the version information about its hardware and software, version of the UAVCAN
specification implemented on the node, and the optional certificate of authenticity.

While the service is, strictly speaking, optional, omitting its support is highly discouraged, since it is instru-
mental for network discovery, firmware update, and various maintenance and diagnostic needs.

The DSDL source text of uavcan.node.GetInfo version 1.0 (this is the only version) with a fixed service ID
430 is provided below. More information is available in section 6.4.2 on page 86.

1 #
2 # Full node info request.
3 # All of the returned information must be static (unchanged) while the node is running.
4 # It is highly recommended to support this service on all nodes.
5 #
6
7 ---
8
9 # The UAVCAN protocol version implemented on this node, both major and minor.
10 # Not to be changed while the node is running.
11 Version.1.0 protocol_version
12
13 # The version information must not be changed while the node is running.
14 # The correct hardware version must be reported at all times, excepting software-only nodes, in which
15 # case it should be set to zeros.
16 # If the node is equipped with a UAVCAN-capable bootloader, the bootloader should report the software
17 # version of the installed application, if there is any; if no application is found, zeros should be reported.
18 Version.1.0 hardware_version
19 Version.1.0 software_version
20
21 # A version control system (VCS) revision number or hash. Not to be changed while the node is running.
22 # For example, this field can be used for reporting the short git commit hash of the current
23 # software revision.
24 # Set to zero if not used.
25 uint64 software_vcs_revision_id
26
27 # The unique node ID is a 128-bit long sequence that is likely to be globally unique per node.
28 # The vendor must ensure that the probability of a collision with any other node UID globally is negligibly low.
29 # UID is defined once per hardware unit and should never be changed.
30 # All zeros is not a valid UID.
31 # If the node is equipped with a UAVCAN-capable bootloader, the bootloader must use the same UID.
32 uint8[16] unique_id
33
34 # Manual serialization note: only fixed-size fields up to this point. The following fields are dynamically sized.
35 @assert _offset_ == {30 * 8}
36
37 # Human-readable non-empty ASCII node name. An empty name is not permitted.
38 # The name must not be changed while the node is running.
39 # Allowed characters are: a-z (lowercase ASCII letters) 0-9 (decimal digits) . (dot) - (dash) _ (underscore).
40 # Node name is a reversed Internet domain name (like Java packages), e.g. "com.manufacturer.project.product".
41 void2
42 uint8[<=50] name
43
44 # The value of an arbitrary hash function applied to the software image. Not to be changed while the node is running.
45 # This field can be used to detect whether the software or firmware running on the node is an exact
46 # same version as a certain specific revision. This field provides a very strong identity guarantee,
47 # unlike the version fields above, which can be the same for different builds of the software.
48 # As can be seen from its definition, this field is optional.
49 #
50 # The exact hash function and the methods of its application are implementation-defined.
51 # However, implementations are recommended to adhere to the following guidelines, fully or partially:
52 # - The hash function should be CRC-64-WE.
53 # - The hash function should be applied to the entire application image padded to 8 bytes.
54 # - If the computed image CRC is stored within the software image itself, the value of
55 # the hash function becomes ill-defined, because it becomes recursively dependent on itself.
56 # In order to circumvent this issue, while computing or checking the CRC, its value stored
57 # within the image should be zeroed out.
58 void7
59 uint64[<=1] software_image_crc
60
61 # The certificate of authenticity (COA) of the node, 222 bytes max, optional. This field can be used for
62 # reporting digital signatures (e.g., RSA-1776, or ECDSA if a higher degree of cryptographic strength is desired).
63 # Leave empty if not used. Not to be changed while the node is running.
64 uint8[<=222] certificate_of_authenticity
65
66 @assert _offset_ % 8 == {0}
67 @assert _offset_.max == (313 * 8) # At most five CAN FD frames

66/132 5. Application layer

DRAFT

2019-11-15 Specification v1.0

5.3.4 Bus data flow monitoring

The combination of the following three services defined in the namespace uavcan.node.port (section 6.5
on page 88) (see table 5.2) enables a highly capable tool of network inspection and monitoring:

• uavcan.node.port.List (section 6.5.3 on page 90) — designed for obtaining the full set of subjects and
services implemented by the server node.
• uavcan.node.port.GetInfo (section 6.5.1 on page 88) — returns the static (unchanging or infrequently
changing) information about the selected subject or service.
• uavcan.node.port.GetStatistics (section 6.5.2 on page 89) — returns the transfer event counters of
the selected subject or service.

The first service List allows the caller to construct a list of all subjects and services used by the server node
(i.e., the node that the request was sent to). The second service GetInfo allows the caller to map each subject
or service to a particular data type, and understand the role of the server node in relation to said subject or
service (publisher, subscriber, or server).

By comparing the data obtained with the help of these two services from each node on the bus, the caller
can reconstruct the data exchange graph for the entire bus, thus enabling advanced network monitoring and
diagnostics (assuming that every node on the bus supports the services in question; they are not mandatory).

The last service GetStatistics can be used to sample the number of transfers and errors observed on the
specified port. When invoked periodically, this service allows the caller to observe the real time intensity of
data exchange for each port independently. In combination with the data exchange graph reconstruction
described earlier, this service allows the caller to build a sophisticated real-time view of the bus.

Table 5.2: Index of the nested namespace “uavcan.node.port”
Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
node
port
GetInfo 0.1 432 2 54 88 6.5.1 : uavcan.node.port.GetInfo
GetStatistics 0.1 433 2 15 89 6.5.2 : uavcan.node.port.GetStatistics
List 0.1 431 2 257 90 6.5.3 : uavcan.node.port.List
ID 1.0 2 90 6.5.4 7 uavcan.node.port.ID
ServiceID 1.0 2 90 6.5.5 7 uavcan.node.port.ServiceID
SubjectID 1.0 2 91 6.5.6 7 uavcan.node.port.SubjectID

5.3.5 Network-wide time synchronization

UAVCAN provides a simple and robust method of time synchronization70 that is built upon the work “Imple-
menting a Distributed High-Resolution Real-Time Clock using the CAN-Bus” published by M. Gergeleit and
H. Streich71. The detailed specification of the time synchronization algorithm is provided in the documenta-
tion for the message type uavcan.time.Synchronization (section 6.9.2 on page 101).

uavcan.time.GetSynchronizationMasterInfo (section 6.9.1 on page 101) provides nodes with informa-
tion about the currently used time system and related data like the number of leap seconds added.

Redundant time synchronization masters are supported for the benefit of high-reliability applications.

Time synchronization with explicit sensor feed timestamping should be preferred over inferior alterna-
tives such as sensor lag reporting that are sometimes found in simpler systems because such alternatives
are difficult to scale and they do not account for the delays introduced by communication interfaces.

It is the duty of every node that publishes timestamped data to account for its own internal delays; for ex-
ample, if the data latency of a local sensor is known, it needs to be accounted for in the reported timestamp
value.

Table 5.3: Index of the nested namespace “uavcan.time”
Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
time
GetSynchronizationMasterInfo 0.1 510 0 7 101 6.9.1 : uavcan.time.GetSynchronizationMasterInfo
Synchronization 1.0 31744 7 101 6.9.2 7 uavcan.time.Synchronization
SynchronizedTimestamp 1.0 7 103 6.9.3 7 uavcan.time.SynchronizedTimestamp
TimeSystem 0.1 1 103 6.9.4 7 uavcan.time.TimeSystem

70The ability to accurately synchronize time between nodes is instrumental for building distributed real-time data processing systems such as various
robotic applications, autopilots, autonomous driving solutions, and so on.

71Proceedings of the 1st international CAN-Conference 94, Mainz, 13.-14. Sep. 1994, CAN in Automation e.V., Erlangen.

5. Application layer 67/132

DRAFT

Specification v1.0 2019-11-15

5.3.6 Primitive types and physical quantities

The namespaces uavcan.si (section 6.16 on page 112) and uavcan.primitive (section 6.13 on page 108)
included in the standard data type set are designed to provide a generic and flexible method of real-time data
exchange. However, these are not bandwidth-efficient.

Generally, applications where the bus bandwidth and latency are important should minimize their reliance
on these generic data types and favor more specialized types instead that are custom-designed for their par-
ticular use cases; e.g., vendor-specific types or application-specific types, either designed in-house, pub-
lished by third parties72, or supplied by vendors of COTS equipment used in the application.

Vendors of COTS equipment are recommended to ensure that some minimal functionality is available via
these generic types without reliance on their vendor-specific types (if there are any). This is important for
reusability, because some of the systems where such COTS nodes are to be integrated may not be able to
easily support vendor-specific types.

5.3.6.1 SI namespace

The sinamespace is named after the International System of Units (SI). The namespace contains a collection
of scalar and vector value types that describe most commonly used physical quantities in SI; for example,
velocity, mass, energy, angle, and time. The objective of these types is to permit construction of arbitrarily
complex distributed control systems without reliance on any particular vendor-specific data types.

Each message type defined in the SI namespace contains a short overflowing timestamp field of type
uavcan.time.SynchronizedAmbiguousTimestamp (section ?? on page ??). Every emitted message should
be timestamped in order to allow subscribers to identify which of the messages relate to the same event or
to the same instant. Messages that are emitted in bulk in relation to the same event or the same instant
should contain exactly the same value of the timestamp to simplify the task of timestamp matching for the
subscribers.

The exact strategy of matching related messages by timestamp employed by subscribers is entirely
implementation-defined. The specification does not concern itself with this matter because it is expected
that different applications will opt for different design trade-offs and different tactics to suit their constraints.
Such diversity is not harmful, because its effects are always confined to the local node and cannot affect
operation of other nodes or their compatibility.

The table 5.4 provides a high-level overview of the SI namespace. Please follow the references for details.

72As long as the license permits.

68/132 5. Application layer

DRAFT

2019-11-15 Specification v1.0

Table 5.4: Index of the nested namespace “uavcan.si”
Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
si
sample
acceleration
Scalar 1.0 11 112 6.16.1 7 uavcan.si.sample.acceleration.Scalar
Vector3 1.0 19 112 6.16.2 7 uavcan.si.sample.acceleration.Vector3
angle
Quaternion 1.0 23 112 6.17.1 7 uavcan.si.sample.angle.Quaternion
Scalar 1.0 11 113 6.17.2 7 uavcan.si.sample.angle.Scalar
angular_velocity
Scalar 1.0 11 113 6.18.1 7 uavcan.si.sample.angular_velocity.Scalar
Vector3 1.0 19 113 6.18.2 7 uavcan.si.sample.angular_velocity.Vector3
duration
Scalar 1.0 11 113 6.19.1 7 uavcan.si.sample.duration.Scalar
WideScalar 1.0 15 113 6.19.2 7 uavcan.si.sample.duration.WideScalar
electric_charge
Scalar 1.0 11 113 6.20.1 7 uavcan.si.sample.electric_charge.Scalar
electric_current
Scalar 1.0 11 114 6.21.1 7 uavcan.si.sample.electric_current.Scalar
energy
Scalar 1.0 11 114 6.22.1 7 uavcan.si.sample.energy.Scalar
length
Scalar 1.0 11 114 6.23.1 7 uavcan.si.sample.length.Scalar
Vector3 1.0 19 114 6.23.2 7 uavcan.si.sample.length.Vector3
WideVector3 1.0 31 114 6.23.3 7 uavcan.si.sample.length.WideVector3
magnetic_field_strength
Scalar 1.0 11 115 6.24.1 7 uavcan.si.sample.magnetic_field_strength.Scalar
Vector3 1.0 19 115 6.24.2 7 uavcan.si.sample.magnetic_field_strength.Vector3
mass
Scalar 1.0 11 115 6.25.1 7 uavcan.si.sample.mass.Scalar
power
Scalar 1.0 11 115 6.26.1 7 uavcan.si.sample.power.Scalar
pressure
Scalar 1.0 11 115 6.27.1 7 uavcan.si.sample.pressure.Scalar
temperature
Scalar 1.0 11 115 6.28.1 7 uavcan.si.sample.temperature.Scalar
velocity
Scalar 1.0 11 116 6.29.1 7 uavcan.si.sample.velocity.Scalar
Vector3 1.0 19 116 6.29.2 7 uavcan.si.sample.velocity.Vector3
voltage
Scalar 1.0 11 116 6.30.1 7 uavcan.si.sample.voltage.Scalar
volume
Scalar 1.0 11 116 6.31.1 7 uavcan.si.sample.volume.Scalar
volumetric_flow_rate
Scalar 1.0 11 116 6.32.1 7 uavcan.si.sample.volumetric_flow_rate.Scalar

unit
acceleration
Scalar 1.0 4 117 6.33.1 7 uavcan.si.unit.acceleration.Scalar
Vector3 1.0 12 117 6.33.2 7 uavcan.si.unit.acceleration.Vector3
angle
Quaternion 1.0 16 117 6.34.1 7 uavcan.si.unit.angle.Quaternion
Scalar 1.0 4 117 6.34.2 7 uavcan.si.unit.angle.Scalar
angular_velocity
Scalar 1.0 4 117 6.35.1 7 uavcan.si.unit.angular_velocity.Scalar
Vector3 1.0 12 117 6.35.2 7 uavcan.si.unit.angular_velocity.Vector3
duration
Scalar 1.0 4 118 6.36.1 7 uavcan.si.unit.duration.Scalar
WideScalar 1.0 8 118 6.36.2 7 uavcan.si.unit.duration.WideScalar
electric_charge
Scalar 1.0 4 118 6.37.1 7 uavcan.si.unit.electric_charge.Scalar
electric_current
Scalar 1.0 4 118 6.38.1 7 uavcan.si.unit.electric_current.Scalar
energy
Scalar 1.0 4 118 6.39.1 7 uavcan.si.unit.energy.Scalar
length
Scalar 1.0 4 118 6.40.1 7 uavcan.si.unit.length.Scalar
Vector3 1.0 12 119 6.40.2 7 uavcan.si.unit.length.Vector3
WideVector3 1.0 24 119 6.40.3 7 uavcan.si.unit.length.WideVector3
magnetic_field_strength
Scalar 1.0 4 119 6.41.1 7 uavcan.si.unit.magnetic_field_strength.Scalar
Vector3 1.0 12 119 6.41.2 7 uavcan.si.unit.magnetic_field_strength.Vector3
mass
Scalar 1.0 4 119 6.42.1 7 uavcan.si.unit.mass.Scalar
power
Scalar 1.0 4 119 6.43.1 7 uavcan.si.unit.power.Scalar
pressure
Scalar 1.0 4 120 6.44.1 7 uavcan.si.unit.pressure.Scalar
temperature
Scalar 1.0 4 120 6.45.1 7 uavcan.si.unit.temperature.Scalar
velocity
Scalar 1.0 4 120 6.46.1 7 uavcan.si.unit.velocity.Scalar
Vector3 1.0 12 120 6.46.2 7 uavcan.si.unit.velocity.Vector3
voltage
Scalar 1.0 4 120 6.47.1 7 uavcan.si.unit.voltage.Scalar
volume
Scalar 1.0 4 121 6.48.1 7 uavcan.si.unit.volume.Scalar
volumetric_flow_rate
Scalar 1.0 4 121 6.49.1 7 uavcan.si.unit.volumetric_flow_rate.Scalar

5. Application layer 69/132

DRAFT

Specification v1.0 2019-11-15

5.3.6.2 Primitive namespace

The primitive namespace contains a collection of primitive types: integer types, floating point types, bit flag,
string, raw block of bytes, and an empty value. Integer, floating point, and bit flag types are available in two
categories: scalar and array; the latter are limited so that their serialized representation is never larger than
257 bytes.

The primitive types are designed to complement the SI namespace with an even simpler set of basic types
that do not make any assumptions about the meaning of the data they describe. The primitive types provide
a very high degree of flexibility, but due to their lack of semantic information, their use carries the risk of
creating suboptimal interfaces that are difficult to use, validate, and scale.

Normally, the use of primitive types should be limited to very basic vendor-neutral interfaces for COTS equip-
ment and software, debug and diagnostic purposes, and whenever there is a need to exchange data the type
of which cannot be determined statically.73

The table 5.5 provides a high-level overview of the primitive namespace. Please follow the references for
details.

Table 5.5: Index of the nested namespace “uavcan.primitive”
Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
primitive
Empty 1.0 0 108 6.13.1 7 uavcan.primitive.Empty
String 1.0 258 108 6.13.2 7 uavcan.primitive.String
Unstructured 1.0 258 108 6.13.3 7 uavcan.primitive.Unstructured
array
Bit 1.0 258 108 6.14.1 7 uavcan.primitive.array.Bit
Integer8 1.0 258 108 6.14.2 7 uavcan.primitive.array.Integer8
Integer16 1.0 257 109 6.14.3 7 uavcan.primitive.array.Integer16
Integer32 1.0 257 109 6.14.4 7 uavcan.primitive.array.Integer32
Integer64 1.0 257 109 6.14.5 7 uavcan.primitive.array.Integer64
Natural8 1.0 258 109 6.14.6 7 uavcan.primitive.array.Natural8
Natural16 1.0 257 109 6.14.7 7 uavcan.primitive.array.Natural16
Natural32 1.0 257 109 6.14.8 7 uavcan.primitive.array.Natural32
Natural64 1.0 257 110 6.14.9 7 uavcan.primitive.array.Natural64
Real16 1.0 257 110 6.14.10 7 uavcan.primitive.array.Real16
Real32 1.0 257 110 6.14.11 7 uavcan.primitive.array.Real32
Real64 1.0 257 110 6.14.12 7 uavcan.primitive.array.Real64
scalar
Bit 1.0 1 110 6.15.1 7 uavcan.primitive.scalar.Bit
Integer8 1.0 1 110 6.15.2 7 uavcan.primitive.scalar.Integer8
Integer16 1.0 2 111 6.15.3 7 uavcan.primitive.scalar.Integer16
Integer32 1.0 4 111 6.15.4 7 uavcan.primitive.scalar.Integer32
Integer64 1.0 8 111 6.15.5 7 uavcan.primitive.scalar.Integer64
Natural8 1.0 1 111 6.15.6 7 uavcan.primitive.scalar.Natural8
Natural16 1.0 2 111 6.15.7 7 uavcan.primitive.scalar.Natural16
Natural32 1.0 4 111 6.15.8 7 uavcan.primitive.scalar.Natural32
Natural64 1.0 8 111 6.15.9 7 uavcan.primitive.scalar.Natural64
Real16 1.0 2 112 6.15.10 7 uavcan.primitive.scalar.Real16
Real32 1.0 4 112 6.15.11 7 uavcan.primitive.scalar.Real32
Real64 1.0 8 112 6.15.12 7 uavcan.primitive.scalar.Real64

5.3.7 Remote file system interface

The set of standard data types contains a collection of services for manipulation of remote file systems
(namespace uavcan.file (section 6.2 on page 79), see the table 5.6). All basic file system operations are
supported, including file reading and writing, directory listing, metadata retrieval (size, modification time,
etc.), moving, renaming, creating, and deleting.

The set of supported operations may be extended in future versions of the protocol.

Implementers of file servers are strongly advised to always support services Read and GetInfo, as that allows
clients to make assumptions about the minimal degree of available service. If write operations are required,
all of the defined services should be supported.

73An example of the latter use case is the register protocol described in section 5.3.10.

70/132 5. Application layer

DRAFT

2019-11-15 Specification v1.0

Table 5.6: Index of the nested namespace “uavcan.file”
Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
file
GetInfo 0.1 405 113 21 79 6.2.1 : uavcan.file.GetInfo
List 0.1 406 121 117 79 6.2.2 : uavcan.file.List
Modify 1.0 407 230 2 80 6.2.3 : uavcan.file.Modify
Read 1.0 408 118 260 80 6.2.4 : uavcan.file.Read
Write 1.0 409 311 2 81 6.2.5 : uavcan.file.Write
Error 1.0 2 81 6.2.6 7 uavcan.file.Error
Path 1.0 113 81 6.2.7 7 uavcan.file.Path

5.3.8 Generic node commands

Commonly used node-level application-agnostic auxiliary commands (such as: restart, power off, factory
reset, emergency stop, etc.) are supported via the standard service uavcan.node.ExecuteCommand (sec-
tion 6.4.1 on page 85). The service also allows vendors to define vendor-specific commands alongside the
standard ones.

It is recommended to support this service in all nodes.

5.3.9 Node software update

A simple software74 update protocol is defined on top of the remote file system interface (section 5.3.7) and
the generic node commands (section 5.3.8).

The software update process involves the following data types:

• uavcan.node.ExecuteCommand (section 6.4.1 on page 85) – used to initiate the software update process.
• uavcan.file.Read (section 6.2.4 on page 80) – used to transfer the software image file(s) from the file
server to the updated node.

The software update protocol logic is described in detail in the documentation for the data type
uavcan.node.ExecuteCommand (section 6.4.1 on page 85). The protocol is considered simple enough to be
usable in embedded bootloaders with small memory-constrained microcontrollers.

5.3.10 Register interface

UAVCAN defines the concept of named register – a scalar, vector, or string value with an associated human-
readable name that is stored on a UAVCAN node locally and is accessible via UAVCAN75 for reading and/or
modification by other nodes on the bus.

Named registers are designed to serve the following purposes:

Node configuration parameter management — Named registers can be used to expose persistently stored
values that define behaviors of the local node.

Diagnostics and monitoring — Named registers can be used to expose internal states (variables) of the
node’s decision-making and data processing logic (implemented in software or hardware) to provide insights
about its inner processes.

Advanced node information reporting — Named registers can store any invariants provided by the vendor,
such as calibration coefficients or unique identifiers.

Special functions — Non-persistent named registers can be used to trigger specific behaviors or start pre-
defined operations when written.

Advanced debugging — Registers following a specific naming pattern can be used to provide direct read and
write access to the local node’s application software to facilitate in-depth debugging and monitoring.

The register protocol rests upon two service types defined in the namespace uavcan.register (section 6.8
on page 98); the namespace index is shown in the table 5.7. Data types supported by the register protocol are
defined in the nested data structure uavcan.register.Value (section 6.8.4 on page 100).

The UAVCAN specification defines several standard naming patterns to facilitate cross-vendor compatibility
and provide a framework of common basic functionality.

74Or firmware – UAVCAN does not distinguish between the two.
75And, possibly, other interfaces.

5. Application layer 71/132

DRAFT

Specification v1.0 2019-11-15

Table 5.7: Index of the nested namespace “uavcan.register”
Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
register
Access 1.0 384 310 266 98 6.8.1 : uavcan.register.Access
List 1.0 385 2 51 99 6.8.2 : uavcan.register.List
Name 1.0 51 99 6.8.3 7 uavcan.register.Name
Value 1.0 259 100 6.8.4 7 uavcan.register.Value

5.3.11 Diagnostics and event logging

The message type uavcan.diagnostic.Record (section 6.1.1 on page 78) is designed to facilitate emission
of human-readable diagnostic messages and event logging, both for the needs of real-time display76 and for
long-term storage77.

5.3.12 Plug-and-play nodes

Every UAVCAN node must have a node-ID that is unique within the network. Normally, such identifiers are
assigned by the network designer, integrator, some automatic external tool, or another entity that is exter-
nal to the network. However, there exist circumstances where such manual assignment is either difficult or
undesirable.

Nodes that can join any UAVCAN network automatically without any prior manual configuration are called
plug-and-play nodes (or PnP nodes for brevity).

Plug-and-play nodes automatically obtain a node-ID and deduce all necessary parameters of the physical
layer such as the bit rate.

UAVCAN defines an automatic node-ID allocation protocol that is built on top of the data types defined in the
namespace uavcan.pnp (section 6.6 on page 92) (where pnp stands for “plug-and-play”) (see table 5.8). The
protocol is described in the documentation for the data type uavcan.pnp.NodeIDAllocationData (section
6.6.1 on page 92).

The plug-and-play node-ID allocation protocol relies on anonymous messages reviewed in the section
4.1.2.1. Remember that the plug-and-play feature is entirely optional and it is expected that some
applications where a high degree of determinism and robustness is expected are unlikely to benefit from it.

This feature derives from the work “In search of an understandable consensus algorithm”78 by Diego Ongaro
and John Ousterhout.

Table 5.8: Index of the nested namespace “uavcan.pnp”
Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
pnp
NodeIDAllocationData 0.1 32741 18 92 6.6.1 7 uavcan.pnp.NodeIDAllocationData
NodeIDAllocationDataMTU8 0.1 32742 9 94 6.6.2 7 uavcan.pnp.NodeIDAllocationDataMTU8
cluster
AppendEntries 1.0 390 35 5 95 6.7.1 : uavcan.pnp.cluster.AppendEntries
Discovery 1.0 32740 11 96 6.7.2 7 uavcan.pnp.cluster.Discovery
RequestVote 1.0 391 10 5 96 6.7.3 : uavcan.pnp.cluster.RequestVote
Entry 1.0 22 97 6.7.4 7 uavcan.pnp.cluster.Entry

5.3.13 Internet/LAN forwarding interface

Data types defined in the namespace uavcan.internet (section 6.3 on page 82) (see table 5.9) are designed
for establishing robust direct connectivity between local UAVCAN nodes and hosts on the Internet or on a
local area network (LAN) by means of so called modem nodes79 (possibly redundant).

This basic support for world-wide communication provided at the protocol level allows any component of a
vehicle equipped with modem nodes to reach external resources or exchange arbitrary data globally without
dependency on application-specific means of communication80.

The set of supported Internet/LAN protocols may be extended in future revisions of the specification.

76E.g., messages displayed to a human operator in real time.
77E.g., flight data recording.
78Proceedings of USENIX Annual Technical Conference, p. 305-320, 2014.
79Normally, a modem node would be implemented using on-board cellular, radio frequency, or satellite communication hardware.
80Information security and other security-related concerns are outside of the scope of this specification.

72/132 5. Application layer

DRAFT

2019-11-15 Specification v1.0

Some of the major applications for this feature are as follows:

1. Direct telemetry transmission from UAVCAN nodes to a remote data collection server.
2. Implementation of remote API for on-board equipment (e.g., web interface).
3. Reception of real-time correction data streams (e.g., RTCM RC-104) for precise positioning applica-
tions.
4. Automatic upgrades directly from the vendor’s Internet resources.

Table 5.9: Index of the nested namespace “uavcan.internet”
Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
internet
udp
HandleIncomingPacket 0.1 500 313 7 82 6.3.1 : uavcan.internet.udp.HandleIncomingPacket
OutgoingPacket 0.1 32750 313 83 6.3.2 7 uavcan.internet.udp.OutgoingPacket

5. Application layer 73/132

DRAFT

Specification v1.0 2019-11-15

6 List of standard data types
This chapter contains the full list of standard data types defined by the UAVCAN specification. The source text
of the DSDL data type definitions provided here is also available via the official project website at uavcan.org.

Regulated non-standard definitions81 are not included in this list.

Each definition is provided with a length information table for convenience, where the minimum and max-
imum serialized length is shown in several units: bits, bytes (octets), and transport frames for some of the
supported transport protocols. The acronym MTU used in the length information tables stands for maxi-
mum transmission unit, which is the maximum amount of data, in bytes (octets, eight bits per byte), that fits
into one transport frame for the specific transport protocol.

The index table 6.1 is provided before the definitions for ease of navigation.

81I.e., public definitions contributed by vendors and other users of the specification, as explained in section 2.1.2.2.

74/132 6. List of standard data types

http://uavcan.org

DRAFT

2019-11-15 Specification v1.0

Table 6.1: Index of the root namespace “uavcan”

Namespace tree Ver. FPID Max bytes Page sec. Full name and kind (message/service)
uavcan
diagnostic
Record 1.0 32760 121 78 6.1.1 7 uavcan.diagnostic.Record
Severity 1.0 1 78 6.1.2 7 uavcan.diagnostic.Severity
file
GetInfo 0.1 405 113 21 79 6.2.1 : uavcan.file.GetInfo
List 0.1 406 121 117 79 6.2.2 : uavcan.file.List
Modify 1.0 407 230 2 80 6.2.3 : uavcan.file.Modify
Read 1.0 408 118 260 80 6.2.4 : uavcan.file.Read
Write 1.0 409 311 2 81 6.2.5 : uavcan.file.Write
Error 1.0 2 81 6.2.6 7 uavcan.file.Error
Path 1.0 113 81 6.2.7 7 uavcan.file.Path
internet
udp
HandleIncomingPacket 0.1 500 313 7 82 6.3.1 : uavcan.internet.udp.HandleIncomingPacket
OutgoingPacket 0.1 32750 313 83 6.3.2 7 uavcan.internet.udp.OutgoingPacket

node
ExecuteCommand 1.0 435 115 7 85 6.4.1 : uavcan.node.ExecuteCommand
GetInfo 1.0 430 0 313 86 6.4.2 : uavcan.node.GetInfo
GetTransportStatistics 0.1 434 0 61 86 6.4.3 : uavcan.node.GetTransportStatistics
Heartbeat 1.0 32085 7 87 6.4.4 7 uavcan.node.Heartbeat
ID 1.0 2 88 6.4.5 7 uavcan.node.ID
IOStatistics 0.1 15 88 6.4.6 7 uavcan.node.IOStatistics
Version 1.0 2 88 6.4.7 7 uavcan.node.Version
port
GetInfo 0.1 432 2 54 88 6.5.1 : uavcan.node.port.GetInfo
GetStatistics 0.1 433 2 15 89 6.5.2 : uavcan.node.port.GetStatistics
List 0.1 431 2 257 90 6.5.3 : uavcan.node.port.List
ID 1.0 2 90 6.5.4 7 uavcan.node.port.ID
ServiceID 1.0 2 90 6.5.5 7 uavcan.node.port.ServiceID
SubjectID 1.0 2 91 6.5.6 7 uavcan.node.port.SubjectID

pnp
NodeIDAllocationData 0.1 32741 18 92 6.6.1 7 uavcan.pnp.NodeIDAllocationData
NodeIDAllocationDataMTU8 0.1 32742 9 94 6.6.2 7 uavcan.pnp.NodeIDAllocationDataMTU8
cluster
AppendEntries 1.0 390 35 5 95 6.7.1 : uavcan.pnp.cluster.AppendEntries
Discovery 1.0 32740 11 96 6.7.2 7 uavcan.pnp.cluster.Discovery
RequestVote 1.0 391 10 5 96 6.7.3 : uavcan.pnp.cluster.RequestVote
Entry 1.0 22 97 6.7.4 7 uavcan.pnp.cluster.Entry

register
Access 1.0 384 310 266 98 6.8.1 : uavcan.register.Access
List 1.0 385 2 51 99 6.8.2 : uavcan.register.List
Name 1.0 51 99 6.8.3 7 uavcan.register.Name
Value 1.0 259 100 6.8.4 7 uavcan.register.Value
time
GetSynchronizationMasterInfo 0.1 510 0 7 101 6.9.1 : uavcan.time.GetSynchronizationMasterInfo
Synchronization 1.0 31744 7 101 6.9.2 7 uavcan.time.Synchronization
SynchronizedTimestamp 1.0 7 103 6.9.3 7 uavcan.time.SynchronizedTimestamp
TimeSystem 0.1 1 103 6.9.4 7 uavcan.time.TimeSystem
metatransport
can
ArbitrationID 0.1 4 104 6.10.1 7 uavcan.metatransport.can.ArbitrationID
BaseArbitrationID 0.1 4 104 6.10.2 7 uavcan.metatransport.can.BaseArbitrationID
DataClassic 0.1 13 104 6.10.3 7 uavcan.metatransport.can.DataClassic
DataFD 0.1 69 104 6.10.4 7 uavcan.metatransport.can.DataFD
Error 0.1 4 105 6.10.5 7 uavcan.metatransport.can.Error
ExtendedArbitrationID 0.1 4 105 6.10.6 7 uavcan.metatransport.can.ExtendedArbitrationID
Frame 0.1 76 105 6.10.7 7 uavcan.metatransport.can.Frame
Manifestation 0.1 69 105 6.10.8 7 uavcan.metatransport.can.Manifestation
RTR 0.1 4 106 6.10.9 7 uavcan.metatransport.can.RTR
serial
Fragment 0.1 265 106 6.11.1 7 uavcan.metatransport.serial.Fragment
udp
Endpoint 0.1 32 106 6.12.1 7 uavcan.metatransport.udp.Endpoint
Frame 0.1 9262 106 6.12.2 7 uavcan.metatransport.udp.Frame

primitive
Empty 1.0 0 108 6.13.1 7 uavcan.primitive.Empty
String 1.0 258 108 6.13.2 7 uavcan.primitive.String
Unstructured 1.0 258 108 6.13.3 7 uavcan.primitive.Unstructured

6. List of standard data types 75/132

DRAFT

Specification v1.0 2019-11-15

array
Bit 1.0 258 108 6.14.1 7 uavcan.primitive.array.Bit
Integer8 1.0 258 108 6.14.2 7 uavcan.primitive.array.Integer8
Integer16 1.0 257 109 6.14.3 7 uavcan.primitive.array.Integer16
Integer32 1.0 257 109 6.14.4 7 uavcan.primitive.array.Integer32
Integer64 1.0 257 109 6.14.5 7 uavcan.primitive.array.Integer64
Natural8 1.0 258 109 6.14.6 7 uavcan.primitive.array.Natural8
Natural16 1.0 257 109 6.14.7 7 uavcan.primitive.array.Natural16
Natural32 1.0 257 109 6.14.8 7 uavcan.primitive.array.Natural32
Natural64 1.0 257 110 6.14.9 7 uavcan.primitive.array.Natural64
Real16 1.0 257 110 6.14.10 7 uavcan.primitive.array.Real16
Real32 1.0 257 110 6.14.11 7 uavcan.primitive.array.Real32
Real64 1.0 257 110 6.14.12 7 uavcan.primitive.array.Real64
scalar
Bit 1.0 1 110 6.15.1 7 uavcan.primitive.scalar.Bit
Integer8 1.0 1 110 6.15.2 7 uavcan.primitive.scalar.Integer8
Integer16 1.0 2 111 6.15.3 7 uavcan.primitive.scalar.Integer16
Integer32 1.0 4 111 6.15.4 7 uavcan.primitive.scalar.Integer32
Integer64 1.0 8 111 6.15.5 7 uavcan.primitive.scalar.Integer64
Natural8 1.0 1 111 6.15.6 7 uavcan.primitive.scalar.Natural8
Natural16 1.0 2 111 6.15.7 7 uavcan.primitive.scalar.Natural16
Natural32 1.0 4 111 6.15.8 7 uavcan.primitive.scalar.Natural32
Natural64 1.0 8 111 6.15.9 7 uavcan.primitive.scalar.Natural64
Real16 1.0 2 112 6.15.10 7 uavcan.primitive.scalar.Real16
Real32 1.0 4 112 6.15.11 7 uavcan.primitive.scalar.Real32
Real64 1.0 8 112 6.15.12 7 uavcan.primitive.scalar.Real64

si
sample
acceleration
Scalar 1.0 11 112 6.16.1 7 uavcan.si.sample.acceleration.Scalar
Vector3 1.0 19 112 6.16.2 7 uavcan.si.sample.acceleration.Vector3
angle
Quaternion 1.0 23 112 6.17.1 7 uavcan.si.sample.angle.Quaternion
Scalar 1.0 11 113 6.17.2 7 uavcan.si.sample.angle.Scalar
angular_velocity
Scalar 1.0 11 113 6.18.1 7 uavcan.si.sample.angular_velocity.Scalar
Vector3 1.0 19 113 6.18.2 7 uavcan.si.sample.angular_velocity.Vector3
duration
Scalar 1.0 11 113 6.19.1 7 uavcan.si.sample.duration.Scalar
WideScalar 1.0 15 113 6.19.2 7 uavcan.si.sample.duration.WideScalar
electric_charge
Scalar 1.0 11 113 6.20.1 7 uavcan.si.sample.electric_charge.Scalar
electric_current
Scalar 1.0 11 114 6.21.1 7 uavcan.si.sample.electric_current.Scalar
energy
Scalar 1.0 11 114 6.22.1 7 uavcan.si.sample.energy.Scalar
length
Scalar 1.0 11 114 6.23.1 7 uavcan.si.sample.length.Scalar
Vector3 1.0 19 114 6.23.2 7 uavcan.si.sample.length.Vector3
WideVector3 1.0 31 114 6.23.3 7 uavcan.si.sample.length.WideVector3
magnetic_field_strength
Scalar 1.0 11 115 6.24.1 7 uavcan.si.sample.magnetic_field_strength.Scalar
Vector3 1.0 19 115 6.24.2 7 uavcan.si.sample.magnetic_field_strength.Vector3
mass
Scalar 1.0 11 115 6.25.1 7 uavcan.si.sample.mass.Scalar
power
Scalar 1.0 11 115 6.26.1 7 uavcan.si.sample.power.Scalar
pressure
Scalar 1.0 11 115 6.27.1 7 uavcan.si.sample.pressure.Scalar
temperature
Scalar 1.0 11 115 6.28.1 7 uavcan.si.sample.temperature.Scalar
velocity
Scalar 1.0 11 116 6.29.1 7 uavcan.si.sample.velocity.Scalar
Vector3 1.0 19 116 6.29.2 7 uavcan.si.sample.velocity.Vector3
voltage
Scalar 1.0 11 116 6.30.1 7 uavcan.si.sample.voltage.Scalar
volume
Scalar 1.0 11 116 6.31.1 7 uavcan.si.sample.volume.Scalar
volumetric_flow_rate
Scalar 1.0 11 116 6.32.1 7 uavcan.si.sample.volumetric_flow_rate.Scalar

unit
acceleration
Scalar 1.0 4 117 6.33.1 7 uavcan.si.unit.acceleration.Scalar
Vector3 1.0 12 117 6.33.2 7 uavcan.si.unit.acceleration.Vector3
angle
Quaternion 1.0 16 117 6.34.1 7 uavcan.si.unit.angle.Quaternion
Scalar 1.0 4 117 6.34.2 7 uavcan.si.unit.angle.Scalar
angular_velocity
Scalar 1.0 4 117 6.35.1 7 uavcan.si.unit.angular_velocity.Scalar
Vector3 1.0 12 117 6.35.2 7 uavcan.si.unit.angular_velocity.Vector3

76/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

duration
Scalar 1.0 4 118 6.36.1 7 uavcan.si.unit.duration.Scalar
WideScalar 1.0 8 118 6.36.2 7 uavcan.si.unit.duration.WideScalar
electric_charge
Scalar 1.0 4 118 6.37.1 7 uavcan.si.unit.electric_charge.Scalar
electric_current
Scalar 1.0 4 118 6.38.1 7 uavcan.si.unit.electric_current.Scalar
energy
Scalar 1.0 4 118 6.39.1 7 uavcan.si.unit.energy.Scalar
length
Scalar 1.0 4 118 6.40.1 7 uavcan.si.unit.length.Scalar
Vector3 1.0 12 119 6.40.2 7 uavcan.si.unit.length.Vector3
WideVector3 1.0 24 119 6.40.3 7 uavcan.si.unit.length.WideVector3
magnetic_field_strength
Scalar 1.0 4 119 6.41.1 7 uavcan.si.unit.magnetic_field_strength.Scalar
Vector3 1.0 12 119 6.41.2 7 uavcan.si.unit.magnetic_field_strength.Vector3
mass
Scalar 1.0 4 119 6.42.1 7 uavcan.si.unit.mass.Scalar
power
Scalar 1.0 4 119 6.43.1 7 uavcan.si.unit.power.Scalar
pressure
Scalar 1.0 4 120 6.44.1 7 uavcan.si.unit.pressure.Scalar
temperature
Scalar 1.0 4 120 6.45.1 7 uavcan.si.unit.temperature.Scalar
velocity
Scalar 1.0 4 120 6.46.1 7 uavcan.si.unit.velocity.Scalar
Vector3 1.0 12 120 6.46.2 7 uavcan.si.unit.velocity.Vector3
voltage
Scalar 1.0 4 120 6.47.1 7 uavcan.si.unit.voltage.Scalar
volume
Scalar 1.0 4 121 6.48.1 7 uavcan.si.unit.volume.Scalar
volumetric_flow_rate
Scalar 1.0 4 121 6.49.1 7 uavcan.si.unit.volumetric_flow_rate.Scalar

6. List of standard data types 77/132

DRAFT

Specification v1.0 2019-11-15

6.1 uavcan.diagnostic

6.1.1 Record

Full message type name: uavcan.diagnostic.Record

6.1.1.1 Version 1.0, fixed subject ID 32760

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [72, 968] [9, 121] [2, 18] [1, 2]

1 #
2 # Generic human-readable text message for logging and displaying purposes.
3 # Generally, it should be published at the lowest priority level.
4 #
5
6 # Optional timestamp in the network-synchronized time system; zero if undefined.
7 # The timestamp value conveys the exact moment when the reported event took place.
8 uavcan.time.SynchronizedTimestamp.1.0 timestamp
9
10 # Standard severity, 3 bit wide.
11 Severity.1.0 severity
12
13 # Message text.
14 # Normally, messages should be kept as short as possible, especially those of high severity.
15 void6
16 uint8[<=112] text
17
18 @assert _offset_ % 8 == {0}
19 @assert _offset_.max <= (124 * 8) # Two CAN FD frames max

6.1.2 Severity

Full message type name: uavcan.diagnostic.Severity

6.1.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 3 1 1 1

1 #
2 # Generic message severity representation.
3 #
4
5 # The severity level ranging from 0 to 7, where low values represent low-severity (unimportant) messages, and
6 # high values represent high-severity (important) messages. Several mnemonics for the severity levels are
7 # defined below. Nodes are advised to implement output filtering mechanisms, allowing users to select
8 # the minimal severity for emitted messages; messages of the selected and higher severity levels will
9 # be published, and messages of lower severity will be suppressed (discarded).
10 uint3 value
11
12 # Messages of this severity can be used only during development.
13 # They must not be used in a fielded operational system.
14 uint3 TRACE = 0
15
16 # Messages that can aid in troubleshooting.
17 # Messages of this severity and lower should be disabled by default.
18 uint3 DEBUG = 1
19
20 # General informational messages of low importance.
21 # Messages of this severity and lower should be disabled by default.
22 uint3 INFO = 2
23
24 # General informational messages of high importance.
25 # Messages of this severity and lower should be disabled by default.
26 uint3 NOTICE = 3
27
28 # Messages reporting abnormalities and warning conditions.
29 # Messages of this severity and higher should be enabled by default.
30 uint3 WARNING = 4
31
32 # Messages reporting problems and error conditions.
33 # Messages of this severity and higher should be enabled by default.
34 uint3 ERROR = 5
35
36 # Messages reporting serious problems and critical conditions.
37 # Messages of this severity and higher should be always enabled.
38 uint3 CRITICAL = 6
39
40 # Notifications of dangerous circumstances that demand immediate attention.
41 # Messages of this severity should be always enabled.
42 uint3 ALERT = 7

78/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.2 uavcan.file

6.2.1 GetInfo

Full service type name: uavcan.file.GetInfo

6.2.1.1 Version 0.1, fixed service ID 405

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [8, 904] [1, 113] [1, 17] [1, 2]
Response length 168 21 4 1

1 #
2 # Information about a remote file system entry (file, directory, etc).
3 #
4
5 Path.1.0 path
6
7 ---
8
9 # Result of the operation
10 Error.1.0 error
11
12 # File size in bytes. Should be set to zero for directories.
13 truncated uint40 size
14
15 # The UNIX Epoch time when the entry was last modified. Zero if unknown.
16 truncated uint40 unix_timestamp_of_last_modification
17
18 # If such entry does not exist, all flags should be cleared/ignored.
19 bool is_file_not_directory # True if file, false if directory
20 bool is_link # This is a link to another entry; the above flag indicates the type of the target
21 bool is_readable # The item can be read by the caller (applies to files and directories)
22 bool is_writeable # The item can be written by the caller (applies to files and directories)
23 void4
24
25 # Reserved for future use
26 void64
27
28 @assert _offset_ % 8 == {0}

6.2.2 List

Full service type name: uavcan.file.List

6.2.2.1 Version 0.1, fixed service ID 406

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [72, 968] [9, 121] [2, 18] [1, 2]
Response length [40, 936] [5, 117] [1, 17] [1, 2]

1 #
2 # This service can be used to list a remote directory, one entry per request.
3 #
4 # The client should query each entry independently, iterating ’entry_index’ from 0 until the last entry.
5 # When the index reaches the number of elements in the directory, the server will report that there is
6 # no such entry by returning an empty name.
7 #
8 # The field entry_index must be applied to an ordered list of directory entries (e.g. alphabetically ordered).
9 # The exact sorting criteria does not matter as long as it provides the same ordering for subsequent service calls.
10 #
11 # Observe that this listing operation is fundamentally non-atomic. The caller shall beware of possible race conditions
12 # and is responsible for handling them properly. Particularly, consider what happens if a new item is inserted into
13 # the directory between two subsequent calls: if the item happened to be inserted at the index that is lower than the
14 # index of the next request, the next returned item (or several, if more items were inserted) will repeat the ones
15 # that were listed earlier. The caller should handle that properly, either by ignoring the repeated items or by
16 # restarting the listing operation from the beginning (index 0).
17 #
18
19 uint32 entry_index
20
21 void32 # Reserved for future use
22
23 Path.1.0 directory_path
24
25 @assert _offset_ % 8 == {0}
26
27 ---
28
29 void32 # Reserved for future use
30
31 # The base name of the referenced entry, i.e., relative to the outer directory.
32 # The outer directory path is not included to conserve bandwidth.
33 # Empty if such entry does not exist.
34 #
35 # For example, suppose there is a file "/foo/bar/baz.bin". Listing the directory with the path "/foo/bar/" (the slash
36 # at the end is optional) at the index 0 will return "baz.bin". Listing the same directory at the index 1 (or any
37 # higher) will return an empty name "", indicating that the caller has reached the end of the list.
38 Path.1.0 entry_base_name
39
40 @assert _offset_ % 8 == {0}

6. List of standard data types 79/132

DRAFT

Specification v1.0 2019-11-15

6.2.3 Modify

Full service type name: uavcan.file.Modify

6.2.3.1 Version 1.0, fixed service ID 407

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [48, 1840] [6, 230] [1, 34] [1, 4]
Response length 16 2 1 1

1 #
2 # Manipulate a remote file system entry. Applies to files, directories, and links alike.
3 # If the remote entry is a directory, all nested entries will be affected, too.
4 #
5 # The server should perform all operations atomically, unless atomicity is not supported by
6 # the underlying file system.
7 #
8 # Atomic copying can be effectively employed by remote nodes before reading or after writing
9 # the file to minimize the possibility of race conditions.
10 # For example, before reading a large file from the server, the cilent might opt to create
11 # a temporary copy of it first, then read the copy, and delete it upon completion. Likewise,
12 # a similar strategy can be employed for writing, where the file is first written at a
13 # temporary location, and then moved to its final destination. These approaches, however,
14 # may lead to creation of dangling temporary files if the client failed to dispose of them
15 # properly, so that risk should be taken into account.
16 #
17 # Move/Copy
18 # Specify the source path and the destination path.
19 # If the source does not exist, the operation will fail.
20 # Set the preserve_source flag to copy rather than move.
21 # If the destination exists and overwrite_destination is not set, the operation will fail.
22 # If the target path includes non-existent directories, they will be created (like "mkdir -p").
23 #
24 # Touch
25 # Specify the destination path and make the source path empty.
26 # If the path exists (file/directory/link), its modification time will be updated.
27 # If the path does not exist, an empty file will be created.
28 # If the target path includes non-existent directories, they will be created (like "mkdir -p").
29 # Flags are ignored.
30 #
31 # Remove
32 # Specify the source path (file/directory/link) and make the destination path empty.
33 # Fails if the path does not exist.
34 # Flags are ignored.
35 #
36
37 bool preserve_source # Do not remove the source. Used to copy instead of moving.
38 bool overwrite_destination # If the destination exists, remove it beforehand.
39 void30
40
41 Path.1.0 source
42 Path.1.0 destination
43
44 @assert _offset_ % 8 == {0}
45
46 ---
47
48 Error.1.0 error
49
50 @assert _offset_ % 8 == {0}

6.2.4 Read

Full service type name: uavcan.file.Read

6.2.4.1 Version 1.0, fixed service ID 408

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [48, 944] [6, 118] [1, 18] [1, 2]
Response length [32, 2080] [4, 260] [1, 38] [1, 5]

1 #
2 # Read file from a remote node.
3 #
4 # There are two possible outcomes of a successful call:
5 # 1. Data array size equals its capacity. This means that the end of the file is not reached yet.
6 # 2. Data array size is less than its capacity, possibly zero. This means that the end of the file is reached.
7 #
8 # Thus, if the client needs to fetch the entire file, it should repeatedly call this service while increasing the
9 # offset, until a non-full data array is returned.
10 #
11 # If the object pointed by ’path’ cannot be read (e.g. it is a directory or it does not exist), an appropriate error
12 # code will be returned, and the data array will be empty.
13 #
14 # It is easy to see that this protocol is prone to race conditions because the remote file can be modified
15 # between read operations which might result in the client obtaining a damaged file. To combat this,
16 # application designers are recommended to adhere to the following convention. Let every file whose integrity
17 # is of interest have a hash or a digital signature, which is stored in an adjacent file under the same name
18 # suffixed with the appropriate extension according to the type of hash or digital signature used.
19 # For example, let there be file "image.bin", integrity of which must be ensured by the client upon downloading.
20 # Suppose that the file is hashed using SHA-256, so the appropriate file extension for the hash would be
21 # ".sha256". Following this convention, the hash of "image.bin" would be stored in "image.bin.sha256".
22 # After downloading the file, the client would read the hash (being small, the hash can be read in a single

80/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

23 # request) and check it against a locally computed value. Some servers may opt to generate such hash files
24 # automatically as necessary; for example, if such file is requested but it does not exist, the server would
25 # compute the necessary signature or hash (the type of hash/signature can be deduced from the requested file
26 # extension) and return it as if the file existed. Obviously, this would be impractical for very large files;
27 # in that case, hash/signature should be pre-computed and stored in a real file. If this approach is followed,
28 # implementers are advised to use only SHA-256 for hashing, in order to reduce the number of fielded
29 # incompatible implementations.
30 #
31
32 truncated uint40 offset
33
34 Path.1.0 path
35
36 @assert _offset_ % 8 == {0}
37
38 ---
39
40 Error.1.0 error
41
42 void7
43 uint8[<=256] data
44
45 @assert _offset_ % 8 == {0}

6.2.5 Write

Full service type name: uavcan.file.Write

6.2.5.1 Version 1.0, fixed service ID 409

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [56, 2488] [7, 311] [1, 45] [1, 5]
Response length 16 2 1 1

1 #
2 # Write into a remote file.
3 # The server shall place the contents of the field ’data’ into the file pointed by ’path’ at the offset specified by
4 # the field ’offset’.
5 #
6 # When writing a file, the client should repeatedly call this service with data while advancing the offset until the
7 # file is written completely. When the write sequence is completed, the client shall call the service one last time,
8 # with the offset set to the size of the file and with the data field empty, which will signal the server that the
9 # transfer is finished.
10 #
11 # When the write operation is complete, the server shall truncate the resulting file past the specified offset.
12 #
13
14 truncated uint40 offset
15
16 Path.1.0 path
17
18 uint8[<=192] data # 192 = 128 + 64; the write protocol permits usage of smaller chunks.
19
20 @assert _offset_ % 8 == {0}
21 @assert _offset_.max / 8 <= 313
22
23 ---
24
25 Error.1.0 error

6.2.6 Error

Full message type name: uavcan.file.Error

6.2.6.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 16 2 1 1

1 #
2 # Nested type.
3 # Result of a file system operation.
4 #
5
6 uint16 OK = 0
7 uint16 UNKNOWN_ERROR = 65535
8
9 uint16 NOT_FOUND = 2
10 uint16 IO_ERROR = 5
11 uint16 ACCESS_DENIED = 13
12 uint16 IS_DIRECTORY = 21 # I.e., attempted read/write on a path that points to a directory
13 uint16 INVALID_VALUE = 22 # E.g., file name is not valid for the target file system
14 uint16 FILE_TOO_LARGE = 27
15 uint16 OUT_OF_SPACE = 28
16 uint16 NOT_SUPPORTED = 38
17
18 uint16 value

6.2.7 Path

Full message type name: uavcan.file.Path

6. List of standard data types 81/132

DRAFT

Specification v1.0 2019-11-15

6.2.7.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 904] [1, 113] [1, 17] [1, 2]

1 #
2 # Nested type.
3 # A file system path encoded in UTF8. The only valid separator is the forward slash "/".
4 # A single slash ("/") refers to the root directory (the location of which is defined by the server).
5 # Relative references (e.g. "..") are not defined and not permitted (although this may change in the future).
6 # Conventions (not enforced):
7 # - A path pointing to a file or a link to file should not end with a separator.
8 # - A path pointing to a directory or to a link to directory should end with a separator.
9 #
10 # The maximum path length limit is chosen as a trade-off between compatibility with deep directory structures and
11 # the worst-case transfer length. The limit is 112 bytes, which allows all transfers containing a single instance
12 # of path and no other large data chunks to fit into two CAN FD frames.
13 #
14
15 uint8 SEPARATOR = ’/’
16 uint8 MAX_LENGTH = 112
17
18 void1
19 uint8[<=MAX_LENGTH] path
20
21 @assert _offset_ % 8 == {0}

6.3 uavcan.internet.udp

6.3.1 HandleIncomingPacket

Full service type name: uavcan.internet.udp.HandleIncomingPacket

6.3.1.1 Version 0.1, fixed service ID 500

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [32, 2504] [4, 313] [1, 45] [1, 5]
Response length 56 7 1 1

1 #
2 # This message carries UDP packets sent from a remote host on the Internet or a LAN to a node on the local UAVCAN bus.
3 # Please refer to the definition of the message type OutgoingPacket for a general overview of the packet forwarding
4 # logic.
5 #
6 # This data type has been made a service type rather than a message type in order to make its transfers addressable,
7 # allowing nodes to employ hardware acceptance filters for filtering out forwarded datagrams that are not addressed
8 # to them. Additionally, requiring the destination nodes to always respond upon reception of the forwarded datagram
9 # opens interesting opportunities for future extensions of the forwarding protocol.
10 #
11 # It should be noted that this data type definition intentionally leaves out the source address. This is done in
12 # order to simplify the implementation, reduce the bus traffic overhead, and because the nature of the
13 # communication patterns proposed by this set of messages does not provide a valid way to implement server hosts
14 # on the local UAVCAN bus. It is assumed that local nodes can be only clients, and therefore, they will be able to
15 # determine the address of the sender simply by mapping the field session_id to their internally maintained states.
16 # Furthermore, it is uncertain what is the optimal way of representing the source address for
17 # client nodes: it is assumed that the local nodes will mostly use DNS names rather than IP addresses, so if there
18 # was a source address field, modem nodes would have to perform reverse mapping from the IP address they received
19 # the datagram from to the corresponding DNS name that was used by the local node with the outgoing message. This
20 # approach creates a number of troubling corner cases and adds a fair amount of hidden complexities to the
21 # implementation of modem nodes.
22 #
23 # It is recommended to perform service invocations at the same transfer priority level as was used for broadcasting
24 # the latest matching message of type OutgoingPacket. However, meeting this recommendation would require the modem
25 # node to implement additional logic, which may be undesirable. Therefore, implementers are free to deviate from
26 # this recommendation and resort to a fixed priority level instead. In the case of a fixed priority level, it is
27 # advised to use the lowest transfer priority level.
28 #
29
30 # This field must contain the same value that was used by the local node when sending the corresponding outgoing
31 # packet using the message type OutgoingPacket. This value will be used by the local node to match the response
32 # with its local context.
33 uint16 session_id
34
35 # Effective payload. This data will be forwarded from the remote host verbatim.
36 # UDP packets that contain more than 508 bytes of payload may be dropped by some types of
37 # communication equipment. Refer to RFC 791 and 2460 for an in-depth review.
38 # UAVCAN further limits the maximum packet size to reduce the memory and traffic burden on the nodes.
39 # Datagrams that exceed the capacity of this field should be discarded by the modem node.
40 void7
41 uint8[<=309] payload
42
43 @assert _offset_ % 8 == {0}
44 @assert _offset_.max == (313 * 8) # At most five CAN FD frames
45
46 ---
47
48 # If the service invocation times out, the modem node is permitted to remove the corresponding entry from
49 # the NAT table immediately, not waiting for its TTL to expire.
50
51 void56 # Reserved for future use.

82/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.3.2 OutgoingPacket

Full message type name: uavcan.internet.udp.OutgoingPacket

6.3.2.1 Version 0.1, fixed subject ID 32750

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [56, 2504] [7, 313] [1, 45] [1, 5]

1 #
2 # This message carries UDP packets from a node on the local bus to a remote host on the Internet or a LAN.
3 #
4 # Any node can broadcast a message of this type.
5 #
6 # All nodes that are capable of communication with the Internet or a LAN should subscribe to messages
7 # of this type and forward the payload to the indicated host and port using exactly one UDP datagram
8 # per message (i.e. additional fragmentation is to be avoided). Such nodes will be referred to as
9 # "modem nodes".
10 #
11 # It is expected that some systems will have more than one modem node available.
12 # Each modem node is supposed to forward every message it sees, which will naturally create
13 # some degree of modular redundancy and fault tolerance. The remote host should therefore be able to
14 # properly handle possibly duplicated messages from different source addresses, in addition to
15 # possible duplications introduced by the UDP/IP protocol itself. There are at least two obvious
16 # strategies that can be employed by the remote host:
17 #
18 # - Accept only the first message, ignore duplicates. This approach requires that the UDP stream
19 # should contain some metadata necessary for the remote host to determine the source and ordering
20 # of each received datum. This approach works best for periodic data, such as telemetry, where
21 # the sender does not expect any responses.
22 #
23 # - Process all messages, including duplicates. This approach assumes that the remote host acts
24 # as a server, processing all received requests and providing responses to each. This arrangement
25 # implies that the client may receive duplicated responses. It is therefore the client’s
26 # responsibility to resolve the possible ambiguity. An obvious solution is to accept the first
27 # arrived response and ignore the later ones.
28 #
29 # Applications are free to choose whatever redundancy management strategy works best for them.
30 #
31 # If the source node expects that the remote host will send some data back, it must explicitly notify
32 # the modem nodes about this, so that they could prepare to perform reverse forwarding when the
33 # expected data arrives from the remote host. The technique of reverse forwarding is known in
34 # networking as IP Masquerading, or (in general) Network Address Translation (NAT). The notification
35 # is performed by means of setting one of the corresponding flags defined below.
36 #
37 # In order to be able to match datagrams received from remote hosts and the local nodes they should
38 # be forwarded to, modem nodes are required to keep certain metadata about outgoing datagrams. Such
39 # metadata is stored in a data structure referred to as "NAT table", where every entry would normally
40 # contain at least the following fields:
41 # - The local UDP port number that was used to send the outgoing datagram from.
42 # Per RFC 4787, the port number is chosen by the modem node automatically.
43 # - The node ID of the local node that has sent the outgoing datagram.
44 # - Value of the field session_id defined below.
45 # - Possibly some other data, depending on the implementation.
46 #
47 # The modem nodes are required to keep each NAT table entry for at least NAT_ENTRY_MIN_TTL seconds
48 # since the last reverse forwarding action was performed. Should the memory resources of the modem node
49 # be exhausted, it is allowed to remove old NAT entries earlier, following the policy of least recent use.
50 #
51 # Having received a UDP packet from a remote host, the modem node would check the NAT table in order
52 # to determine where on the UAVCAN bus the received data should be forwarded to. If the NAT table
53 # contains no matches, the received data should be silently dropped. If a match is found, the
54 # modem node will forward the data to the recipient node using the service HandleIncomingPacket.
55 # If the service invocation times out, the modem node is permitted to remove the corresponding entry from
56 # the NAT table immediately (but it is not required). This will ensure that the modem nodes will not be
57 # tasked with translations for client nodes that are no longer online or are unreachable.
58 # Additionally, client nodes will be able to hint the modem nodes to remove translation entries they no
59 # longer need by simply refusing to respond to the corresponding service invocation. Please refer to
60 # the definition of that service data type for a more in-depth review of the reverse forwarding process.
61 #
62 # Modem nodes can also perform traffic shaping, if needed, by means of delaying or dropping UDP
63 # datagrams that exceed the quota.
64 #
65 # To summarize, a typical data exchange occurrence should amount to the following actions:
66 #
67 # - A local UAVCAN node broadcasts a message of type OutgoingPacket with the payload it needs
68 # to forward. If the node expects the remote host to send any data back, it sets the masquerading flag.
69 #
70 # - Every modem node on the bus receives the message and performs the following actions:
71 #
72 # - The domain name is resolved, unless the destination address provided in the message
73 # is already an IP address, in which case this step should be skipped.
74 #
75 # - The domain name to IP address mapping is added to the local DNS cache, although this
76 # part is entirely implementation defined and is not required.
77 #
78 # - The masquerading flag is checked. If it is set, a new entry is added to the NAT table.
79 # If such entry already existed, its expiration timeout is reset. If no such entry existed
80 # and a new one cannot be added because of memory limitations, the least recently used
81 # (i.e. oldest) entry of the NAT table is replaced with the new one.
82 #
83 # - The payload is forwarded to the determined IP address.
84 #
85 # - At this point, direct forwarding is complete. Should any of the modem nodes receive an incoming
86 # packet, they would attempt to perform a reverse forwarding according to the above provided algorithm.
87 #
88 # It is recommended to use the lowest transport priority level when broadcasting messages of this type,
89 # in order to avoid interference with a real-time traffic on the bus. Usage of higher priority levels is

6. List of standard data types 83/132

DRAFT

Specification v1.0 2019-11-15

90 # unlikely to be practical because the latency and throughput limitations introduced by the on-board radio
91 # communication equipment are likely to vastly exceed those of the local CAN bus.
92 #
93
94 # Modem nodes are required to keep the NAT table entries alive for at least this amount of time, unless the
95 # table is overflowed, in which case they are allowed to remove least recently used entries in favor of
96 # newer ones. Modem nodes are required to be able to accommodate at least 100 entries in the NAT table.
97 uint32 NAT_ENTRY_MIN_TTL = 24 * 60 * 60 # [second]
98
99 # This field is set to an arbitrary value by the transmitting node in order to be able to match the response
100 # with the locally kept context. The function of this field is virtually identical to that of UDP/IP port
101 # numbers. This value can be set to zero safely if the sending node does not have multiple contexts to
102 # distinguish between.
103 uint16 session_id
104
105 # UDP destination port number.
106 uint16 destination_port
107
108 # Domain name or IP address where the payload should be forwarded to.
109 # Note that broadcast addresses are allowed here, for example, 255.255.255.255.
110 # Broadcasting with masquerading enabled works the same way as unicasting with masquerading enabled: the modem
111 # node should take care to channel all traffic arriving at the opened port from any source to the node that
112 # requested masquerading.
113 # The full domain name length may not exceed 253 octets, according to the DNS specification.
114 # UAVCAN imposes a stricter length limit in order to reduce the memory and traffic burden on the bus: 45 characters.
115 # 45 characters is the amount of space that is required to represent the longest possible form of an IPv6 address
116 # (an IPv4-mapped IPv6 address). Examples:
117 # "forum.uavcan.org" - domain name
118 # "192.168.1.1" - IPv4 address
119 # "2001:0db8:85a3:0000:0000:8a2e:0370:7334" - IPv6 address, full form
120 # "2001:db8:85a3::8a2e:370:7334" - IPv6 address, same as above, short form (preferred)
121 # "ABCD:ABCD:ABCD:ABCD:ABCD:ABCD:192.168.158.190" - IPv4-mapped IPv6, full form (length limit, 45 characters)
122 void2
123 uint8[<=45] destination_address
124
125 @assert _offset_ % 8 == {0}
126
127 # Option flags.
128 bool use_masquerading # Expect data back (i.e., instruct the modem to use the NAT table).
129 bool use_dtls # Use Datagram Transport Layer Security. Drop the packet if DTLS is not supported.
130 void5
131
132 # Effective payload. This data will be forwarded to the remote host verbatim.
133 # UDP packets that contain more than 508 bytes of payload may be dropped by some types of
134 # communication equipment. Refer to RFC 791 and 2460 for an in-depth review.
135 # UAVCAN further limits the maximum packet size to reduce the memory and traffic burden on the nodes.
136 uint8[<=261] payload
137
138 @assert _offset_ % 8 == {0}
139 @assert _offset_.max / 8 == 313

84/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.4 uavcan.node

6.4.1 ExecuteCommand

Full service type name: uavcan.node.ExecuteCommand

6.4.1.1 Version 1.0, fixed service ID 435

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [24, 920] [3, 115] [1, 17] [1, 2]
Response length 56 7 1 1

1 #
2 # Instructs the server node to execute or commence execution of a simple predefined command.
3 # All standard commands are optional; i.e., not guaranteed to be supported by all nodes.
4 #
5
6 # Standard pre-defined commands are at the top of the range (defined below).
7 # Vendors can define arbitrary, vendor-specific commands in the bottom part of the range (starting from zero).
8 # Vendor-specific commands must not use identifiers above 32767.
9 uint16 command
10
11 # Reboot the node.
12 # Note that some standard commands may or may not require a restart in order to take effect; e.g., factory reset.
13 uint16 COMMAND_RESTART = 65535
14
15 # Shut down the node; further access will not be possible until the power is turned back on.
16 uint16 COMMAND_POWER_OFF = 65534
17
18 # Begin the software update process using uavcan.file.Read. This command makes use of the "parameter" field below.
19 # The parameter contains the path to the new software image file to be downloaded by the server from the client
20 # using the standard service uavcan.file.Read. Observe that this operation swaps the roles of the client and
21 # the server.
22 #
23 # Upon reception of this command, the server (updatee) will evaluate whether it is possible to begin the
24 # software update process. If that is deemed impossible, the command will be rejected with one of the
25 # error codes defined in the response section of this definition (e.g., BAD_STATE if the node is currently
26 # on-duty and a sudden interruption of its activities is considered unsafe, and so on).
27 # If an update process is already underway, the updatee should abort the process and restart with the new file,
28 # unless the updatee can determine that the specified file is the same file that is already being downloaded,
29 # in which case it is allowed to respond SUCCESS and continue the old update process.
30 # If there are no other conditions precluding the requested update, the updatee will return a SUCCESS and
31 # initiate the file transfer process by invoking the standard service uavcan.file.Read repeatedly until the file
32 # is transferred fully (please refer to the documentation for that data type for more information about its usage).
33 #
34 # While the software is being updated, the updatee should set its mode (the field "mode" in uavcan.node.Heartbeat)
35 # to MODE_SOFTWARE_UPDATE. Please refer to the documentation for uavcan.node.Heartbeat for more information.
36 #
37 # It is recognized that most systems will have to interrupt their normal services to perform the software update
38 # (unless some form of software hot swapping is implemented, as is the case in some high-availability systems).
39 #
40 # Microcontrollers that are requested to update their firmware may need to stop execution of their current firmware
41 # and start the embedded bootloader (although other approaches are possible as well). In that case,
42 # while the embedded bootloader is running, the mode reported via the message uavcan.node.Heartbeat should be
43 # MODE_SOFTWARE_UPDATE as long as the bootloader is runing, even if no update-related activities
44 # are currently underway. For example, if the update process failed and the bootloader cannot load the software,
45 # the same mode MODE_SOFTWARE_UPDATE will be reported.
46 # It is also recognized that in a microcontroller setting, the application that served the update request will have
47 # to pass the update-related metadata (such as the node ID of the server and the firmware image file path) to
48 # the embedded bootloader. The tactics of that transaction lie outside of the scope of this specification.
49 uint16 COMMAND_BEGIN_SOFTWARE_UPDATE = 65533
50
51 # Return the node’s configuration back to the factory default settings (may require restart).
52 # Due to the uncertainty whether a restart is required, generic interfaces should always force a restart.
53 uint16 COMMAND_FACTORY_RESET = 65532
54
55 # Cease activities immediately, enter a safe state until restarted.
56 # Further operation may no longer be possible until a restart command is executed.
57 uint16 COMMAND_EMERGENCY_STOP = 65531
58
59 # This command instructs the node to store the current configuration parameter values and other persistent states
60 # to the non-volatile storage. Nodes are allowed to manage persistent states automatically, obviating the need for
61 # this command by committing all such data to the non-volatile memory automatically as necessary. However, some
62 # nodes may lack this functionality, in which case this parameter should be used. Generic interfaces should always
63 # invoke this command in order to ensure that the data is stored even if the node doesn’t implement automatic
64 # persistence management.
65 uint16 COMMAND_STORE_PERSISTENT_STATES = 65530
66
67 # A string parameter supplied to the command. The format and interpretation is command-specific.
68 # The standard commands do not use this field (ignore it), excepting the following:
69 # - COMMAND_BEGIN_SOFTWARE_UPDATE
70 void1
71 uint8[<=uavcan.file.Path.1.0.MAX_LENGTH] parameter
72
73 @assert _offset_ % 8 == {0}
74 @assert _offset_.max <= (124 * 8) # Two CAN FD frames max
75
76 ---
77
78 # The result of the request.
79 uint8 STATUS_SUCCESS = 0 # Started or executed successfully
80 uint8 STATUS_FAILURE = 1 # Could not start or the desired outcome could not be reached
81 uint8 STATUS_NOT_AUTHORIZED = 2 # Denied due to lack of authorization
82 uint8 STATUS_BAD_COMMAND = 3 # The requested command is not known or not supported
83 uint8 STATUS_BAD_PARAMETER = 4 # The supplied parameter cannot be used with the selected command
84 uint8 STATUS_BAD_STATE = 5 # The current state of the node does not permit execution of this command
85 uint8 STATUS_INTERNAL_ERROR = 6 # The operation should have succeeded but an unexpected failure occurred

6. List of standard data types 85/132

DRAFT

Specification v1.0 2019-11-15

86 uint8 status
87
88 # Reserved for future use
89 void48

6.4.2 GetInfo

Full service type name: uavcan.node.GetInfo

6.4.2.1 Version 1.0, fixed service ID 430

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length 0 0 1 1
Response length [264, 2504] [33, 313] [5, 45] [1, 5]

1 #
2 # Full node info request.
3 # All of the returned information must be static (unchanged) while the node is running.
4 # It is highly recommended to support this service on all nodes.
5 #
6
7 ---
8
9 # The UAVCAN protocol version implemented on this node, both major and minor.
10 # Not to be changed while the node is running.
11 Version.1.0 protocol_version
12
13 # The version information must not be changed while the node is running.
14 # The correct hardware version must be reported at all times, excepting software-only nodes, in which
15 # case it should be set to zeros.
16 # If the node is equipped with a UAVCAN-capable bootloader, the bootloader should report the software
17 # version of the installed application, if there is any; if no application is found, zeros should be reported.
18 Version.1.0 hardware_version
19 Version.1.0 software_version
20
21 # A version control system (VCS) revision number or hash. Not to be changed while the node is running.
22 # For example, this field can be used for reporting the short git commit hash of the current
23 # software revision.
24 # Set to zero if not used.
25 uint64 software_vcs_revision_id
26
27 # The unique node ID is a 128-bit long sequence that is likely to be globally unique per node.
28 # The vendor must ensure that the probability of a collision with any other node UID globally is negligibly low.
29 # UID is defined once per hardware unit and should never be changed.
30 # All zeros is not a valid UID.
31 # If the node is equipped with a UAVCAN-capable bootloader, the bootloader must use the same UID.
32 uint8[16] unique_id
33
34 # Manual serialization note: only fixed-size fields up to this point. The following fields are dynamically sized.
35 @assert _offset_ == {30 * 8}
36
37 # Human-readable non-empty ASCII node name. An empty name is not permitted.
38 # The name must not be changed while the node is running.
39 # Allowed characters are: a-z (lowercase ASCII letters) 0-9 (decimal digits) . (dot) - (dash) _ (underscore).
40 # Node name is a reversed Internet domain name (like Java packages), e.g. "com.manufacturer.project.product".
41 void2
42 uint8[<=50] name
43
44 # The value of an arbitrary hash function applied to the software image. Not to be changed while the node is running.
45 # This field can be used to detect whether the software or firmware running on the node is an exact
46 # same version as a certain specific revision. This field provides a very strong identity guarantee,
47 # unlike the version fields above, which can be the same for different builds of the software.
48 # As can be seen from its definition, this field is optional.
49 #
50 # The exact hash function and the methods of its application are implementation-defined.
51 # However, implementations are recommended to adhere to the following guidelines, fully or partially:
52 # - The hash function should be CRC-64-WE.
53 # - The hash function should be applied to the entire application image padded to 8 bytes.
54 # - If the computed image CRC is stored within the software image itself, the value of
55 # the hash function becomes ill-defined, because it becomes recursively dependent on itself.
56 # In order to circumvent this issue, while computing or checking the CRC, its value stored
57 # within the image should be zeroed out.
58 void7
59 uint64[<=1] software_image_crc
60
61 # The certificate of authenticity (COA) of the node, 222 bytes max, optional. This field can be used for
62 # reporting digital signatures (e.g., RSA-1776, or ECDSA if a higher degree of cryptographic strength is desired).
63 # Leave empty if not used. Not to be changed while the node is running.
64 uint8[<=222] certificate_of_authenticity
65
66 @assert _offset_ % 8 == {0}
67 @assert _offset_.max == (313 * 8) # At most five CAN FD frames

6.4.3 GetTransportStatistics

Full service type name: uavcan.node.GetTransportStatistics

6.4.3.1 Version 0.1, fixed service ID 434

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length 0 0 1 1
Response length [128, 488] [16, 61] [3, 9] 1

86/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

1 #
2 # Returns a set of general low-level transport statistical counters.
3 # Servers are encouraged but not required to sample the data atomically.
4 #
5
6 ---
7
8 # UAVCAN supports up to triply modular redundant interfaces.
9 uint8 MAX_NETWORK_INTERFACES = 3
10
11 # UAVCAN transfer performance statistics:
12 # the number of UAVCAN transfers successfully sent, successfully received, and failed.
13 # The methods of error counting are implementation-defined.
14 IOStatistics.0.1 transfer_statistics
15
16 # Network interface statistics, separate per interface.
17 # E.g., for a doubly redundant transport, this array would contain two elements,
18 # the one at the index zero would apply to the first interface, the other to the second interface.
19 # The methods of counting are implementation-defined.
20 void6
21 IOStatistics.0.1[<=MAX_NETWORK_INTERFACES] network_interface_statistics
22
23 @assert _offset_ % 8 == {0}
24 @assert _offset_.max <= (63 * 8) # One CAN FD frame

6.4.4 Heartbeat

Full message type name: uavcan.node.Heartbeat

6.4.4.1 Version 1.0, fixed subject ID 32085

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 56 7 1 1

1 #
2 # Abstract node status information.
3 # This is the only high-level function that must be implemented by all nodes.
4 #
5 # All UAVCAN nodes that have a node-ID are required to publish this message periodically.
6 # Nodes that do not have a node-ID (also known as "anonymous nodes") shall not publish this message.
7 #
8 # The default subject ID 32085 is 111110101010101 in binary. The alternating bit pattern at the end
9 # helps transceiver synchronization (e.g., on CAN-based networks) and on some transports permits
10 # automatic bit rate detection.
11 #
12
13 # The publication period must not exceed this limit.
14 # The period should not change while the node is running.
15 uint16 MAX_PUBLICATION_PERIOD = 1 # [second]
16
17 # If the last message from the node was received more than this amount of time ago, it should be considered offline.
18 uint16 OFFLINE_TIMEOUT = 3 # [second]
19
20 # The uptime seconds counter should never overflow. The counter will reach the upper limit in ~136 years,
21 # upon which time it should stay at 0xFFFFFFFF until the node is restarted.
22 #
23 # Other nodes may detect that a remote node has restarted when this value leaps backwards.
24 uint32 uptime # [second]
25
26 # Abstract node health information. See constants below.
27 # Follows:
28 # https://www.law.cornell.edu/cfr/text/14/23.1322
29 # https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_25.1322-1.pdf section 6
30 truncated uint2 health
31
32 # The node is functioning properly (nominal).
33 uint2 HEALTH_NOMINAL = 0
34
35 # A critical parameter went out of range or the node encountered a minor failure that does not prevent
36 # the subsystem from performing any of its real-time functions.
37 uint2 HEALTH_ADVISORY = 1
38
39 # The node encountered a major failure and is performing in a degraded mode or outside of its designed limitations.
40 uint2 HEALTH_CAUTION = 2
41
42 # The node suffered a fatal malfunction and is unable to perform its intended function.
43 uint2 HEALTH_WARNING = 3
44
45 # The current operating mode. See constants below.
46 #
47 # The mode OFFLINE can be used for informing other network participants that the sending node has ceased its
48 # activities or about to do so. In this case, other nodes will not have to wait for the OFFLINE_TIMEOUT to
49 # expire before detecting that the sending node is no longer available.
50 #
51 # Reserved values can be used in future revisions of the specification.
52 truncated uint3 mode
53
54 # Normal operating mode.
55 uint3 MODE_OPERATIONAL = 0
56
57 # Initialization is in progress; this mode is entered immediately after startup.
58 uint3 MODE_INITIALIZATION = 1
59
60 # E.g. calibration, self-test, etc.
61 uint3 MODE_MAINTENANCE = 2
62
63 # New software/firmware is being loaded or the bootloader is running.

6. List of standard data types 87/132

DRAFT

Specification v1.0 2019-11-15

64 uint3 MODE_SOFTWARE_UPDATE = 3
65
66 # The node is no longer available.
67 uint3 MODE_OFFLINE = 7
68
69 # Optional, vendor-specific node status code, e.g. a fault code or a status bitmask.
70 truncated uint19 vendor_specific_status_code
71
72 @assert _offset_ % 8 == {0}
73 @assert _offset_.max <= 56 # Must fit into one CAN 2.0 frame (least capable transport, smallest MTU)

6.4.5 ID

Full message type name: uavcan.node.ID

6.4.5.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 16 2 1 1

1 #
2 # Defines a node-ID.
3 # The maximum valid value is dependent on the underlying transport layer.
4 # Values lower than 128 are always valid for all transports.
5 # Refer to the specification for more info.
6 #
7
8 uint16 value
9
10 @assert _offset_ == {16}

6.4.6 IOStatistics

Full message type name: uavcan.node.IOStatistics

6.4.6.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 120 15 3 1

1 #
2 # A standard set of generic input/output statistical counters that generally should not overflow.
3 # If a 40-bit counter is incremented every millisecond, it will overflow in ~35 years.
4 # If an overflow occurs, the value will wrap over to zero.
5 #
6 # The values should not be reset while the node is running.
7 #
8
9 # The number of successfully emitted entities.
10 truncated uint40 num_emitted
11
12 # The number of successfully received entities.
13 truncated uint40 num_received
14
15 # How many errors have occurred.
16 # The exact definition of "error" and how they are counted are implementation-defined,
17 # unless specifically defined otherwise.
18 truncated uint40 num_errored

6.4.7 Version

Full message type name: uavcan.node.Version

6.4.7.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 16 2 1 1

1 #
2 # A shortened semantic version representation: only major and minor.
3 # The protocol generally does not concern itself with the patch version.
4 #
5
6 uint8 major
7 uint8 minor

6.5 uavcan.node.port

6.5.1 GetInfo

Full service type name: uavcan.node.port.GetInfo

88/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.5.1.1 Version 0.1, fixed service ID 432

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length 16 2 1 1
Response length [32, 432] [4, 54] [1, 8] 1

1 #
2 # This service is used to obtain information about a port (either subject or service).
3 # It can be used for advanced network inspections, e.g., for building computational graph maps.
4 #
5 # If this service is implemented, it shall report information for all subject ports (both publishers and subscribers)
6 # and service server ports. Support for service client ports is optional (implementation-defined);
7 # if not supported, client ports may be reported as non-existent.
8 #
9 # The reason client ports are treated differently is due to their inherent volatility: services are often
10 # invoked ad-hoc, and the network stack on the client node may choose to reclaim the resources allocated for
11 # a client port that is no longer in use for other needs.
12 #
13
14 # The port of interest; can be either a service or a subject.
15 ID.1.0 port_id
16
17 @assert _offset_ == {16}
18
19 ---
20
21 # For subject ports, "input" means subscriber and "output" means publisher.
22 # A subject port may be both subscriber and publisher at the same time.
23 #
24 # For service ports, "input" means server and "output" means client (based on the direction of request transfers).
25 # A service port may be both server and client at the same time.
26 #
27 # For non-existent ports both flags should be cleared.
28 #
29 # Kind | Input | Output
30 # --------------+---------------+----------------
31 # Subject | Subscriber | Publisher
32 # Service | Server | Client
33 #
34 bool is_input # Subscriber or server
35 bool is_output # Publisher or client
36 void6
37
38 # If such port exists, this field shall contain the full name of its data type.
39 # If the requested port does not exist, this field shall be empty.
40 # If this field is empty, the caller should ignore all other fields.
41 void2
42 uint8[<=50] data_type_full_name
43
44 # The version numbers of the data type used at this port.
45 # Zeros if the port does not exist.
46 uavcan.node.Version.1.0 data_type_version
47
48 @assert _offset_ % 8 == {0}

6.5.2 GetStatistics

Full service type name: uavcan.node.port.GetStatistics

6.5.2.1 Version 0.1, fixed service ID 433

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length 16 2 1 1
Response length 120 15 3 1

1 #
2 # This service is used to obtain statistical metrics of a port (either message or service).
3 # It can be used for advanced network inspections, e.g. for building real-time traffic maps.
4 #
5
6 # The port of interest; can be either a service or a message.
7 ID.1.0 port_id
8
9 @assert _offset_ == {16}
10
11 ---
12
13 # For messages, "emitted" applies to publications, and "received" applies to subscribers.
14 #
15 # For services, "emitted" applies to responses, and "received" applies to requests. Normally, they
16 # should be equal; however, under certain circumstances the number of responses ("emitted") can be
17 # lower, e.g. if the server could not or chose not to send a response.
18 #
19 # The "emitted" and "received" counters reflect the number of successful transactions only.
20 # Failed transcations should not affect their values; instead, they should be reflected in the error counter.
21 #
22 # The error counter represents how many transfers could not be successfully received or emitted due to
23 # an error of any kind anywhere in the network stack, excluding application-level errors.
24 # For example, if the message could not be decoded because of a data type compatibility problem,
25 # such incident should be reported here via this field. On the other hand, if the message or service
26 # call was processed properly, but the application could not act upon that data, it should not be
27 # reported here because that problem should be attributed to a different level of abstraction.
28 # The exact definition of an error and the methods of their counting are implementation-defined.
29 uavcan.node.IOStatistics.0.1 statistics

6. List of standard data types 89/132

DRAFT

Specification v1.0 2019-11-15

30
31 @assert _offset_ == {15 * 8} # 15 bytes max; this service is optimized for high-frequency polling

6.5.3 List

Full service type name: uavcan.node.port.List

6.5.3.1 Version 0.1, fixed service ID 431

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length 16 2 1 1
Response length [8, 2056] [1, 257] [1, 37] [1, 5]

1 #
2 # Returns a subset of all ports of the specified kind (subject or service) on the remote node.
3 # As the number of ports may exceed the capacity of the output array, the server will return only those which are
4 # not less than the number specified in the request. The caller should sweep the lower boundary upwards until
5 # the size of the returned array is strictly less than its capacity. For example:
6 # 1. port_id_lower_boundary = 0; port_ids = [42, 567, ... 920] (=128 elements, continue)
7 # 2. port_id_lower_boundary = 920; port_ids = [1052, ... 5049] (=128 elements, continue)
8 # 3. port_id_lower_boundary = 5049; port_ids = [6973, ..., 24593] (<128 elements, stop)
9 #
10 # The server will return as many IDs as possible which are numerically not less than port_id_lower_boundary,
11 # and which are of the same kind as specified in the request (i.e., if the lower boundary is a service-ID, only
12 # service-IDs will be returned).
13 #
14 # If the number of matching (i.e., not less than port_id_lower_boundary) IDs exceeds the capacity of the output array,
15 # the caller will need to repeat the call with this boundary set to the value one greater than the maximum found
16 # in the returned array. The calls should be repeated while advancing the boundary as described until
17 # the returned array is not full (e.g. the number of elements is less than its capacity, possibly zero).
18 #
19 # The server is NOT required to ensure any ordering in the output array, meaning that the caller will have to
20 # search through the array in order to find the greatest value in it.
21 #
22 # The server is REQUIRED to ensure that every element in the returned array is unique.
23 #
24 # The server is REQUIRED to ensure that by performing the above actions the client will end up with a full set of
25 # port-IDs, assuming that the set is not modified between invocations. This implicitly requires that there must be
26 # no port-ID that is lower than the greatest value in the returned array that is not listed in the array, because
27 # in that case the client will never be able to obtain that value.
28 #
29 # For subjects, both subscription (input) and publication (output) ports shall be returned.
30 # If necessary, the caller will be able to differentiate between those by using the sibling service type GetInfo.
31 #
32 # For services, server ports shall be returned. Whether client ports are returned is implementation-defined.
33 # As in the case of subjects, further differentiation is possible via GetInfo.
34 #
35
36 ID.1.0 port_id_lower_boundary
37
38 @assert _offset_ == {16}
39
40 ---
41
42 # See above for the full description of the logic.
43 uint16[<=128] port_ids
44
45 @assert _offset_ % 8 == {0}

6.5.4 ID

Full message type name: uavcan.node.port.ID

6.5.4.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 16 2 1 1

1 #
2 # Used to refer either to a Service or to a Subject.
3 # The chosen tag identifies the kind of the port, then the numerical ID identifies the port within the kind.
4 #
5
6 @union
7 SubjectID.1.0 subject_id
8 ServiceID.1.0 service_id
9 @assert _offset_ == {16}

6.5.5 ServiceID

Full message type name: uavcan.node.port.ServiceID

6.5.5.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 15 2 1 1

1 #
2 # Service-ID. The ranges are defined by the specification.

90/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

3 #
4
5 uint9 MAX_UNREGULATED_ID = 127
6
7 void6
8 uint9 value
9
10 @assert _offset_ == {15}

6.5.6 SubjectID

Full message type name: uavcan.node.port.SubjectID

6.5.6.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 15 2 1 1

1 #
2 # Subject-ID. The ranges are defined by the specification.
3 #
4
5 uint16 MAX_UNREGULATED_ID = 24575
6
7 uint15 value
8
9 @assert _offset_ == {15}

6. List of standard data types 91/132

DRAFT

Specification v1.0 2019-11-15

6.6 uavcan.pnp

6.6.1 NodeIDAllocationData

Full message type name: uavcan.pnp.NodeIDAllocationData

6.6.1.1 Version 0.1, fixed subject ID 32741

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 144 18 3 1

1 #
2 # In order to be able to operate in a UAVCAN network, a node must have a node-ID that is unique within the network.
3 # Typically, a valid node-ID can be configured manually for each node; however, in certain use cases the manual
4 # approach is either undesirable or impossible, therefore UAVCAN defines the high-level feature of plug-and-play
5 # nodes that allows nodes to obtain a node-ID value automatically upon connection to the network. When combined
6 # with automatic physical layer configuration (such as auto bit rate detection), this feature allows one to implement
7 # nodes that can join a UAVCAN network without any prior manual configuration whatsoever. Such nodes are referred to
8 # as "plug-and-play nodes" (or "PnP nodes" for brevity).
9 #
10 # The feature is fundamentally non-deterministic and is likely to be unfit for some high-reliability systems;
11 # the designers need to carefully consider the trade-offs involved before deciding to rely on this feature.
12 # Normally, static node-ID settings should be preferred.
13 #
14 # This feature relies on the concept of "anonymous message transfers", please consult with the UAVCAN transport
15 # layer specification for details.
16 #
17 # An allocated node-ID should not be persistent. This means that if a node is configured to use plug-and-play node-ID
18 # allocation, it must perform a new allocation every time it is started or rebooted. The allocated node-ID value
19 # should not be stored on the node itself, because there exist edge cases that may lead to node-ID conflicts under
20 # certain circumstances (reviewed later).
21 #
22 # The process of plug-and-play node-ID allocation always involves two types of nodes: "allocators", which serve
23 # allocation requests; and "allocatees", which request PnP node-ID from allocators. A UAVCAN network may implement
24 # the following configurations of allocators:
25 #
26 # - Zero allocators, in which case plug-and-play node-ID allocation cannot be used, only nodes with statically
27 # configured node-ID can communicate.
28 #
29 # - One allocator, in which case the feature of plug-and-play node-ID allocation will become unavailable
30 # if the allocator fails. In this configuration, the role of the allocator can be performed even by a very
31 # resource-constrained system, e.g. a low-end microcontroller.
32 #
33 # - Three allocators, in which case the allocators will be using a replicated allocation table via a
34 # distributed consensus algorithm. In this configuration, the network can tolerate the loss of one
35 # allocator and continue to serve allocation requests. This configuration requires the allocators to
36 # maintain large data structures for the needs of the distributed consensus algorithm, and may therefore
37 # require a slightly more sophisticated computational platform, e.g., a high-end microcontroller.
38 #
39 # - Five allocators, it is the same as the three allocator configuration reviewed above except that the network
40 # can tolerate the loss of two allocators and still continue to serve allocation requests.
41 #
42 # In order to get a PnP node-ID, an allocatee must have a globally unique 128-bit integer identifier, known as
43 # unique-ID (where "globally unique" means that the probability of having two nodes anywhere in the world that share
44 # the same unique-ID is negligibly low). This is the same value that is used in the field unique_id of the data type
45 # uavcan.node.GetInfo. All PnP nodes must support the service uavcan.node.GetInfo, and they must use the same
46 # unique-ID value when requesting node-ID allocation and when responding to the GetInfo requests (there may exist
47 # other usages of the unique-ID value, but they lie outside of the scope of the PnP protocol).
48 #
49 # During allocation, the allocatee communicates its unique-ID to the allocator (or allocators in the case of a
50 # redundant allocator configuration), which then use it to produce an appropriate allocation response. Unique-ID
51 # values are kept by allocators in the "allocation table" - a data structure that contains the mapping between
52 # unique-ID and the corresponding node-ID values. The allocation table is a write-only data structure that can
53 # only expand. When a new allocatee requests a PnP node-ID, its unique-ID is recorded in the allocation table,
54 # and all subsequent allocation requests from the same allocatee will be served with the same node-ID value.
55 #
56 # In configurations with redundant allocators, every allocator maintains a replica of the same allocation table
57 # (a UAVCAN network cannot contain more than one allocation table, regardless of the number of allocators employed).
58 # While the allocation table is a write-only data structure that can only grow, it is still possible to wipe the
59 # table completely (as long as it is removed from all redundant allocators on the network simultaneously),
60 # forcing the allocators to forget known nodes and perform all future allocations anew.
61 #
62 # In the context of the following description, nodes that use a manually-configured node-ID will be referred to as
63 # "static nodes". It is assumed that allocators are always static nodes themselves since there is no other authority
64 # on the network that can grant a PnP node-ID, so allocators are unable to request a PnP node-ID for themselves.
65 # Excepting allocators, it is not recommended to mix PnP and static nodes on the same network; i.e., normally,
66 # a UAVCAN network should contain either all static nodes, or all PnP nodes (excepting allocators). If this
67 # recommendation cannot be followed, the following rules of safe co-existence of PnP nodes with static nodes should
68 # be adopted:
69 # - It is safe to connect PnP nodes to the bus at any time.
70 # - A static node can be connected to the bus if the allocator (allocators) is (are) already aware of it.
71 # I.e., the static node is already listed in the allocation table.
72 # - A new static node (i.e., a node that does not meet the above criterion) can be connected to the bus only if
73 # no PnP allocation requests are happening at the moment.
74 #
75 # Due to the possibility of coexistence of static nodes with PnP nodes, allocators are tasked with monitoring
76 # the nodes present in the network. If the allocator detects an online node in the network the node-ID of which is
77 # not found in the allocation table (or the local copy thereof in the case of redundant allocators), the allocator
78 # must create a new mock entry where the node-ID matches that of the newly detected node and the unique-ID is set to
79 # zero (i.e., a 128-bit long sequence of zero bits). This behavior ensures that PnP nodes will never be granted
80 # node-ID values that are already taken by static nodes. Allocators are allowed to request the true unique-ID of the
81 # newly detected nodes by issuing requests uavcan.node.GetInfo instead of using mock zero unique-IDs, but this is not
82 # required for the sake of simplicity and determinism (some nodes may fail to respond to the GetInfo request, e.g.,
83 # if this service is not supported). Note that in the case of redundant allocators, some of them may be relieved of
84 # this task due to the intrinsic properties of the distributed consensus algorithm; please refer to the documentation
85 # for the data type uavcan.pnp.cluster.AppendEntries for more information.
86 #

92/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

87 # The unique-ID & node-ID pair of each allocator must be kept in the allocation table as well. It is allowed to replace
88 # the unique-ID values of allocators with zeros at the discretion of the implementer.
89 #
90 # As can be inferred from the above, the process of PnP node-ID allocation involves up to two types of communications:
91 #
92 # - "Allocatee-allocator exchange" - this communication is used when an allocatee requests a PnP node-ID from the
93 # allocator (or redundant allocators), and also when the allocator transmits a response back to the allocatee.
94 # This communication is invariant to the allocator configuration used, i.e., the allocatees are not aware of
95 # how many allocators are available on the network and how they are configured. In configurations with
96 # non-redundant (i.e., single) allocator, this is the only type of PnP allocation exchanges.
97 #
98 # - "Allocator-allocator exchange" - this communication is used by redundant allocators for the maintenance of
99 # the replicated allocation table and for other needs of the distributed consensus algorithm. Allocatees are
100 # completely isolated and are unaware of these exchanges. This communication is not used with the single-allocator
101 # configuration, since there is only one server and the allocation table is not distributed. The data types
102 # used for the allocator-allocator exchanges are defined in the namespace uavcan.pnp.cluster.
103 #
104 # As has been said earlier, the logic used for communication between allocators (for the needs of the maintenance of
105 # the distributed allocation table) is completely unrelated to the allocatees. The allocatees are unaware of these
106 # exchanges, and they are also unaware of the allocator configuration used on the network: single or redundant.
107 # As such, the documentation you’re currently reading does not describe the logic and requirements of the
108 # allocator-allocator exchanges for redundant configurations; for that, please refer to the documentation for the
109 # data type uavcan.pnp.cluster.AppendEntries.
110 #
111 # Allocatee-allocator exchanges are performed using only this message type uavcan.pnp.NodeIDAllocationData. Allocators
112 # use it with regular message transfers; allocatees use it with anonymous message transfers. The specification and
113 # usage info for this data type is provided below.
114 #
115 # The general idea of the allocatee-allocator exchanges is that the allocatee communicates to the allocator its
116 # unique-ID and, if applicable, the preferred node-ID value that it would like to have. The allocatee uses
117 # anonymous message transfers of this type. The allocator performs the allocation and sends a response using
118 # the same message type, where the field for unique-ID is populated with the unique-ID of the requesting node
119 # and the field for node-ID is populated with the allocated node-ID. All exchanges from allocatee to allocator use
120 # single-frame transfers only (see the specification for more information on the limitations of anonymous messages).
121 #
122 # The allocatee-allocator exchange logic differs between allocators and allocatees. For allocators, the logic is
123 # trivial: upon reception of a request, the allocator performs an allocation and sends a response back. If the
124 # allocation could not be performed for any reason (e.g., the allocation table is full, or there was a failure),
125 # no response is sent back (i.e., the request is simply ignored); the recommended strategy for the allocatee is to
126 # continue sending new allocation requests until a response is granted or a higher-level system (e.g., a maintenance
127 # technician or some automation) intervenes to rectify the problem (e.g., by purging the allocation table).
128 # The allocator that could not complete an allocation for any reason is recommended to emit a diagnostic message
129 # with a human-readable description of the problem. For allocatees, the logic is described below.
130 #
131 # This message is used for PnP node-ID allocation on all transports where the maximum transmission unit size is
132 # sufficiently large. For low-MTU transports such as CAN 2.0 there is a dedicated message definition that takes into
133 # account the limitations of that transport (namely, the unique-ID value is replaced with a short hash in order to
134 # fit the data into one low-MTU single-frame transfer).
135 #
136 # When a node needs to request a PnP node-ID, it will transmit an anonymous message transfer of this type. The pseudo
137 # node-ID value of the anonymous transfer should be populated with pseudorandom data as described in the UAVCAN
138 # transport layer specification. Since pseudo node-ID collisions are likely to happen, nodes that are requesting
139 # PnP allocations need to be able to handle them correctly. Hence, a CSMA/CD collision resolution protocol is defined,
140 # which utilizes a randomized request period value referred to as Trequest.
141 #
142 # Generally, the randomly chosen values of the request period (Trequest) should be in the range from 0 to 1 seconds.
143 # Applications that are not concerned about the allocation time are recommended to pick higher values, as it will
144 # reduce interference with other nodes where faster allocations may be desirable. The random interval must be chosen
145 # anew per transmission, whereas the pseudo node-ID value is allowed to stay constant per node.
146 #
147 # The source of random data for Trequest must be likely to yield different values for participating nodes, avoiding
148 # common sequences. This implies that the time since boot alone is not a sufficiently robust source of randomness,
149 # as that would be probable to cause nodes powered up at the same time to emit colliding messages repeatedly.
150 #
151 # The response timeout is not explicitly defined for this protocol, as the allocatee will request a new allocation
152 # Trequest units of time later again, unless an allocation has been granted. Since the request and response messages
153 # are fully idempotent, accidentally repeated messages (e.g., due to benign race conditions that are inherent to this
154 # protocol) are harmless.
155 #
156 # On the allocatee’s side the protocol is defined through the following set of simple rules:
157 #
158 # Rule A. On initialization:
159 # 1. The allocatee subscribes to this message.
160 # 2. The allocatee starts the Request Timer with a random interval of Trequest.
161 #
162 # Rule B. On expiration of the Request Timer (started as per rules A, B, or C):
163 # 1. Request Timer restarts with a random interval of Trequest (chosen anew).
164 # 2. The allocatee broadcasts an allocation request message, where the fields are populated as follows:
165 # node_id - the preferred node-ID, or the highest valid value if the allocatee doesn’t have any preference.
166 # unique_id - the 128-bit unique-ID of the allocatee, same value that is reported via uavcan.node.GetInfo.
167 #
168 # Rule C. On any allocation message, even if other rules also match:
169 # 1. Request Timer restarts with a random interval of Trequest (chosen anew) (this is related to CSMA/CD).
170 #
171 # Rule D. On an allocation message WHERE (source node-ID is non-anonymous, i.e., regular allocation response)
172 # AND (the field unique_id matches the allocatee’s unique-ID):
173 # 1. Request Timer stops.
174 # 2. The allocatee initializes its node-ID with the received value.
175 # 3. The allocatee terminates its subscription to allocation messages.
176 # 4. Exit.
177 #
178 # As can be seen, the algorithm assumes that the allocatee will continue to emit requests at random intervals
179 # until an allocation is granted or the allocatee is disconnected.
180 #
181
182 # If the message transfer is anonymous (i.e., allocation request), this is the preferred ID.
183 # If the message transfer is non-anonymous (i.e., allocation response), this is the allocated ID.
184 #
185 # If the allocatee does not have any preference, it should request the highest possible node-ID. Keep in mind that
186 # the two highest node ID values are reserved for network maintenance tools; requesting those is not prohibited,
187 # but the allocator is recommended to avoid granting these node-ID, using nearest available lower value instead.

6. List of standard data types 93/132

DRAFT

Specification v1.0 2019-11-15

188 # The allocator will traverse the allocation table starting from the preferred node-ID upward,
189 # until a free node-ID is found (or the first ID reserved for network maintenance tools is reached).
190 # If a free node-ID could not be found, the allocator will restart the search from the preferred node-ID
191 # downward, until a free node-ID is found. In pseudocode:
192 #
193 # uint16_t findFreeNodeID(const uint16_t preferred) // Returns 0xFFFF on failure
194 # {
195 # uint8_t candidate = preferred;
196 # while (candidate <= MAX_VALID_NODE_ID) // MAX_VALID_NODE_ID is transport-dependent
197 # {
198 # if (!isOccupied(candidate)) { return candidate; }
199 # candidate++;
200 # }
201 # candidate = preferred;
202 # while (candidate > 0)
203 # {
204 # if (!isOccupied(candidate)) { return candidate; }
205 # candidate--;
206 # }
207 # return isOccupied(0) ? 0xFFFF : 0;
208 # }
209 uavcan.node.ID.1.0 node_id
210
211 # The unique-ID of the allocatee. This is the SAME value that is reported via uavcan.node.GetInfo.
212 # The value is subjected to the same set of constraints; e.g., it can’t be changed while the node is running,
213 # and the same value must be unlikely to be used by any two different nodes anywhere in the world.
214 #
215 # If this is a non-anonymous transfer (i.e., allocation response), allocatees will match this value against their
216 # own unique-ID, and ignore the message if there is no match (except for the CSMA/CD clause, see rule C). If the IDs
217 # match, then the field node_id contains the allocated node-ID value for this node.
218 uint8[16] unique_id
219
220 @assert _offset_ % 8 == {0}
221 @assert _offset_.max / 8 == 18

6.6.2 NodeIDAllocationDataMTU8

Full message type name: uavcan.pnp.NodeIDAllocationDataMTU8

6.6.2.1 Version 0.1, fixed subject ID 32742

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [56, 72] [7, 9] [1, 2] 1

1 #
2 # The suffix "MTU8" indicates that this message is made to be compatible with transports where the maximum
3 # transmission unit size is only 8 bytes, such as CAN 2.0. For other kinds of transports there is a more general,
4 # more capable definition NodeIDAllocationData; it can’t be used with low-MTU transports, hence the need for this
5 # special case. The PnP protocol is described in the documentation for the general case data type definition. The
6 # documentation provided here builds upon the general case, so read that first please.
7 #
8 # The motivation for the difference between this small-MTU case and the general case is that the full 128-bit
9 # unique-ID can’t be accommodated in a small-MTU single-frame anonymous message transfer. The solution is to replace
10 # the full 128-bit ID with a smaller 55-bit hash of it, and remove support for preferred node-ID value in the
11 # allocation requests in order to save space.
12 #
13 # The 55-bit hash is obtained by applying an arbitrary hash function to the unique-ID that outputs at least 55 bit of
14 # data. For example, it could be the standard CRC-64WE function where only the lowest 55 bit of the result are used.
15 # The hash function shall produce the same hash value for the same unique-ID value, and it should be likely to
16 # produce a different hash value for any other unique-ID value.
17 #
18 # Allocators that support both the general case and the small-MTU case should maintain the same allocation table
19 # for both. Requests received via the small-MTU message obviously do not contain the full unique-ID; the allocators
20 # are recommended to extend the small 55-bit hash with zeros upwards (where "upwards" means that the most significant
21 # bits of the unique-ID will contain zeros, and the least significant 55 bits will contain the hash) in order to
22 # obtain a "pseudo unique-ID", and use this value in the allocation table as a substitute for the real unique-ID.
23 # It is recognized that this behavior will have certain side effects, such as the same allocatee obtaining different
24 # allocated node-ID values depending on which transport is used, but they are considered tolerable.
25 #
26 # Allocatees that may need to operate over low-MTU transports along with high-MTU transports may choose to use
27 # only this constrained method of allocation for consistency and simplification of the behaviors.
28 #
29 # In order to save space for the hash, the preferred node-ID is removed from the request. The allocated node-ID
30 # is provided in the response, however; this is achieved by means of an optional field that is not populated in
31 # the request but is populated in the response. This implies that the response may be a multi-frame transfer,
32 # which is acceptable since responses are sent by allocators, which are regular nodes, and therefore they are
33 # allowed to use regular message transfers rather than being limited to anonymous message transfers as allocatees are.
34 #
35 # On the allocatee’s side the protocol is defined through the following set of simple rules:
36 #
37 # Rule A. On initialization:
38 # 1. The allocatee subscribes to this message.
39 # 2. The allocatee starts the Request Timer with a random interval of Trequest.
40 #
41 # Rule B. On expiration of the Request Timer (started as per rules A, B, or C):
42 # 1. Request Timer restarts with a random interval of Trequest (chosen anew).
43 # 2. The allocatee broadcasts an allocation request message, where the fields are populated as follows:
44 # unique_id_hash - a 55-bit hash of the unique-ID of the allocatee.
45 # allocated_node_id - empty (not populated).
46 #
47 # Rule C. On any allocation message, even if other rules also match:
48 # 1. Request Timer restarts with a random interval of Trequest (chosen anew) (this is related to CSMA/CD).
49 #
50 # Rule D. On an allocation message WHERE (source node-ID is non-anonymous, i.e., regular allocation response)
51 # AND (the field unique_id_hash matches the allocatee’s 55-bit unique-ID hash)
52 # AND (the field allocated_node_id is populated):
53 # 1. Request Timer stops.

94/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

54 # 2. The allocatee initializes its node-ID with the received value.
55 # 3. The allocatee terminates its subscription to allocation messages.
56 # 4. Exit.
57 #
58
59 # An arbitrary 55-bit hash of the unique-ID of the local node.
60 truncated uint55 unique_id_hash
61
62 # Must be empty in request messages.
63 # Must be populated in response messages.
64 uavcan.node.ID.1.0[<=1] allocated_node_id
65
66 @assert _offset_.min == 56 # Plus the tail byte yields 8 bytes; this is for requests only
67 @assert _offset_.max == 72 # Responses are non-anonymous, so they can be multi-frame

6.7 uavcan.pnp.cluster

6.7.1 AppendEntries

Full service type name: uavcan.pnp.cluster.AppendEntries

6.7.1.1 Version 1.0, fixed service ID 390

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [104, 280] [13, 35] [3, 6] 1
Response length 33 5 1 1

1 #
2 # This type is a part of the Raft consensus algorithm. The Raft consensus is used for the maintenance of the
3 # distributed allocation table between redundant allocators. The following description is focused on the exchanges
4 # between redundant PnP node-ID allocators. It does not apply to the case of non-redundant allocators, because
5 # in that case the allocation table is stored locally and the process of node-ID allocation is trivial and fully local.
6 # Exchanges between allocatees and allocators are documented in the appropriate message type definition.
7 #
8 # The algorithm used for replication of the allocation table across redundant allocators is a fairly direct
9 # implementation of the Raft consensus algorithm, as published in the paper
10 # "In Search of an Understandable Consensus Algorithm (Extended Version)" by Diego Ongaro and John Ousterhout.
11 # The following text assumes that the reader is familiar with the paper.
12 #
13 # The Raft log contains entries of type Entry (in the same namespace), where every entry contains the Raft term
14 # number, the unique-ID, and the corresponding node-ID value (or zeros if it could not be requested from a static
15 # node). Therefore, the Raft log is the allocation table itself.
16 #
17 # Since the maximum number of entries in the allocation table is limited by the range of node-ID values, the log
18 # capacity is bounded. Therefore, the snapshot transfer and log compaction functions are not required,
19 # so they are not used in this implementation of the Raft algorithm.
20 #
21 # When an allocator becomes the leader of the Raft cluster, it checks if the Raft log contains an entry for its own
22 # node-ID, and if it doesn’t, the leader adds its own allocation entry to the log (the unique-ID can be replaced with
23 # zeros at the discretion of the implementer). This behavior guarantees that the Raft log always contains at least
24 # one entry, therefore it is not necessary to support negative log indices, as proposed by the Raft paper.
25 #
26 # Since the log is write-only and limited in growth, all allocations are permanent. This restriction is acceptable,
27 # since UAVCAN is a vehicle bus, and configuration of vehicle’s components is not expected to change frequently.
28 # Old allocations can be removed in order to free node-IDs for new allocations by clearing the Raft log on all
29 # allocators; such clearing must be performed simultaneously while the network is down, otherwise the Raft cluster
30 # will automatically attempt to restore the lost state on the allocators where the table was cleared.
31 #
32 # The allocators need to be aware of each other’s node-ID in order to form a cluster. In order to learn each other’s
33 # node-ID values, the allocators broadcast messages of type Discovery (in the same namespace) until the cluster is
34 # fully discovered and all allocators know of each other’s node-ID. This extension to the Raft algorithm makes the
35 # cluster almost configuration-free - the only parameter that must be configured on all allocators of the cluster
36 # is the number of nodes in the cluster (everything else will be auto-detected).
37 #
38 # Runtime cluster membership changes are not supported, since they are not needed for a vehicle bus.
39 #
40 # As has been explained in the general description of the PnP node-ID allocation feature, allocators must watch for
41 # unknown static nodes appearing on the bus. In the case of a non-redundant allocator, the task is trivial, since the
42 # allocation table can be updated locally. In the case of a Raft cluster, however, the network monitoring task must
43 # be performed by the leader only, since other cluster members cannot commit to the shared allocation table (i.e.,
44 # the Raft log) anyway. Redundant allocators should not attempt to obtain the true unique-ID of the newly detected
45 # static nodes (use zeros instead), because the allocation table is write-only: if the unique-ID of a static node
46 # ever changes (e.g., a replacement unit is installed, or network configuration is changed manually), the change
47 # will be impossible to reflect in the allocation table.
48 #
49 # Only the current Raft leader can process allocation requests and engage in communication with allocatees.
50 # An allocator is allowed to send allocation responses only if both conditions are met:
51 #
52 # - The allocator is currently the Raft leader.
53 # - Its replica of the Raft log does not contain uncommitted entries (i.e. the last allocation request has been
54 # completed successfully).
55 #
56 # All cluster maintenance traffic should normally use either the lowest or the next-to-lowest transfer priority level.
57 #
58
59 # Given the minimum election timeout and the cluster size,
60 # the maximum recommended request interval can be derived as follows:
61 #
62 # max recommended request interval = (min election timeout) / 2 requests / (cluster size - 1)
63 #
64 # The equation assumes that the Leader requests one Follower at a time, so that there’s at most one pending call
65 # at any moment. Such behavior is optimal as it creates a uniform bus load, although it is implementation-specific.
66 # Obviously, the request interval can be lower than that if needed, but higher values are not recommended as they may
67 # cause Followers to initiate premature elections in case of frame losses or delays.
68 #

6. List of standard data types 95/132

DRAFT

Specification v1.0 2019-11-15

69 # The timeout value is randomized in the range (MIN, MAX], according to the Raft paper. The randomization granularity
70 # should be at least one millisecond or higher.
71 uint8 DEFAULT_MIN_ELECTION_TIMEOUT = 2 # [second]
72 uint8 DEFAULT_MAX_ELECTION_TIMEOUT = 4 # [second]
73
74 # Refer to the Raft paper for explanation.
75 uint32 term
76 uint32 prev_log_term
77 uint16 prev_log_index
78 uint16 leader_commit
79
80 # Worst case replication time per Follower can be computed as:
81 #
82 # worst replication time = (node-ID capacity) * (2 trips of next_index) * (request interval per Follower)
83 #
84 # E.g., given the request interval of 0.5 seconds, the worst case replication time for CAN bus is:
85 #
86 # 128 nodes * 2 trips * 0.5 seconds = 128 seconds.
87 #
88 # This is the amount of time it will take for a new Follower to reconstruct a full replica of the distributed log.
89 void7
90 Entry.1.0[<=1] entries
91
92 @assert _offset_ % 8 == {0}
93
94 ---
95
96 # Refer to the Raft paper for explanation.
97 uint32 term
98 bool success

6.7.2 Discovery

Full message type name: uavcan.pnp.cluster.Discovery

6.7.2.1 Version 1.0, fixed subject ID 32740

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 88] [1, 11] [1, 2] 1

1 #
2 # This message is used by redundant allocators to find each other’s node-ID.
3 # Please refer to the type AppendEntries for details.
4 #
5 # An allocator should stop publishing this message as soon as it has discovered all other allocators in the cluster.
6 #
7 # An exception applies: when an allocator receives a Discovery message where the list of known nodes is incomplete
8 # (i.e. len(known_nodes) < configured_cluster_size), it must publish a Discovery message once. This condition
9 # allows other allocators to quickly re-discover the cluster after a restart.
10 #
11
12 # This message should be broadcasted by the allocator at this interval until all other allocators are discovered.
13 uint8 BROADCASTING_PERIOD = 1 # [second]
14
15 # The redundant allocator cluster cannot contain more than 5 allocators.
16 uint3 MAX_CLUSTER_SIZE = 5
17
18 # The number of allocators in the cluster as configured on the sender.
19 # This value must be the same across all allocators.
20 uint3 configured_cluster_size
21
22 # Node-IDs of the allocators that are known to the publishing allocator, including the publishing allocator itself.
23 void2
24 uavcan.node.ID.1.0[<=5] known_nodes
25
26 @assert _offset_ % 8 == {0}

6.7.3 RequestVote

Full service type name: uavcan.pnp.cluster.RequestVote

6.7.3.1 Version 1.0, fixed service ID 391

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length 80 10 2 1
Response length 33 5 1 1

1 #
2 # This type is a part of the Raft consensus algorithm. Please refer to the type AppendEntries for details.
3 #
4
5 # Refer to the Raft paper for explanation.
6 uint32 term
7 uint32 last_log_term
8 uint16 last_log_index
9
10 ---
11
12 # Refer to the Raft paper for explanation.
13 uint32 term
14 bool vote_granted

96/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.7.4 Entry

Full message type name: uavcan.pnp.cluster.Entry

6.7.4.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 176 22 4 1

1 #
2 # One PnP node-ID allocation entry.
3 # This type is a part of the Raft consensus algorithm. Please refer to the type AppendEntries for details.
4 #
5
6 uint32 term # Refer to the Raft paper for explanation.
7
8 uint8[16] unique_id # Unique-ID of this allocation; zero if unknown.
9
10 uavcan.node.ID.1.0 node_id # Node-ID of this allocation.
11
12 @assert _offset_ % 8 == {0}

6. List of standard data types 97/132

DRAFT

Specification v1.0 2019-11-15

6.8 uavcan.register

6.8.1 Access

Full service type name: uavcan.register.Access

6.8.1.1 Version 1.0, fixed service ID 384

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length [16, 2480] [2, 310] [1, 45] [1, 5]
Response length [64, 2128] [8, 266] [2, 39] [1, 5]

1 #
2 # This service is used to write and read a register. Write is optional, it is performed if the value provided in
3 # the request is not empty.
4 #
5 # The write operation is performed first, unless skipped by sending an empty value in the request.
6 # The server may attempt to convert the type of the value to the proper type if there is a type mismatch
7 # (e.g. uint8 may be converted to uint16); however, servers are not required to perform implicit type conversion,
8 # and the rules of such conversion are not explicitly specified, so this behavior should not be relied upon.
9 #
10 # On the next step the register will be read regardless of the outcome of the write operation. As such, if the write
11 # operation could not be performed (e.g. due to a type mismatch or any other issue), the register will retain its old
12 # value. By evaluating the response the caller can determine whether the register was written successfully.
13 #
14 # The write-read sequence is not guaranteed to be atomic, meaning that external influences may cause the register to
15 # change its value between the write and the subsequent read operation. The caller is responsible for handling that
16 # case properly.
17 #
18 # The timestamp provided in the response corresponds to the time when the register was read. The timestamp may
19 # be empty if the server does not support timestamping or its clock is not yet synchronized with the bus.
20 #
21 # If only read is desired, but not write, the caller must provide a value of type Empty. That will signal the server
22 # that the write operation must be skipped, and it will proceed to read the register immediately.
23 #
24 # If the requested register does not exist, the write operation will have no effect and the returned value will be
25 # empty. Existing registers should not return Empty when read since that would make them indistinguishable from
26 # nonexistent registers.
27 #
28 # Registers must never change their type or flags as long as the server is running. Meaning that:
29 # - Mutability and persistence flags cannot change their states.
30 # - Read operations must always return values of the same type and same dimensionality.
31 # The dimensionality requirement does not apply to inherently variable-length values such as strings and
32 # unstructured chunks.
33 #
34 # In order to discover the type of a register, the caller needs to invoke this service with the write request set
35 # to Empty. The response will contain the current value of the register with the type information (which doesn’t
36 # change).
37 #
38 # Register name may contain:
39 # - All ASCII alphanumeric characters (a-z, A-Z, 0-9)
40 # - Dot (.)
41 # - Underscore (_)
42 # - Minus (-)
43 # All other printable non-whitespace ASCII characters are reserved for standard functions;
44 # they may appear in register names to support such standard functions defined by the register protocol,
45 # but they cannot be freely used by applications outside of such standard functions.
46 #
47 # The following optional special function register names are defined:
48 # - suffix ’<’ is used to define an immutable persistent value that contains the maximum value
49 # of the respective register.
50 # - suffix ’>’ is like above, used to define the minimum value of the respective register.
51 # - suffix ’=’ is like above, used to define the default value of the respective register.
52 # - prefix ’*’ is reserved for raw memory access (to be defined later).
53 # Examples:
54 # - register name "system.parameter"
55 # - maximum value is contained in the register named "system.parameter<" (optional)
56 # - minimum value is contained in the register named "system.parameter>" (optional)
57 # - default value is contained in the register named "system.parameter=" (optional)
58 #
59 # The type and dimensionality of the special function registers containing the minimum, maximum, and the default
60 # value of a register shall be the same as those of the register.
61 #
62 # If a written value exceeds the minimum/maximum specified by the respective special function registers,
63 # the server may either adjust the value automatically, or to retain the old value, depending on which behavior
64 # suits the objectives of the application better.
65 # The values of registers containing non-scalar numerical entities should be compared elementwise.
66 #
67 # The following table specifies the register name patterns that are reserved by the specification for
68 # common functions. Implementers should always follow these conventions whenever applicable.
69 # The table uses the following abbreviations for register flags:
70 # - M - mutable, I - immutable
71 # - P - persistent, V - volatile
72 #
73 # Name pattern | Flags | Type | Purpose
74 # ----------------------+-------+-----------+--
75 # uavcan.node_id | MP | uint16 | Contains the node ID of the local node. Values above the maximum valid
76 # | | | node ID for the current transport indicate that the node ID is not set;
77 # | | | if plug-and-play is supported, it will be used by the node to obtain an
78 # | | | automatic node ID. Invalid values other than 65535 should be avoided for
79 # | | | consistency. The factory-default value should be 65535.
80 # ----------------------+-------+-----------+--
81 #
82 #
83
84 # The name of the accessed register. Must not be empty.
85 # Use the List service to obtain the list of registers on the node.

98/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

86 Name.1.0 name
87
88 @assert _offset_ % 8 == {0}
89
90 # Value to be written. Empty if no write is required.
91 void4
92 Value.1.0 value
93
94 @assert _offset_.min % 8 == 0
95 @assert _offset_.max % 8 == 0
96
97 ---
98
99 # The moment of time when the register was read (not written).
100 # Zero if the server does not support timestamping.
101 uavcan.time.SynchronizedTimestamp.1.0 timestamp
102
103 # Mutable means that the register can be written using this service.
104 # Immutable registers cannot be written, but that doesn’t imply that their values are constant (unchanging).
105 bool mutable
106
107 # Persistence means that the register retains its value permanently across power cycles or any other changes
108 # in the state of the server, until it is explicitly overwritten (either via UAVCAN, any other interface,
109 # or by the device itself).
110 #
111 # The server is recommended to manage persistence automatically by committing changed register values to a
112 # non-volatile storage automatically as necessary. If automatic persistence management is not implemented, it
113 # can be controlled manually via the standard service uavcan.node.ExecuteCommand. The same service can be used
114 # to return the configuration to a factory-default state. Please refer to its definition for more information.
115 #
116 # Consider the following examples:
117 # - Configuration parameters are usually both mutable and persistent.
118 # - Diagnostic values are usually immutable and non-persisient.
119 # - Registers that trigger an activity when written are typically mutable but non-persisient.
120 # - Registers that contain factory-programmed values such as calibration coefficients that can’t
121 # be changed are typically immutable but persistent.
122 bool persistent
123
124 void2
125
126 # The value of the register when it was read (beware of race conditions).
127 # Registers never change their type and dimensionality while the node is running.
128 # Empty value means that the register does not exist (in this case the flags should be cleared/ignored).
129 # By comparing the returned value against the write request the caller can determine whether the register
130 # was written successfully, unless write was not requested.
131 # An empty value shall never be returned for an existing register.
132 Value.1.0 value
133
134 @assert _offset_.min % 8 == 0
135 @assert _offset_.max % 8 == 0

6.8.2 List

Full service type name: uavcan.register.List

6.8.2.1 Version 1.0, fixed service ID 385

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length 16 2 1 1
Response length [8, 408] [1, 51] [1, 8] 1

1 #
2 # This service allows the caller to discover the names of all registers available on the server
3 # by iterating the index field from zero until an empty name is returned.
4 #
5 # The ordering of the registers shall remain constant while the server is running.
6 # The ordering is not guaranteed to remain unchanged when the server node is restarted.
7 #
8
9 uint16 index
10
11 ---
12
13 # Empty name in response means that the index is out of bounds, i.e., discovery is finished.
14 Name.1.0 name
15
16 @assert _offset_ % 8 == {0}

6.8.3 Name

Full message type name: uavcan.register.Name

6.8.3.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 408] [1, 51] [1, 8] 1

1 #
2 # An ASCII register name.
3 #
4
5 void2

6. List of standard data types 99/132

DRAFT

Specification v1.0 2019-11-15

6 uint8[<=50] name
7
8 @assert _offset_ % 8 == {0}

6.8.4 Value

Full message type name: uavcan.register.Value

6.8.4.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [4, 2068] [1, 259] [1, 38] [1, 5]

1 #
2 # This union contains all possible value types supported by the register protocol.
3 # Numeric types can be either scalars or arrays; the former is a special case of the latter.
4 #
5 # In order to ensure a byte alignment of the nested arrays, the outer type must pad this union with 4 bits.
6 #
7
8 @union # The tag is 4 bits wide.
9
10 uavcan.primitive.Empty.1.0 empty # Tag 0 Used to represent an undefined value
11 uavcan.primitive.String.1.0 string # Tag 1 UTF-8 encoded text
12 uavcan.primitive.Unstructured.1.0 unstructured # Tag 2 Raw unstructured binary image
13 uavcan.primitive.array.Bit.1.0 bit # Tag 3 Bit array
14
15 uavcan.primitive.array.Integer64.1.0 integer64 # Tag 4
16 uavcan.primitive.array.Integer32.1.0 integer32 # Tag 5
17 uavcan.primitive.array.Integer16.1.0 integer16 # Tag 6
18 uavcan.primitive.array.Integer8.1.0 integer8 # Tag 7
19
20 uavcan.primitive.array.Natural64.1.0 natural64 # Tag 8
21 uavcan.primitive.array.Natural32.1.0 natural32 # Tag 9
22 uavcan.primitive.array.Natural16.1.0 natural16 # Tag 10
23 uavcan.primitive.array.Natural8.1.0 natural8 # Tag 11
24
25 uavcan.primitive.array.Real64.1.0 real64 # Tag 12 Exactly representable integers: [-2**53, +2**53]
26 uavcan.primitive.array.Real32.1.0 real32 # Tag 13 Exactly representable integers: [-16777216, +16777216]
27 uavcan.primitive.array.Real16.1.0 real16 # Tag 14 Exactly representable integers: [-2048, +2048]
28
29 # Tag 15 is reserved
30
31 @assert _offset_.min == 4 # Empty and the tag
32 @assert _offset_.max == 258 * 8 + 4 # 258 bytes per field max and the tag

100/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.9 uavcan.time

6.9.1 GetSynchronizationMasterInfo

Full service type name: uavcan.time.GetSynchronizationMasterInfo

6.9.1.1 Version 0.1, fixed service ID 510

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Request length 0 0 1 1
Response length 56 7 1 1

1 #
2 # Every node that acts as a time synchronization master, or is capable of acting as such,
3 # should support this service.
4 # Its objective is to provide information about which time system is currently used in the network.
5 #
6 # Once a time system is chosen, it cannot be changed as long as at least one node on the network is running.
7 # In other words, the time system cannot be changed while the network is operating.
8 # An implication of this is that if there are redundant time synchronization masters, they all must
9 # use the same time system always.
10 #
11
12 ---
13
14 # Error variance, in second^2, of the time value reported by this master.
15 # This value is allowed to change freely while the master is running.
16 # For example, if the master’s own clock is synchronized with a GNSS, the error variance is expected to increase
17 # as signal reception deteriorates. If the signal is lost, this value is expected to grow steadily, the rate of
18 # growth would be dependent on the quality of the time keeping hardware available locally (bad hardware yields
19 # faster growth). Once the signal is regained, this value would drop back to nominal.
20 float32 error_variance # [second^2]
21
22 # Time system currently in use by the master.
23 # Cannot be changed while the network is operating.
24 TimeSystem.0.1 time_system
25
26 # The fixed difference, in seconds, between TAI and GPS time. Does not change ever.
27 uint12 TIME_DIFFERENCE_TAI_MINUS_GPS = 19 # [second]
28
29 # The current difference between TAI and UTC (a.k.a. leap seconds), if known.
30 # If unknown, set to zero. This value can change states between known and unknown while the master is running,
31 # depending on its ability to obtain robust values from external sources.
32 # This value can change twice a year, possibly while the system is running; https://en.wikipedia.org/wiki/Leap_second
33 # Since Earth is decelerating, this value can be only positive. Do not use outside Earth.
34 uint12 TIME_DIFFERENCE_TAI_MINUS_UTC_UNKNOWN = 0
35 uint12 time_difference_tai_minus_utc
36
37 # Reserved for future use
38 void8
39
40 @assert _offset_ % 8 == {0}
41 @assert _offset_.max <= 56 # It is nice to have the response fit into one transport frame, although not required.

6.9.2 Synchronization

Full message type name: uavcan.time.Synchronization

6.9.2.1 Version 1.0, fixed subject ID 31744

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 56 7 1 1

1 #
2 # Network-wide time synchronization message.
3 # Any node that publishes timestamped data should use this time reference.
4 #
5 # The time synchronization algorithm is based on the work
6 # "Implementing a Distributed High-Resolution Real-Time Clock using the CAN-Bus" by M. Gergeleit and H. Streich.
7 # The general idea of the algorithm is to have one or more nodes that periodically publish a message of this type
8 # containing the exact timestamp of the PREVIOUS transmission of this message.
9 # A node that publishes this message periodically is referred to as a "time synchronization master",
10 # whereas nodes that synchronize their clocks with the master are referred to as "time synchronization slaves".
11 #
12 # Once a time base is chosen, it cannot be changed as long as at least one node on the network is running.
13 # In other words, the time base cannot be changed while the network is operating.
14 # An implication of this is that if there are redundant time synchronization masters, they all must
15 # use the same time base.
16 #
17 # The resolution is dependent on the transport and its physical layer, but generally it can be assumed
18 # to be close to one bit time but not better than one microsecond (e.g., for a 500 kbps CAN bus,
19 # the resolution is two microseconds). The maximum accuracy is achievable only if the transport layer
20 # supports precise timestamping in hardware; otherwise, the accuracy may be degraded.
21 #
22 # This algorithm allows the slaves to precisely estimate the difference (i.e., phase error) between their
23 # local time and the master clock they are synchronized with. The algorithm for clock rate adjustment
24 # is entirely implementation-defined (for example, a simple phase-locked loop or a PID rate controller can be used).
25 #
26 # The network can accommodate more than one time synchronization master for purposes of increased reliability:
27 # if one master fails, the others will continue to provide the network with accurate and consistent time information.
28 # The risk of undesirable transients while the masters are swapped is mitigated by the requirement that all masters
29 # use the same time base at all times, as described above.

6. List of standard data types 101/132

DRAFT

Specification v1.0 2019-11-15

30 #
31 # The master with the lowest node ID is called the "dominant master". The current dominant master ceases to be one
32 # if its last synchronization message was published more than 3X seconds ago, where X is the time interval
33 # between the last and the previous messages published by it. In this case, the master with the next-higher node ID
34 # will take over as the new dominant master. The current dominant master will be displaced immediately as soon as
35 # the first message from a new master with a lower node ID is seen on the bus.
36 #
37 # In the presence of multiple masters, they all publish their time synchronization messages concurrently at all times.
38 # The slaves must listen to the master with the lowest node ID and ignore the messages published by masters with
39 # higher node ID values.
40 #
41 # Currently, there is a work underway to develop and validate a highly robust fault-operational time synchronization
42 # algorithm where the slaves select the median time base among all available masters rather than using only the
43 # one with the lowest node ID value. Follow the work at https://forum.uavcan.org. When complete, this algorithm
44 # will be added in a backward-compatible way as an option for high-reliability systems.
45 #
46 # For networks with redundant transports, the timestamp value published on different interfaces is likely to be
47 # different, since different transports are generally not expected to be synchronized. Synchronization slaves
48 # are allowed to use any of the available redundant interfaces for synchronization at their discretion.
49 #
50 # The following pseudocode shows the logic of a time synchronization master. This example assumes that the master
51 # does not need to synchronize its own clock with other masters on the bus, which is the case if the current master
52 # is the only master, or if all masters synchronize their clocks with a robust external source, e.g., a GNSS system.
53 # If several masters need to synchronize their clock through the bus, their logic will be extended with the
54 # slave-side behavior explained later.
55 #
56 # // State variables
57 # transfer_id := 0;
58 # previous_tx_timestamp_per_iface[NUM_IFACES] := {0};
59 #
60 # // This function publishes a message with a specified Transfer ID using only one transport interface.
61 # function publishMessage(transfer_id, iface_index, msg);
62 #
63 # // This callback is invoked when the transport layer completes the transmission of a time sync message.
64 # // Observe that the time sync message is always a single-frame message by virtue of its small size.
65 # // The tx_timestamp argument contains the exact timestamp when the transport frame was delivered to the bus.
66 # function messageTxTimestampCallback(iface_index, tx_timestamp)
67 # {
68 # previous_tx_timestamp_per_iface[iface_index] := tx_timestamp;
69 # }
70 #
71 # // Publishes messages of type uavcan.time.Synchronization to each available transport interface.
72 # // It is assumed that this function is invoked with a fixed frequency not lower than 1 hertz.
73 # function publishTimeSync()
74 # {
75 # for (i := 0; i < NUM_IFACES; i++)
76 # {
77 # message := uavcan.time.Synchronization();
78 # message.previous_transmission_timestamp_usec := previous_tx_timestamp_per_iface[i];
79 # previous_tx_timestamp_per_iface[i] := 0;
80 # publishMessage(transfer_id, i, message);
81 # }
82 # transfer_id++; // Overflow must be handled correctly
83 # }
84 #
85 # (end of the master-side logic pseudocode)
86 # The following pseudocode describes the logic of a time synchronization slave.
87 #
88 # // State variables:
89 # previous_rx_real_timestamp := 0; // This clock is being synchronized
90 # previous_rx_monotonic_timestamp := 0; // Monotonic time -- doesn’t leap or change rate
91 # previous_transfer_id := 0;
92 # state := STATE_UPDATE; // Variants: STATE_UPDATE, STATE_ADJUST
93 # master_node_id := -1; // Invalid value
94 # iface_index := -1; // Invalid value
95 #
96 # // This function adjusts the local clock by the specified amount
97 # function adjustLocalTime(phase_error);
98 #
99 # function adjust(message)
100 # {
101 # // Clock adjustment will be performed every second message
102 # local_time_phase_error := previous_rx_real_timestamp - msg.previous_transmission_timestamp_microsecond;
103 # adjustLocalTime(local_time_phase_error);
104 # state := STATE_UPDATE;
105 # }
106 #
107 # function update(message)
108 # {
109 # // A message is assumed to have two timestamps:
110 # // Real - sampled from the clock that is being synchronized
111 # // Monotonic - clock that never leaps and never changes rate
112 # previous_rx_real_timestamp := message.rx_real_timestamp;
113 # previous_rx_monotonic_timestamp := message.rx_monotonic_timestamp;
114 # master_node_id := message.source_node_id;
115 # iface_index := message.iface_index;
116 # previous_transfer_id := message.transfer_id;
117 # state := STATE_ADJUST;
118 # }
119 #
120 # // Accepts the message of type uavcan.time.Synchronization
121 # function handleReceivedTimeSyncMessage(message)
122 # {
123 # time_since_previous_msg := message.monotonic_timestamp - previous_rx_monotonic_timestamp;
124 #
125 # needs_init := (master_node_id < 0) or (iface_index < 0);
126 # switch_master := message.source_node_id < master_node_id;
127 #
128 # // The value publisher_timeout is computed as described in the specification (3x interval)
129 # publisher_timed_out := time_since_previous_msg > publisher_timeout;
130 #

102/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

131 # if (needs_init or switch_master or publisher_timed_out)
132 # {
133 # update(message);
134 # }
135 # else if ((message.iface_index == iface_index) and (message.source_node_id == master_node_id))
136 # {
137 # // Revert the state to STATE_UPDATE if needed
138 # if (state == STATE_ADJUST)
139 # {
140 # msg_invalid := message.previous_transmission_timestamp_microsecond == 0;
141 # // Overflow must be handled correctly
142 # wrong_tid := message.transfer_id != (previous_transfer_id + 1);
143 # wrong_timing := time_since_previous_msg > MAX_PUBLICATION_PERIOD;
144 # if (msg_invalid or wrong_tid or wrong_timing)
145 # {
146 # state := STATE_UPDATE;
147 # }
148 # }
149 # // Handle the current state
150 # if (state == STATE_ADJUST)
151 # {
152 # adjust(message);
153 # }
154 # else
155 # {
156 # update(message);
157 # }
158 # } // else ignore
159 # }
160 #
161 # (end of the slave-side logic pseudocode)
162 #
163
164 # Publication period limits.
165 # A master should not change its publication period while running.
166 uint8 MAX_PUBLICATION_PERIOD = 1 # [second]
167
168 # Synchronization slaves should normally switch to a new master if the current master was silent
169 # for thrice the interval between the reception of the last two messages published by it.
170 # For example, imagine that the last message was received at the time X, and the previous message
171 # was received at the time (X - 0.5 seconds); the period is 0.5 seconds, and therefore the
172 # publisher timeout is (0.5 seconds * 3) = 1.5 seconds. If there was no message from the current
173 # master in this amount of time, all slaves will synchronize with another master with the next-higher
174 # node ID.
175 uint8 PUBLISHER_TIMEOUT_PERIOD_MULTIPLIER = 3
176
177 # The time when the PREVIOUS message was transmitted from the current publisher, in microseconds.
178 # If this message is published for the first time, or if the previous transmission was more than
179 # one second ago, this field must be zero.
180 truncated uint56 previous_transmission_timestamp_microsecond
181
182 @assert _offset_ % 8 == {0}
183 @assert _offset_.max <= 56 # Must fit into one CAN 2.0 frame (least capable transport, smallest MTU)

6.9.3 SynchronizedTimestamp

Full message type name: uavcan.time.SynchronizedTimestamp

6.9.3.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 56 7 1 1

1 #
2 # Nested data type used for representing a network-wide synchronized timestamp with microsecond resolution.
3 # This data type is highly recommended for use both in standard and vendor-specific messages alike.
4 #
5
6 # Zero means that the time is not known.
7 uint56 UNKNOWN = 0
8
9 # The number of microseconds that have passed since some arbitrary moment in the past.
10 # The moment of origin (i.e., the time base) is defined per-application. The current time base in use
11 # can be requested from the time synchronization master, see the corresponding service definition.
12 #
13 # This value is to never overflow. The value is 56-bit wide because:
14 #
15 # - 2^56 microseconds is about 2285 years, which is plenty. A 64-bit microsecond counter would be
16 # unnecessarily wide and its overflow interval of 585 thousand years induces a mild existential crisis.
17 #
18 # - CAN 2.0-based transports carry up to 7 bytes per frame. Time sync messages must use single-frame
19 # transfers, which means that the value can’t be wider than 56 bits.
20 truncated uint56 microsecond

6.9.4 TimeSystem

Full message type name: uavcan.time.TimeSystem

6.9.4.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 4 1 1 1

6. List of standard data types 103/132

DRAFT

Specification v1.0 2019-11-15

1 #
2 # Time system enumeration.
3 # The time system must be the same for all masters in the network.
4 # It cannot be changed while the network is running.
5 #
6
7 # Monotonic time since boot.
8 # Monotonic time is a time reference that doesn’t change rate or make leaps.
9 uint4 MONOTONIC_SINCE_BOOT = 0
10
11 # International Atomic Time; https://en.wikipedia.org/wiki/International_Atomic_Time.
12 # The timestamp value contains the number of microseconds elapsed since 1970-01-01T00:00:00Z TAI.
13 # TAI is always a fixed integer number of seconds ahead of GPS time.
14 # Systems that use GPS time as a reference should convert that to TAI by adding the fixed difference.
15 # UAVCAN does not support GPS time directly on purpose, for reasons of consistency.
16 uint4 TAI = 1
17
18 # Application-specific time system of unknown properties.
19 uint4 APPLICATION_SPECIFIC = 15
20
21 truncated uint4 value

6.10 uavcan.metatransport.can

6.10.1 ArbitrationID

Full message type name: uavcan.metatransport.can.ArbitrationID

6.10.1.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 30 4 1 1

1 #
2 # CAN frame arbitration field.
3 #
4
5 @union
6
7 BaseArbitrationID.0.1 base
8 ExtendedArbitrationID.0.1 extended
9
10 @assert _offset_ == {30}

6.10.2 BaseArbitrationID

Full message type name: uavcan.metatransport.can.BaseArbitrationID

6.10.2.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 29 4 1 1

1 #
2 # 11-bit identifier.
3 #
4
5 truncated uint11 value
6 void18

6.10.3 DataClassic

Full message type name: uavcan.metatransport.can.DataClassic

6.10.3.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [38, 102] [5, 13] [1, 3] 1

1 #
2 # Classic data frame payload.
3 #
4
5 ArbitrationID.0.1 arbitration_id
6 void4
7 uint8[<=8] data

6.10.4 DataFD

Full message type name: uavcan.metatransport.can.DataFD

6.10.4.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [38, 550] [5, 69] [1, 11] [1, 2]

104/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

1 #
2 # CAN FD data frame payload.
3 #
4
5 ArbitrationID.0.1 arbitration_id
6 void1
7 uint8[<=64] data

6.10.5 Error

Full message type name: uavcan.metatransport.can.Error

6.10.5.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 30 4 1 1

1 #
2 # CAN bus error report: either an intentionally generated error frame or a disturbance.
3 #
4
5 void30

6.10.6 ExtendedArbitrationID

Full message type name: uavcan.metatransport.can.ExtendedArbitrationID

6.10.6.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 29 4 1 1

1 #
2 # 29-bit identifier.
3 #
4
5 truncated uint29 value

6.10.7 Frame

Full message type name: uavcan.metatransport.can.Frame

6.10.7.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [88, 608] [11, 76] [2, 12] [1, 2]

1 #
2 # CAN 2.0 or CAN FD frame representation. This is the top-level data type in its namespace.
3 #
4
5 uavcan.time.SynchronizedTimestamp.1.0 timestamp
6
7 Manifestation.0.1 manifestation
8
9 @assert _offset_ % 8 == {0}
10 @assert _offset_.min == (7 + 4) * 8
11 @assert _offset_.max == (7 + 4 + 1 + 64) * 8

6.10.8 Manifestation

Full message type name: uavcan.metatransport.can.Manifestation

6.10.8.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [32, 552] [4, 69] [1, 11] [1, 2]

1 #
2 # CAN frame properties that can be manifested on the bus.
3 #
4
5 @union
6
7 Error.0.1 error # CAN error (intentional or disturbance)
8 DataFD.0.1 data_fd # Bit rate switch flag active
9 DataClassic.0.1 data_classic # Bit rate switch flag not active
10 RTR.0.1 remote_transmission_request # Bit rate switch flag not active
11
12 @assert _offset_.min == 32
13 @assert _offset_.max == 32 + 8 + 64 * 8
14 @assert _offset_ % 8 == {0}

6. List of standard data types 105/132

DRAFT

Specification v1.0 2019-11-15

6.10.9 RTR

Full message type name: uavcan.metatransport.can.RTR

6.10.9.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 30 4 1 1

1 #
2 # Classic remote transmission request (not defined for CAN FD).
3 #
4
5 ArbitrationID.0.1 arbitration_id

6.11 uavcan.metatransport.serial

6.11.1 Fragment

Full message type name: uavcan.metatransport.serial.Fragment

6.11.1.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [72, 2120] [9, 265] [2, 39] [1, 5]

1 #
2 # A chunk of raw bytes exchanged over a serial transport. Serial links do not support framing natively.
3 # The chunk may be of arbitrary size.
4 #
5
6 uavcan.time.SynchronizedTimestamp.1.0 timestamp
7
8 uint9 CAPACITY_BYTES = 256
9 void7
10 uint8[<=CAPACITY_BYTES] data
11
12 @assert _offset_ % 8 == {0}
13 @assert _offset_.max / 8 <= 313

6.12 uavcan.metatransport.udp

6.12.1 Endpoint

Full message type name: uavcan.metatransport.udp.Endpoint

6.12.1.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 256 32 5 1

1 #
2 # A UDP/IP endpoint address specification.
3 #
4
5 # The IP address of the host in the network byte order (big endian).
6 # IPv6 addresses are represented as-is.
7 # IPv4 addresses are represented using IPv4-mapped IPv6 addresses.
8 uint8[16] ip_address
9
10 # MAC address of the host in the network byte order (big endian).
11 uint8[6] mac_address
12
13 # The UDP port number.
14 uint16 port
15
16 void64
17
18 @assert _offset_ == {32} * 8

6.12.2 Frame

Full message type name: uavcan.metatransport.udp.Frame

6.12.2.1 Version 0.1

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [592, 74096] [74, 9262] [11, 1324] [2, 148]

1 #
2 # A generic UDP/IP frame.
3 # Jumboframes are supported in the interest of greater application compatibility.

106/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

4 #
5 # pragma: no-bit-length-limit
6 #
7
8 uavcan.time.SynchronizedTimestamp.1.0 timestamp
9
10 void8
11 @assert _offset_ % 64 == {0}
12
13 Endpoint.0.1 source
14 Endpoint.0.1 destination
15
16 @assert _offset_ % 64 == {0}
17
18 # Max jumbo frame 9 KiB, IP header min 20 B, UDP header 8 B.
19 uint14 MTU = 1024 * 9 - 20 - 8
20 void2
21 uint8[<=MTU] data
22
23 @assert _offset_ % 8 == {0}

6. List of standard data types 107/132

DRAFT

Specification v1.0 2019-11-15

6.13 uavcan.primitive

6.13.1 Empty

Full message type name: uavcan.primitive.Empty

6.13.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 0 0 1 1

1

6.13.2 String

Full message type name: uavcan.primitive.String

6.13.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [16, 2064] [2, 258] [1, 38] [1, 5]

1 #
2 # A UTF8-encoded string of text.
3 # Since the string is represented as a dynamic array of bytes, it is not null-terminated. Like Pascal string.
4 #
5
6 void7
7 uint8[<=256] value
8
9 @assert _offset_ % 8 == {0}
10 @assert _offset_.max / 8 == 258

6.13.3 Unstructured

Full message type name: uavcan.primitive.Unstructured

6.13.3.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [16, 2064] [2, 258] [1, 38] [1, 5]

1 #
2 # An unstructured collection of bytes, e.g., raw binary image.
3 #
4
5 void7
6 uint8[<=256] value
7
8 @assert _offset_ % 8 == {0}
9 @assert _offset_.max / 8 == 258

6.14 uavcan.primitive.array

6.14.1 Bit

Full message type name: uavcan.primitive.array.Bit

6.14.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [16, 2064] [2, 258] [1, 38] [1, 5]

1 void4
2 bool[<=2048] value
3 @assert _offset_.min == 16
4 @assert _offset_.max / 8 == 258 # 2048 bits + 11 bit length + 4 bit padding = 2064 bits = 258 bytes

6.14.2 Integer8

Full message type name: uavcan.primitive.array.Integer8

6.14.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [16, 2064] [2, 258] [1, 38] [1, 5]

1 void7
2 int8[<=256] value
3 @assert _offset_ % 8 == {0}
4 @assert _offset_.max / 8 == 258

108/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.14.3 Integer16

Full message type name: uavcan.primitive.array.Integer16

6.14.3.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 int16[<=128] value
2 @assert _offset_ % 8 == {0}
3 @assert _offset_.max / 8 == 257

6.14.4 Integer32

Full message type name: uavcan.primitive.array.Integer32

6.14.4.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 void1
2 int32[<=64] value
3 @assert _offset_ % 8 == {0}
4 @assert _offset_.max / 8 == 257

6.14.5 Integer64

Full message type name: uavcan.primitive.array.Integer64

6.14.5.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 void2
2 int64[<=32] value
3 @assert _offset_ % 8 == {0}
4 @assert _offset_.max / 8 == 257

6.14.6 Natural8

Full message type name: uavcan.primitive.array.Natural8

6.14.6.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [16, 2064] [2, 258] [1, 38] [1, 5]

1 void7
2 uint8[<=256] value
3 @assert _offset_ % 8 == {0}
4 @assert _offset_.max / 8 == 258

6.14.7 Natural16

Full message type name: uavcan.primitive.array.Natural16

6.14.7.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 uint16[<=128] value
2 @assert _offset_ % 8 == {0}
3 @assert _offset_.max / 8 == 257

6.14.8 Natural32

Full message type name: uavcan.primitive.array.Natural32

6.14.8.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 void1
2 uint32[<=64] value
3 @assert _offset_ % 8 == {0}
4 @assert _offset_.max / 8 == 257

6. List of standard data types 109/132

DRAFT

Specification v1.0 2019-11-15

6.14.9 Natural64

Full message type name: uavcan.primitive.array.Natural64

6.14.9.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 void2
2 uint64[<=32] value
3 @assert _offset_ % 8 == {0}
4 @assert _offset_.max / 8 == 257

6.14.10 Real16

Full message type name: uavcan.primitive.array.Real16

6.14.10.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 float16[<=128] value # Exactly representable integers: [-2048, +2048]
2 @assert _offset_ % 8 == {0}
3 @assert _offset_.max / 8 == 257

6.14.11 Real32

Full message type name: uavcan.primitive.array.Real32

6.14.11.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 void1
2 float32[<=64] value # Exactly representable integers: [-16777216, +16777216]
3 @assert _offset_ % 8 == {0}
4 @assert _offset_.max / 8 == 257

6.14.12 Real64

Full message type name: uavcan.primitive.array.Real64

6.14.12.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length [8, 2056] [1, 257] [1, 37] [1, 5]

1 void2
2 float64[<=32] value # Exactly representable integers: [-2**53, +2**53]
3 @assert _offset_ % 8 == {0}
4 @assert _offset_.max / 8 == 257

6.15 uavcan.primitive.scalar

6.15.1 Bit

Full message type name: uavcan.primitive.scalar.Bit

6.15.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 8 1 1 1

1 void7
2 bool value

6.15.2 Integer8

Full message type name: uavcan.primitive.scalar.Integer8

6.15.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 8 1 1 1

1 int8 value

110/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.15.3 Integer16

Full message type name: uavcan.primitive.scalar.Integer16

6.15.3.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 16 2 1 1

1 int16 value

6.15.4 Integer32

Full message type name: uavcan.primitive.scalar.Integer32

6.15.4.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 int32 value

6.15.5 Integer64

Full message type name: uavcan.primitive.scalar.Integer64

6.15.5.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 64 8 2 1

1 int64 value

6.15.6 Natural8

Full message type name: uavcan.primitive.scalar.Natural8

6.15.6.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 8 1 1 1

1 uint8 value

6.15.7 Natural16

Full message type name: uavcan.primitive.scalar.Natural16

6.15.7.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 16 2 1 1

1 uint16 value

6.15.8 Natural32

Full message type name: uavcan.primitive.scalar.Natural32

6.15.8.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 uint32 value

6.15.9 Natural64

Full message type name: uavcan.primitive.scalar.Natural64

6.15.9.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 64 8 2 1

1 uint64 value

6. List of standard data types 111/132

DRAFT

Specification v1.0 2019-11-15

6.15.10 Real16

Full message type name: uavcan.primitive.scalar.Real16

6.15.10.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 16 2 1 1

1 float16 value # Exactly representable integers: [-2048, +2048]

6.15.11 Real32

Full message type name: uavcan.primitive.scalar.Real32

6.15.11.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 value # Exactly representable integers: [-16777216, +16777216]

6.15.12 Real64

Full message type name: uavcan.primitive.scalar.Real64

6.15.12.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 64 8 2 1

1 float64 value # Exactly representable integers: [-2**53, +2**53]

6.16 uavcan.si.sample.acceleration

6.16.1 Scalar

Full message type name: uavcan.si.sample.acceleration.Scalar

6.16.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 meter_per_second_per_second

6.16.2 Vector3

Full message type name: uavcan.si.sample.acceleration.Vector3

6.16.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 152 19 3 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32[3] meter_per_second_per_second
3 @assert _offset_ % 8 == {0}

6.17 uavcan.si.sample.angle

6.17.1 Quaternion

Full message type name: uavcan.si.sample.angle.Quaternion

6.17.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 184 23 4 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32[4] wxyz
3 @assert _offset_ % 8 == {0}

112/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.17.2 Scalar

Full message type name: uavcan.si.sample.angle.Scalar

6.17.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 radian

6.18 uavcan.si.sample.angular_velocity

6.18.1 Scalar

Full message type name: uavcan.si.sample.angular_velocity.Scalar

6.18.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 radian_per_second

6.18.2 Vector3

Full message type name: uavcan.si.sample.angular_velocity.Vector3

6.18.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 152 19 3 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32[3] radian_per_second
3 @assert _offset_ % 8 == {0}

6.19 uavcan.si.sample.duration

6.19.1 Scalar

Full message type name: uavcan.si.sample.duration.Scalar

6.19.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 second

6.19.2 WideScalar

Full message type name: uavcan.si.sample.duration.WideScalar

6.19.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 120 15 3 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float64 second

6.20 uavcan.si.sample.electric_charge

6.20.1 Scalar

Full message type name: uavcan.si.sample.electric_charge.Scalar

6.20.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

6. List of standard data types 113/132

DRAFT

Specification v1.0 2019-11-15

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 coulomb

6.21 uavcan.si.sample.electric_current

6.21.1 Scalar

Full message type name: uavcan.si.sample.electric_current.Scalar

6.21.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 ampere

6.22 uavcan.si.sample.energy

6.22.1 Scalar

Full message type name: uavcan.si.sample.energy.Scalar

6.22.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 joule

6.23 uavcan.si.sample.length

6.23.1 Scalar

Full message type name: uavcan.si.sample.length.Scalar

6.23.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 meter

6.23.2 Vector3

Full message type name: uavcan.si.sample.length.Vector3

6.23.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 152 19 3 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32[3] meter
3 @assert _offset_ % 8 == {0}

6.23.3 WideVector3

Full message type name: uavcan.si.sample.length.WideVector3

6.23.3.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 248 31 5 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float64[3] meter
3 @assert _offset_ % 8 == {0}

6.24 uavcan.si.sample.magnetic_field_strength

114/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.24.1 Scalar

Full message type name: uavcan.si.sample.magnetic_field_strength.Scalar

6.24.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 tesla

6.24.2 Vector3

Full message type name: uavcan.si.sample.magnetic_field_strength.Vector3

6.24.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 152 19 3 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32[3] tesla
3 @assert _offset_ % 8 == {0}

6.25 uavcan.si.sample.mass

6.25.1 Scalar

Full message type name: uavcan.si.sample.mass.Scalar

6.25.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 kilogram

6.26 uavcan.si.sample.power

6.26.1 Scalar

Full message type name: uavcan.si.sample.power.Scalar

6.26.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 watt

6.27 uavcan.si.sample.pressure

6.27.1 Scalar

Full message type name: uavcan.si.sample.pressure.Scalar

6.27.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 pascal

6.28 uavcan.si.sample.temperature

6.28.1 Scalar

Full message type name: uavcan.si.sample.temperature.Scalar

6. List of standard data types 115/132

DRAFT

Specification v1.0 2019-11-15

6.28.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 kelvin

6.29 uavcan.si.sample.velocity

6.29.1 Scalar

Full message type name: uavcan.si.sample.velocity.Scalar

6.29.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 meter_per_second

6.29.2 Vector3

Full message type name: uavcan.si.sample.velocity.Vector3

6.29.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 152 19 3 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32[3] meter_per_second
3 @assert _offset_ % 8 == {0}

6.30 uavcan.si.sample.voltage

6.30.1 Scalar

Full message type name: uavcan.si.sample.voltage.Scalar

6.30.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 volt

6.31 uavcan.si.sample.volume

6.31.1 Scalar

Full message type name: uavcan.si.sample.volume.Scalar

6.31.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 cubic_meter

6.32 uavcan.si.sample.volumetric_flow_rate

6.32.1 Scalar

Full message type name: uavcan.si.sample.volumetric_flow_rate.Scalar

6.32.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 88 11 2 1

116/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

1 uavcan.time.SynchronizedTimestamp.1.0 timestamp
2 float32 cubic_meter_per_second

6.33 uavcan.si.unit.acceleration

6.33.1 Scalar

Full message type name: uavcan.si.unit.acceleration.Scalar

6.33.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 meter_per_second_per_second

6.33.2 Vector3

Full message type name: uavcan.si.unit.acceleration.Vector3

6.33.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 96 12 2 1

1 float32[3] meter_per_second_per_second

6.34 uavcan.si.unit.angle

6.34.1 Quaternion

Full message type name: uavcan.si.unit.angle.Quaternion

6.34.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 128 16 3 1

1 float32[4] wxyz

6.34.2 Scalar

Full message type name: uavcan.si.unit.angle.Scalar

6.34.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 radian

6.35 uavcan.si.unit.angular_velocity

6.35.1 Scalar

Full message type name: uavcan.si.unit.angular_velocity.Scalar

6.35.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 radian_per_second

6.35.2 Vector3

Full message type name: uavcan.si.unit.angular_velocity.Vector3

6.35.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 96 12 2 1

1 float32[3] radian_per_second

6. List of standard data types 117/132

DRAFT

Specification v1.0 2019-11-15

6.36 uavcan.si.unit.duration

6.36.1 Scalar

Full message type name: uavcan.si.unit.duration.Scalar

6.36.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 second

6.36.2 WideScalar

Full message type name: uavcan.si.unit.duration.WideScalar

6.36.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 64 8 2 1

1 float64 second

6.37 uavcan.si.unit.electric_charge

6.37.1 Scalar

Full message type name: uavcan.si.unit.electric_charge.Scalar

6.37.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 coulomb

6.38 uavcan.si.unit.electric_current

6.38.1 Scalar

Full message type name: uavcan.si.unit.electric_current.Scalar

6.38.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 ampere

6.39 uavcan.si.unit.energy

6.39.1 Scalar

Full message type name: uavcan.si.unit.energy.Scalar

6.39.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 joule

6.40 uavcan.si.unit.length

6.40.1 Scalar

Full message type name: uavcan.si.unit.length.Scalar

118/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.40.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 meter

6.40.2 Vector3

Full message type name: uavcan.si.unit.length.Vector3

6.40.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 96 12 2 1

1 float32[3] meter

6.40.3 WideVector3

Full message type name: uavcan.si.unit.length.WideVector3

6.40.3.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 192 24 4 1

1 float64[3] meter

6.41 uavcan.si.unit.magnetic_field_strength

6.41.1 Scalar

Full message type name: uavcan.si.unit.magnetic_field_strength.Scalar

6.41.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 tesla

6.41.2 Vector3

Full message type name: uavcan.si.unit.magnetic_field_strength.Vector3

6.41.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 96 12 2 1

1 float32[3] tesla

6.42 uavcan.si.unit.mass

6.42.1 Scalar

Full message type name: uavcan.si.unit.mass.Scalar

6.42.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 kilogram

6.43 uavcan.si.unit.power

6.43.1 Scalar

Full message type name: uavcan.si.unit.power.Scalar

6. List of standard data types 119/132

DRAFT

Specification v1.0 2019-11-15

6.43.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 watt

6.44 uavcan.si.unit.pressure

6.44.1 Scalar

Full message type name: uavcan.si.unit.pressure.Scalar

6.44.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 pascal

6.45 uavcan.si.unit.temperature

6.45.1 Scalar

Full message type name: uavcan.si.unit.temperature.Scalar

6.45.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 kelvin

6.46 uavcan.si.unit.velocity

6.46.1 Scalar

Full message type name: uavcan.si.unit.velocity.Scalar

6.46.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 meter_per_second

6.46.2 Vector3

Full message type name: uavcan.si.unit.velocity.Vector3

6.46.2.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 96 12 2 1

1 float32[3] meter_per_second

6.47 uavcan.si.unit.voltage

6.47.1 Scalar

Full message type name: uavcan.si.unit.voltage.Scalar

6.47.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 volt

120/132 6. List of standard data types

DRAFT

2019-11-15 Specification v1.0

6.48 uavcan.si.unit.volume

6.48.1 Scalar

Full message type name: uavcan.si.unit.volume.Scalar

6.48.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 cubic_meter

6.49 uavcan.si.unit.volumetric_flow_rate

6.49.1 Scalar

Full message type name: uavcan.si.unit.volumetric_flow_rate.Scalar

6.49.1.1 Version 1.0

Length unit Bit Byte (octet) CAN MTU 8 CAN MTU 64

Message length 32 4 1 1

1 float32 cubic_meter_per_second

6. List of standard data types 121/132

DRAFT

Specification v1.0 2019-11-15

7 Physical layer
This chapter contains the specification of the supported physical layers of UAVCAN, as well as some related
hardware design recommendations.

Following the requirements and recommendations of this chapter will ensure the highest level of inter-
vendor compatibility and allow the developers to avoid many common design pitfalls.

The sections that provide transport-specific physical layer specification directly correspond to those defined
in the chapter 4.

122/132 7. Physical layer

DRAFT

2019-11-15 Specification v1.0

7.1 CAN bus physical layer specification
This section specifies the CAN-based physical layer of UAVCAN.

Here and in the following parts of this section, “CAN” implies both CAN 2.0 and CAN FD, unless specifically
noted otherwise.

7.1.1 Physical connector specification

The UAVCAN standard defines several connector types, targeted towards different application domains: from
highly compact systems to large deployments, from low-cost to safety-critical applications.

The table 7.1 provides an overview of the currently defined connector types for the CAN bus transport imple-
mentation. Other connector types may be added in future revisions of the specification.

It is highly recommended to provide two identical parallel connectors for each CAN interface per device, and
not using T-connectors. T-connectors should be avoided because they add another point of failure, increase
the stub length, weight, and often require more complex and expensive wiring harnesses.

Table 7.1: Standard CAN connector types

Connector name Base connector type Bus power Known compatible standards

UAVCAN D-Sub Generic D-Subminiature DE-9 24 V, 3 A De-facto standard connector for CAN, supported
by many current specifications.

UAVCAN M8 Generic M8 5-circuit B-coded 24 V, 3 A CiA 103 (CANopen)

UAVCAN Micro JST GH 4-circuit 5 V, 1 A Dronecode Autopilot Connector Standard

7. Physical layer 123/132

DRAFT

Specification v1.0 2019-11-15

7.1.1.1 UAVCAN D-Sub connector

The UAVCAN D-Sub connector type is based upon, and compatible with, the D-Subminiature DE-9 CAN
connector (this is the most popular CAN connector type, in effect the de-facto industry standard). This con-
nector is fully compatible with CANopen and many other current specifications. An example connector pair
is pictured on the figures 7.1 and 7.2.

Advantages Disadvantages

• Highest level of compatibility with the existing com-
mercial off the shelf (COTS) hardware. Connectors, ca-
bles, termination plugs, and other components can be
easily purchased from many different vendors.
• High-reliability options are available from multiple
vendors.
• Low-cost options are available from multiple vendors.
• Both PCB mounted and panel mounted types are avail-
able.

D-Subminiature connectors are the largest connector
type defined by UAVCAN. Due to its significant size and
weight, it may be unsuitable for many vehicular applica-
tions.

The UAVCAN D-Sub connector is based on the industry-standard D-Sub DE-9 (9-circuit) connector type.
Devices are equipped with the male plug connector type mounted on the panel or on the PCB, and the cables
are equipped with the female socket connectors on both ends (see the figures 7.1 and 7.2).

If the device uses two parallel connectors per CAN bus interface (as recommended), then all of the lines of
the paired connectors, including those that are not used by the current specification, must be interconnected
one to one. This will ensure compatibility with future revisions of the specification that make use of currently
unused circuits of the connector.

The CAN physical layer standard that can be used with this connector type is ISO 11898-282.

Devices that deliver power to the bus are required to provide 23.0–30.0 V on the bus power line, 24 V nominal.
The maximum current draw is up to 3 A per connector.

Devices that are powered from the bus should expect 18.0–30.0 V on the bus power line. The maximum
recommended current draw from the bus is 0.5 A per device.

The table 7.2 documents the pinout specification for the UAVCAN D-Sub connector type. The provided
pinout, as has been indicated above, is the de-facto industry standard for the CAN bus. Note that the sig-
nals “CAN High” and “CAN Low” must belong to the same twisted pair. Usage of twisted or flat wires for all
other signals remains at the discretion of the implementer.

Table 7.2: UAVCAN D-Sub connector pinout

Function Note

1

2 CAN low Twisted with “CAN high” (pin 7).

3 CAN ground Must be interconnected with “Ground” (pin 6) within the device.

4

5 CAN shield Optional.

6 Ground Must be interconnected with “CAN ground” (pin 3) within the device.

7 CAN high Twisted with “CAN low” (pin 2).

8

9 Bus power supply 24 V nominal. See the power supply requirements.

82Also known as high-speed CAN.

124/132 7. Physical layer

DRAFT

2019-11-15 Specification v1.0

Figure 7.1: UAVCAN D-Sub device connector example.

Figure 7.2: UAVCAN D-Sub cable connector example.

7. Physical layer 125/132

DRAFT

Specification v1.0 2019-11-15

7.1.1.2 UAVCAN M8 connector

The UAVCAN M8 connector type is based on the generic circular M8 connector type, shown on the figure 7.3.
This is a popular industry-standard connector, and there are many vendors that manufacture compatible
components: connectors, cables, termination plugs, T-connectors, and so on. The pinning, physical layer,
and supply voltages used in this connector type are compatible with CiA 103 (CANopen) and some other CAN
bus standards.

The M8 connector is preferred for most UAVCAN applications (it should be the default choice, except when
there are specific reasons to select another standard connector type).

Advantages Disadvantages

• Compatibility with existing COTS hardware. Connec-
tors, cables, termination plugs, and other components
can be purchased from many different vendors.
• High-reliability options are available from multiple
vendors.
• Low-cost options are available from multiple vendors.
• Reasonably compact. M8 connectors are much smaller
than D-Sub.
• PCB mounted and panel mounted types are available.

• M8 connectors may be a poor fit for applications that
have severe weight and space constraints.
• The level of adoption in the industry is noticeably lower
than that of the D-Sub connector type.

The UAVCAN M8 connector is based on the industry-standard circular M8 B-coded 5-circuit connector type.
Devices are equipped with the male plug connector type mounted on the panel or on the PCB, and the cables
are equipped with the female socket connectors on both ends (see the figure 7.3). Do not confuse A-coded and
B-coded M8 connectors – they are not mutually compatible.

The CAN physical layer standard that can be used with this connector type is ISO 11898-283.

Devices that deliver power to the bus are required to provide 23.0–30.0 V on the bus power line, 24 V nominal.
The maximum current draw is up to 3 A per connector.

Devices that are powered from the bus should expect 18.0–30.0 V on the bus power line. The maximum
recommended current draw from the bus is 0.5 A per device.

The table 7.3 documents the pinout specification for the UAVCAN M8 connector type. The provided pinout,
as indicated above, is compatible with the CiA 103 specification (CANopen). Note that the wires “CAN high”
and “CAN low” should be a twisted pair.

Table 7.3: UAVCAN M8 connector pinout

Function Note

1 Bus power supply 24 V nominal. See the power supply requirements.

2 CAN shield Optional.

3 CAN high Twisted with “CAN low” (pin 4).

4 CAN low Twisted with “CAN high” (pin 3).

5 Ground

83Also known as high-speed CAN.

126/132 7. Physical layer

DRAFT

2019-11-15 Specification v1.0

Example connectors: female socket cable (left) and male plug device connector (right). Different connector types are
available from various vendors: PCB mounted, panel mounted; straight cables, angled cables, etc.

Figure 7.3: UAVCAN M8 connector pair example.

Figure 7.4: UAVCAN M8 assembled connector pair example.

7. Physical layer 127/132

DRAFT

Specification v1.0 2019-11-15

7.1.1.3 UAVCAN Micro connector

The UAVCAN Micro connector is intended for weight- and space-sensitive applications. It is a board-level
connector, meaning that it can be installed on the PCB rather than on the panel. An example is shown on the
figure 7.5.

The Micro connector is compatible with the Dronecode Autopilot Connector Standard. This connector type
is recommended for small UAV and nanosatellites. It is also the recommended connector for attaching ex-
ternal panel-mounted connectors (such as the M8 or D-Sub types) to the PCB inside the enclosure.

Advantages Disadvantages

• Extremely compact, low-profile. The PCB footprint is
under 9×5 millimeters.
• Secure positive lock ensures that the connection will
not self-disconnect when exposed to vibrations.
• Low-cost, easy to stock.

• Board-level connections only. No panel-mounted op-
tions available.
• No shielding available.
• Not suitable for safety-critical hardware.

The UAVCAN Micro connector is based on the proprietary JST GH 4-circuit connector type. Beware that the
top-entry type is not PCB footprint-compatible with the side-entry type – its pin ordering is reversed. The
wire-side pinout, however, is compatible, so both types can be used interchangeably as long as their PCB
footprints are correct.

The suitable cable types are flat or twisted pair #30 to #26 AWG, outer insulation diameter 0.8–1.0 mm, multi-
strand. Non-twisted (flat) cables can only be used in very small deployments free of significant EMI84; other-
wise, reliable functioning of the bus cannot be guaranteed.

The CAN physical layer standard that can be used with this connector type is ISO 11898-2.

Devices that deliver power to the bus are required to provide 5.0–5.5 V on the bus power line. The anticipated
current draw is up to 1 A per connector.

Devices that are powered from the bus should expect 4.0–5.5 V on the bus power line. The maximum recom-
mended current draw from the bus is 0.5 A per device.

The table 7.4 documents the pinout specification for the UAVCAN M8 connector type. The provided pinout,
as indicated above, is compatible with the Dronecode Autopilot Connector Standard. Note that the wires
“CAN high” and “CAN low” should be a twisted pair.

Table 7.4: UAVCAN Micro connector pinout

Function Note

1 Bus power supply 5 V nominal. See the power supply requirements.

2 CAN high Should be twisted with “CAN low” (pin 3).

3 CAN low Should be twisted with “CAN high” (pin 2).

4 Ground

84Electromagnetic interference.

128/132 7. Physical layer

DRAFT

2019-11-15 Specification v1.0

Figure 7.5: UAVCAN Micro right-angle connectors with a twisted pair patch cable connected.

Figure 7.6: UAVCAN Micro CAN bus termination plug.

7. Physical layer 129/132

DRAFT

Specification v1.0 2019-11-15

7.1.2 CAN bus physical layer parameters

As can be seen from the rest of the specification, UAVCAN is mostly agnostic of the parameters of the physical
layer. However, vendors should follow the recommendations provided in this section to maximize the cross-
vendor compatibility.

7.1.2.1 CAN 2.0

This section is dedicated to the legacy CAN 2.0 protocol.

The table 7.5 lists the standard parameters of the CAN PHY for ISO 11898-2. The estimated bus length limits
are based on the assumption that the propagation delay does not exceed 5 ns/m, not including additional
delay times of CAN transceivers and other components.

Table 7.5: Standard CAN 2.0 PHY parameters

Bit rate [kbit/s] Valid range for
location of sample

point [%]

Recommended
location of sample

point [%]

Maximum bus
length [m]

Maximum stub
length [m]

1000 75 to 90 87.5 40 0.3

500 85 to 90 87.5 100 0.3

250 85 to 90 87.5 250 0.3

125 85 to 90 87.5 500 0.3

Designers are encouraged to implement CAN auto bit rate detection when applicable. Please refer to the CiA
801 application note for the recommended practices.

UAVCAN allows the use of a simple bit time measuring approach, as it is guaranteed that any functioning
UAVCAN network will always exchange node status messages, which can be expected to be published at a
rate no lower than 1 Hz, and that contain a suitable alternating bit pattern in the CAN ID field. Please refer to
the chapter 5 for details.

7.1.2.2 CAN FD

This section will be populated in a later revision of the document.

130/132 7. Physical layer

DRAFT

2019-11-15 Specification v1.0

7.2 Hardware design recommendations
This section contains certain generic hardware design recommendations that are agnostic of a particular
physical layer implementation.

7.2.1 Non-uniform transport redundancy

Mission critical devices and non-mission critical devices often need to co-exist within the same UAVCAN
network. Non-mission critical devices are likely to be equipped with a non-redundant transport interface,
which can create a situation where multiple devices with different numbers of redundant interfaces need to
be connected to the same network. In that case, the following rules should be followed:

• Each available bus is assigned a level of importance (primary, secondary, etc.).
• All nodes should be connected to the primary bus.
• Only nodes with redundant interfaces should be also connected to the non-primary bus/buses.

The figure 7.7 shows a doubly redundant bus transport as an example.

Figure 7.7: Non-uniform transport redundancy.

7.2.2 Bus power supply

The standard UAVCAN physical layers support power distribution between nodes. Integration of the power
distribution functionality with the communication interface removes the need for a dedicated power distri-
bution network, which greatly simplifies the system design and reduces the complexity and weight of the
wiring harnesses. Additionally, redundant power supply topologies can be easily implemented on top of
redundant communication interfaces.

7.2.2.1 Power sinking nodes

This section applies to nodes that draw power from the network.

Each power input should be protected with an over-current protection circuit (for example, an electronic
fuse), so that a short-circuit or a similar failure of the node does not propagate to the entire bus.

If the node incorporates redundant bus interfaces, it should prevent direct current flow between power in-
puts from different interface connectors, so if one bus suffers a power failure (e.g. a short circuit) it is not
propagated to the other buses.

Figure 7.8: Simplified conceptual power sinking node design schematic.

7.2.2.2 Power sourcing nodes

This section applies to nodes that deliver power to the network.

Similar to the case of bus-powered nodes, UAVCAN power sources should take into account that one of the
redundant interfaces may suffer a short-circuit or a failure of a similar mode. Should that happen, the power

7. Physical layer 131/132

DRAFT

Specification v1.0 2019-11-15

source should shut down the power supply of the failing bus and continue supplying the remaining bus
interfaces.

Figure 7.9: Simplified conceptual power sourcing node design schematic.

132/132 7. Physical layer

	Introduction
	Document conventions
	Design principles
	Capabilities
	Public regulated data types
	Referenced sources

	Basic concepts
	Main principles
	Communication
	Data types
	High-level functions

	Message publication
	Anonymous message publication

	Service invocation

	Data structure description language
	Architecture
	General principles
	Data types and namespaces
	File hierarchy
	Elements of data type definition
	Serialization

	Grammar
	Notation
	Definition
	Expressions
	Literals
	Reserved identifiers

	Expression types
	Rational number
	Unicode string
	Set
	Serializable metatype

	Serializable types
	Void types
	Primitive types
	Array types
	Composite types

	Attributes
	Composite type attributes
	Local attributes
	Intrinsic attributes

	Directives
	Tagged union marker
	Deprecation marker
	Assertion check
	Print

	Data serialization
	General principles
	Void types
	Primitive types
	Array types
	Composite types

	Data type compatibility and versioning
	Rationale
	Compatibility
	Versioning

	Conventions and recommendations
	Naming recommendations
	Comments
	Optional value representation
	Bit flag representation

	Transport layer
	Core concepts
	Transfer
	Message publication
	Service invocation
	Transfer priority
	Transfer descriptor

	Transfer emission
	Transfer-ID computation
	Single frame transfers
	Multi-frame transfers
	Redundant interface support

	Transfer reception
	Transfer-ID comparison
	Payload truncation
	State variables
	State update in a redundant interface configuration
	State update in a non-redundant interface configuration

	CAN bus transport layer specification
	CAN ID structure
	CAN frame data
	Software design considerations

	Application layer
	Application-level requirements
	Port identifier distribution
	Standard namespace

	Application-level conventions
	Node identifier distribution
	Coordinate frames
	Rotation representation
	Matrix representation
	Physical quantity representation

	Application-level functions
	Node initialization
	Node heartbeat
	Generic node information
	Bus data flow monitoring
	Network-wide time synchronization
	Primitive types and physical quantities
	Remote file system interface
	Generic node commands
	Node software update
	Register interface
	Diagnostics and event logging
	Plug-and-play nodes
	Internet/LAN forwarding interface

	List of standard data types
	uavcan.diagnostic
	Record
	Severity

	uavcan.file
	GetInfo
	List
	Modify
	Read
	Write
	Error
	Path

	uavcan.internet.udp
	HandleIncomingPacket
	OutgoingPacket

	uavcan.node
	ExecuteCommand
	GetInfo
	GetTransportStatistics
	Heartbeat
	ID
	IOStatistics
	Version

	uavcan.node.port
	GetInfo
	GetStatistics
	List
	ID
	ServiceID
	SubjectID

	uavcan.pnp
	NodeIDAllocationData
	NodeIDAllocationDataMTU8

	uavcan.pnp.cluster
	AppendEntries
	Discovery
	RequestVote
	Entry

	uavcan.register
	Access
	List
	Name
	Value

	uavcan.time
	GetSynchronizationMasterInfo
	Synchronization
	SynchronizedTimestamp
	TimeSystem

	uavcan.metatransport.can
	ArbitrationID
	BaseArbitrationID
	DataClassic
	DataFD
	Error
	ExtendedArbitrationID
	Frame
	Manifestation
	RTR

	uavcan.metatransport.serial
	Fragment

	uavcan.metatransport.udp
	Endpoint
	Frame

	uavcan.primitive
	Empty
	String
	Unstructured

	uavcan.primitive.array
	Bit
	Integer8
	Integer16
	Integer32
	Integer64
	Natural8
	Natural16
	Natural32
	Natural64
	Real16
	Real32
	Real64

	uavcan.primitive.scalar
	Bit
	Integer8
	Integer16
	Integer32
	Integer64
	Natural8
	Natural16
	Natural32
	Natural64
	Real16
	Real32
	Real64

	uavcan.si.sample.acceleration
	Scalar
	Vector3

	uavcan.si.sample.angle
	Quaternion
	Scalar

	uavcan.si.sample.angular_velocity
	Scalar
	Vector3

	uavcan.si.sample.duration
	Scalar
	WideScalar

	uavcan.si.sample.electric_charge
	Scalar

	uavcan.si.sample.electric_current
	Scalar

	uavcan.si.sample.energy
	Scalar

	uavcan.si.sample.length
	Scalar
	Vector3
	WideVector3

	uavcan.si.sample.magnetic_field_strength
	Scalar
	Vector3

	uavcan.si.sample.mass
	Scalar

	uavcan.si.sample.power
	Scalar

	uavcan.si.sample.pressure
	Scalar

	uavcan.si.sample.temperature
	Scalar

	uavcan.si.sample.velocity
	Scalar
	Vector3

	uavcan.si.sample.voltage
	Scalar

	uavcan.si.sample.volume
	Scalar

	uavcan.si.sample.volumetric_flow_rate
	Scalar

	uavcan.si.unit.acceleration
	Scalar
	Vector3

	uavcan.si.unit.angle
	Quaternion
	Scalar

	uavcan.si.unit.angular_velocity
	Scalar
	Vector3

	uavcan.si.unit.duration
	Scalar
	WideScalar

	uavcan.si.unit.electric_charge
	Scalar

	uavcan.si.unit.electric_current
	Scalar

	uavcan.si.unit.energy
	Scalar

	uavcan.si.unit.length
	Scalar
	Vector3
	WideVector3

	uavcan.si.unit.magnetic_field_strength
	Scalar
	Vector3

	uavcan.si.unit.mass
	Scalar

	uavcan.si.unit.power
	Scalar

	uavcan.si.unit.pressure
	Scalar

	uavcan.si.unit.temperature
	Scalar

	uavcan.si.unit.velocity
	Scalar
	Vector3

	uavcan.si.unit.voltage
	Scalar

	uavcan.si.unit.volume
	Scalar

	uavcan.si.unit.volumetric_flow_rate
	Scalar

	Physical layer
	CAN bus physical layer specification
	Physical connector specification
	CAN bus physical layer parameters

	Hardware design recommendations
	Non-uniform transport redundancy
	Bus power supply

