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Abstract

Sensitivity analysis is an important tool used in many domains of computational science to either gain
insight into the mathematical model and interaction of its parameters or study the uncertainty propagation
through the input-output interactions. In many applications, the inputs are stochastically dependent, which
violates one of the essential assumptions in the state-of-the-art sensitivity analysis methods. Consequently,
the results obtained ignoring the correlations provide values which do not reflect the true contributions
of the input parameters. This study proposes an approach to address the parameter correlations using a
polynomial chaos expansion method and Rosenblatt and Cholesky transformations to reflect the parameter
dependencies. Treatment of the correlated variables is discussed in context of variance and derivative-based
sensitivity analysis. We demonstrate that the sensitivity of the correlated parameters can not only differ
in magnitude, but even the sign of the derivative-based index can be inverted, thus significantly altering
the model behavior compared to the prediction of the analysis disregarding the correlations. Numerous
experiments are conducted using workflow automation tools within the VECMA toolkit.

Keywords: Global sensitivity analysis, Uncertainty quantification, Parameter Correlation, Sobol index,
Polynomial Chaos Expansion

1. Nomenclature

Q A set of uncertain input parameters Qi

D A number of the input parameters
ρQi

Parameter probability density function
q A set of parameter realizations
Y Vector of the application model outputs
U An application model Y = U(t,x,Q)
P Degree of the polynomial basis
Ψ Polynomial basis
a Polynomial coefficients for the basis Ψ

(̂·)
Quantities related to the polynomial
approximation of the true model

2

⋆This research is part of the activities of the Innosuisse
project no 34394.1 entitled “High-Performance Data Ana-
lytics Framework for Power Markets Simulation” which is
financially supported by the Swiss Innovation Agency. This
work was supported by a grant from the Swiss National Su-
percomputing Centre (CSCS) under project ID d120. DS
and DG have been supported by the SEAVEA ExCALIBUR
project, which has received funding from EPSRC under grant
agreement EP/W007711/1.

∗Corresponding author
Email address: juraj.kardos@usi.ch (Juraj Kardoš)

V Variance operator
E Expectation value operator
Si Variance-based sensitivity index
SD
i Derivative-based sensitivity index

(·)∗ Denotes the correlated variables/samples
µ Mean vector of the uncertain parameters
C Covariance matrix of the parameters
C Correlation matrix of the parameters
L Cholesky factor of the correlation matrix
P Permutation vector
κ Dissipation rate of the container
Tenv Ambient temperature
T0 Initial temperature of the liquid
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2. Introduction

Sensitivity analysis (SA) is a technique for un-6

derstanding how changes in the input parameters
influence the uncertainty in the output of a model8

or simulation. SA facilitates the understanding of
how the outputs of a model change with respect10
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to variations in the input parameters. It it partic-
ularly useful for complex models, in order to de-12

termine which parameters cause the greatest vari-
ation of the output, and quantify the sensitivity of14

the model to changes in these parameters. Addi-
tionally, SA can be used to improve the accuracy16

of a model by identifying and reducing sources of
uncertainty in the input data. Two SA methods18

are studied in this manuscript, a global variance-
based method, where the sensitivity is computed20

over the support of the input distributions. A lo-
cal derivative-based method is considered as well,22

where the sensitivity is studied only in the vicinity
of a fixed input point.24

The variance-based SA method [1] quantifies the
sensitivity of each input parameter by estimating26

its contribution to the overall variance of the model
output. This is achieved by decomposing the vari-28

ance of the model output by splitting it into con-
tributions which arise due to the impact of the in-30

put parameters or their interaction, and the pa-
rameters are assigned a sensitivity index based on32

their relative contributions. This sensitivity index
is also known as the Sobol index [2]. Variance-based34

methods allow full exploration of the input space,
accounting also for the interactions and nonlinear36

responses. The variance-based sensitivity is used
especially in the context of uncertainty quantifica-38

tion, where the input parameters are usually char-
acterized by a probability density function, model-40

ing their uncertain nature or reflecting the uncer-
tainty in the data collection method. The current42

state-of-the-art of variance-based SA comprises two
main methodologies - quasi-Monte Carlo (QMC) [2]44

and the methods based on model surrogates such
as polynomial chaos expansion (PCE) [3, 4]. Both46

approaches are based on sampling the input pa-
rameters from the given probability distributions,48

where the model is evaluated for the values of the
parameter samples. In case of the QMC approach,50

this process is repeated thousands of times, and sta-
tistical metrics such as the mean and variance are52

computed from the resulting series of model out-
puts. On the other hand, the general idea behind54

PCE is to approximate the model input–output re-
lationship with a polynomial expression, which is56

then used to directly obtain the statistical metrics
such as mean and variance, while the first and total-58

order Sobol indices can also be calculated directly
from the polynomial model [5].60

In case of the derivative-based analysis, the sensi-
tivity information comprise computation of the par-62

tial derivative of the model output with respect to
an input parameter at some fixed point in the in-64

put space. The analytical derivative is often un-
known, thus standard methods such as finite differ-66

ences (FD) are used. The domain of the FD study
is local, since such analysis can consider only vicin-68

ity around a single parameter and its fixed operat-
ing point. However, this shortcoming can be cir-70

cumvented by exploiting a surrogate model where
the derivative can be computed analytically. This,72

in turn, allows one to study sensitivity considering
interactions between multiple parameters via cor-74

relations. In this manuscript, the derivative-based
sensitivity indices are computed from the PCE sur-76

rogate model, in order to obtain information about
the interaction of correlated variables.78

While the variance-based SA is used more during
the initial phases of model design, where the goal80

is to understand the behavior of a model or simu-
lation and the sources of uncertainty in its inputs.82

It can be used to guide model calibration by iden-
tifying the most important parameters, determine84

the range of input values that result in acceptable
output values. Similarly, it can be used to optimize86

the design of a system by identifying the inputs that
have the greatest impact on the performance of the88

system, and exploring the trade-offs between dif-
ferent design options [6]. On the other hand, the90

derivative-based sensitivity is particularly useful in
operational context, where it is used to understand92

how changes in the input variables affect the out-
put of a system or process. This can guide design94

of the robust control systems which are resilient to
variations in the system’s inputs. Alternatively, it96

can be used to manage risk by understanding how
changes in input variables affect the risk of a sys-98

tem or process. For example, in finance, partial
derivatives can be used to calculate the sensitivity100

of the value of a portfolio to changes in the under-
lying asset prices or guide forward hedging ratios in102

commodity trading [7].

2.1. Motivation and Research Context104

Correlation of the input parameters is a com-
mon phenomenon in many scientific and engineer-106

ing models and there have been few studies con-
ducted on sensitivity analyses with correlated pa-108

rameters. Since the standard SA methods assume
that the parameters are stochastically independent,110

this can have a significant impact on the results of
the analysis. The presence of parameter correla-112

tions renders several assumptions no longer valid,
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e.g. the polynomials in the PCE are no longer or-114

thogonal. Additionally, if two input parameters are
highly correlated, it may be erroneous to draw con-116

clusions about which of the two parameters has a
greater impact on the output of the model using118

standard SA methods. Similarly, the results do not
provide adequate information to determine the sen-120

sitivity of the model to variations in these inputs.
Consequently, the presence of correlation between122

the input parameters can lead to biased estimates
of the model sensitivity, which can lead to incorrect124

conclusions about the importance of the inputs and
the input-output interactions. For example, when126

considering the context of energy market models,
the input parameters such as the cost of fossil fuel128

resources (liquid fuels and natural gas) account for
the majority of the variance in the total energy130

system cost. However, these parameters are often
tightly correlated, and applying the state-of-the-art132

SA methods ignoring the correlation may lead to an
optimistic risk assessment of voltage instability, the134

cost of power generation, a line overload risk, and
a power shortage expectation [8, 9].136

2.2. Literature Review and Related Work
There are two directions in the literature how to138

deal with the correlations during SA; (i) decom-
position of the traditional sensitivity indicies into140

correlated and uncorrelated parts [10, 11] and (ii)
introducing new sets of indices which contain all142

correlations and indices which are reduced by the
contributions due to the correlation [12, 13, 14].144

The definition of the first order Sobol indices
was extended to consider parameter dependencies146

in [15]. The method extends the QMC framework,
such that the sampling is performed considering the148

conditional probability densities of the individual
inputs. In case of dependent normal distributions,150

the samples are transformed using the Cholesky de-
composition of the correlation matrix. The number152

of model evaluations required to obtain both the
first and total order indices for a simple linear model154

with three inputs was 216, which is prohibitive for
real-world complex models. The interpretation of156

the indices is also not clear, as in some cases the to-
tal Sobol index is smaller than the first order one.158

In [10, 11], the classical first order Sobol index is
split into various components. These components160

represent uncorrelative, interactive and correlative
contributions of a given parameter to the output162

variance. However, the interpretation of these con-
tributions, as well as of total order indices, remains164

unclear. In this approach, the surrogate model is
set up using independent joint input distribution.166

The polynomials of the PCE expansion are eval-
uated with the dependent samples, subsequently168

used to compute the covariance of the components
functions. Analysis of covariance is then used to170

compute the resulting indices and their decomposi-
tion into the three components.172

A new set of the indices for correlated inputs was
introduced by Mara and Tarantola [12, 13, 14]. Two174

distinct indices represent correlated and uncorre-
lated contributions of a given variable. These al-176

low to distinguish between the mutual dependent
contribution and the independent contribution of178

the parameter to the model response variance. The
dependent parameters are decorrelated using the180

Gram–Schmidt procedure and Rosenblatt transfor-
mation, such that standard SA methods such as182

PCE or QMC frameworks can be used. However,
since the SA is no longer performed using the orig-184

inal parameters, additional attention needs to be
put to interpretation of the sensitivity indices. Ad-186

ditionally, different permutations of the decorre-
lated variables can be obtained, thus resulting in188

multiple set of the indices.

2.3. Contribution and Organization190

SA with correlated parameters is studied in this
work. The decorrelation approach is based on192

transformation of the input parameter space, such
that the SA is performed using the independent dis-194

tributions, following the approach (ii) and the work
of Mara and Tarantola [12, 13, 14]. The contribu-196

tions are the following:

• The correlated SA approach is studied in con-198

text of both variance-based and derivative-
based sensitivities;200

• Two transformations are used in order to re-
flect the stochastic dependencies in the in-202

put parameters, Cholesky decomposition of the
correlation matrix and the Rosenblatt trans-204

formation;

• The methods are implemented within206

EasyVVUQ SA framework, aiming to leverage
large-scale computational resources to make208

state-of-the-art uncertainty quantification
algorithms available and accessible to a wide210

range of computational scientists;
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• Demonstrate the importance of the parameter212

correlations in the SA and provide extensive
numerical experiments accompanied by a com-214

prehensive interpretation of the results.

The following Sec. 3 discusses various aspects of216

the SA, introducing both variance and derivative
based indices. The treatment of the correlated vari-218

ables and modifications of the SA algorithm are in-
troduced in Sec. 4. The application model used in220

the numerical experiments is presented in Sec. 5.
Finally, extensive numerical experiments and their222

analysis is provided in Sec. 6. The paper concludes
in Sec. 7 outlining also future research directions.224

3. SA Method without Correlations

The model is usually a complex interaction be-226

tween its input parameters and outputs, and is
treated in a black box fashion for the purpose of228

non-intrusive SA. Consider a model U that is de-
fined over a time horizon t, space dimension x230

and a set of D uncertain input parameters Q =
{Q1, Q2, . . . QD}, such that232

Y = U(t,x,Q). (1)

The model includes uncertain parameters that can
be collectively described by a joint multivariate234

probability density function ρQ. If the uncertain
parameters are statistically independent, the mul-236

tivariate probability density function ρQ can be
defined by separate univariate probability density238

functions ρQi
, one for each uncertain parameter Qi,

ρQ =

D∏
i=1

ρQi , (2)

where unit normal distributions are assumed, such240

that ρQi
∼ N (µ = 0, σ = 1).

The main computational pattern of the SA in242

both MC and PCE consists of drawing the samples
q from the input parameter space ρQ and evaluat-244

ing the model U(t,x,q) at these points. The num-
ber N of such evaluations in the PCE approach246

N =

(
D + P

P

)
(3)

is a function of the polynomial degree P of the ba-
sis and the dimension D of the parameters, where248

N grows fast, especially with the increasing dimen-
sion of the parameters. Based on these model eval-250

uations, the true response of the model Y is fitted

onto a polynomial basis Ψ = {Ψp, p = 0, . . . , P}252

with a polynomial degree up to P . The basis needs
to be orthogonal with respect to the input distribu-254

tions ρQi
. The polynomial model Ŷ = Û(t,x,Q) is

build such that the true model is approximated by256

the polynomial expansion, U(t,x,Q) ≈ Û(t,x,Q),
and the model outputs are similar Y ≈ Ŷ . The258

surrogate model Û(t,x,Q) is built from the poly-
nomial basis Ψ as260

Û(t,x,Q) =
∑
p⊂P

apΨp(Q)

= a0Ψ0 +
∑
p⊂P

D∑
i=1

aipΨ
i
p(Qi)

+
∑
p⊂P

D∑
i,j=1,j>i

aijp Ψ
ij
p (Qi, Qj)

...

+
∑
p⊂P

a12...Dp Ψ12...D
p (Q1, . . . , QD), (4)

where Ψ0 = 1 is a zero order polynomial, Ψi
p(Qi) is

a single dimensional polynomial up to degree p for a262

single input Qi, Ψij
p (Qi, Qj) denotes polynomial or-

der up to p of combination of two inputs Qi, Qj , etc.264

The polynomial coefficients ap follow similar nota-
tion. In the non-intrusive variant of the method,266

the polynomial basis Ψ is constructed using, e.g.,
the three terms recurrence or the discretized Stielt-268

jes method [3, 16]. The orthogonality of the poly-
nomials holds in case the Q parameters are inde-270

pendent, i.e., the joint density can be expressed as
a product of the individual marginal densities from272

Eq. (2).
A set of the polynomial coefficients ap is deter-274

mined such that the PCE model Û approximates
the true model response Y . In point collocation,276

the approximation is built such that it minimizes
the error at a set of collocation nodes compared to278

the true model response. Hammersley sampling [3]
from the distribution is used to choose the colloca-280

tion points. This results in a set of linear equations
for the polynomial coefficients, which are solved us-282

ing e.g. Tikhonov regularization. The overall al-
gorithm is summarized in Alg. 1, where the SA is284

described in the following sections.

3.1. Variance-based Sensitivity286

Variance-based SA [1] determines the impact of
the input parameters which can be used to asses the288
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Algorithm 1 SA Method without Correlations.

1. Generate samples q1, . . . ,qN from the inde-
pendent multivariate distribution ρQ.

2. Evaluate the true model Y 1 =
U(x, t,q1), . . . ,Y N = U(x, t,qN ) at qi ∈ ρQ.

3. Create a polynomial expansion Ψ1, . . . ,ΨP up
to the P -th degree from ρQ.

4. Solve the linear regression problem: Y n =∑
p ap Ψp(Qn) for a1, . . . , ap.

5. Construct the model approximation
U(x, t,Q) ≈ Û(x, t,Q) =

∑
p ap Ψp(Q)

6. Perform the SA using the surrogate model
Û(x, t,Q).

role of the parameters in the model, i.e., determine
if the parameter contributes intrinsically or via the290

parameter interactions, or asses the relative impor-
tance of the individual parameters. Additionally,292

variance-based sensitivity quantifies the output un-
certainty and its propagation through the model294

from the uncertain inputs [4, 16]. Following the
variance decomposition [2], the total output vari-296

ance V (Yn) of n-th model output from Eq. (1) can
be decomposed as298

V (Yn) =
∑
i

Vi +
∑
i

∑
j>i

Vij + . . .+ V12...D, (5)

where the partial variances are defined as

Vi = V(E(Yn|Qi)), (6)
Vij = V(E(Yn|Qi, Qj))− Vi − Vj , (7)

and so on, and the total variance is V (Yn) =300

V(E(Yn)). The polynomial coefficients can be post-
processed to compute quantities of interest such302

as mean, variance and other statistical moments
or variance-based sensitivity indices [5, 10]. The304

sensitivity indices in the variance-based measures,
known as Sobol indices [2], are defined as the frac-306

tion of the variance of the component functions with
respect to the total variance. The first order sen-308

sitivity index Si measures the contribution of the
i-th parameter,310

Si =
Vi

V (Yn)
. (8)

The total order sensitivity index ST
i includes not

only the intrinsic contribution of the parameter it-312

self as is the case for the first order index, but also

interactions with other parameters are considered,314

ST
i =

∑
α Va

V (Yn)
, (9)

where α is a set of all multi-indices which contain
i. It necessarily holds that 0 ≤ Si ≤ ST

i ≤ 1,316

and in case the model is additive and there are no
parameter interactions, i.e. the higher order terms318

are zero, then ∑
i

Si = 1. (10)

3.2. Derivative-based Sensitivity320

Derivative-based sensitivity indices express how
much does the model output change if a small per-322

turbation is applied to some of the inputs. The an-
alytical derivatives of the complex models are not324

known, thus the usual practice is to use automatic
differentiation tools or adopt approximations tech-326

niques such as finite differences to evaluate the nu-
merical derivatives. The model derivative with re-328

spect to the parameter Qi at a fixed point Q0
i is

expressed as330

SD
i =

∂Yn

∂Qi

∣∣∣∣
Q0

i

. (11)

The shortcoming of this approach is that the result-
ing index can be computed only in the vicinity of332

the operating point of the given model configuration
or its applicability for the SA of a single variable at334

a time, ignoring any possible interactions between
the parameters.336

Alternatively, the derivative-based sensitivity in-
dex can be evaluated by constructing the surrogate338

model Û and compute the derivative of the poly-
nomial expression with respect to a given param-340

eter. With this approach, the interaction of the
parameters can be incorporated in the SA via the342

parameter correlations. Thus, the sensitivity in-
dices of the individual parameters can incorporate344

interaction with other parameters using the proce-
dure proposed in this paper. This approach can be346

used for both variance-based and derivative-based
sensitivities.348

4. SA Method with Correlations

When considering models with correlated param-350

eters, the polynomial expansion (4) cannot be used
to accurately represent the model sensitivity since352
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Figure 1: Independent normal distribution (left) of the input
space and the corresponding transformed parameter space
with ρC = 0.8 (right). The contour lines illustrate the mul-
tivariate probability density function.

it doesn’t distinguish whether the parameter is con-
tributing to the model directly or through a correla-354

tion with another variable. This can lead to incor-
rect conclusions about the variance-based decompo-356

sition, where the importance of the input parame-
ters to the model and the sensitivity of the model358

to variations in these parameters no longer reflects
the true parameter interactions in the model.360

In order to address the parameter dependency,
the parameters must be decorrelated prior to ap-362

plying the SA. This approach is adopted in the
procedure of Mara and Tarantola [12, 13, 14]. In364

their original work, the samples are drawn from
the correlated joint distribution and define a set of366

new variables, which are characterized by the con-
ditional probability density functions and as such368

can be treated as independent. In this work, the
collocation points are sampled using the indepen-370

dent unit normal distributions ρQ = ND(µ, I),
while the model is evaluated using the transformed372

samples considering also the dependencies. Fig. 1
illustrates this principle, the independent colloca-374

tion nodes and their transformation to the target
correlated distribution ρ∗Q = ND(µ, C). Since the376

linear relationship between the random variables is
characterized using the Pearson and Spearman cor-378

relation coefficients, the correlated samples can be
obtained from the independent ones using two dif-380

ferent methods; (i) Rosenblatt transformation [17]
and (ii) Cholesky decomposition of the correlation382

matrix [18].

4.1. Cholesky Decomposition384

Independent samples with an identity correlation
matrix are drawn from a joint multivariate distri-386

bution
Q ∼ ND(µ, I). (12)

Since the components Qi are random variables with388

zero mean and unit variance with zero correlation,

we have E(QiQj) = δij . Hence, E(QQT ) = I. The390

joint probability of the independent variables can
be expressed as the product of the marginal distri-392

butions. On the other hand, the joint distribution
of the dependent variables394

Q∗ ∼ ND(µ, C). (13)

can be expressed as a product of the conditional
distributions, which are not known. An alterna-396

tive approach is it to introduce a transformation
between the two spaces of the variables, such that398

the independent variables Q can be transformed to
Q∗ and vice versa. The transformation is defined400

via the Cholesky decomposition of the correlation
matrix. The Cholesky decomposition of the corre-402

lation matrix C is computed such that L = chol(C),
and LLT = C, where404

L =

c11
c21 c22
c31 c32 c33

 . (14)

The uncorrelated samples Q are then trans-
formed to samples that contain the correlations406

between the variables, as given by the correla-
tion matrix, such that the transformed samples be-408

have as drawn from the correlated distribution, i.e.,
Q∗ = T (Q) = LQ, where T is the transformation410

operator,Q∗
1

Q∗
2

Q∗
3

 =

c11
c21 c22
c31 c32 c33

Q1

Q2

Q3

 . (15)

The random vector Q∗ behaves such that412

E(Q∗Q∗T ) = E((LQ)(LQ)T ) = E(LQQTLT ) =
LE(QQT )LT = LILT = C, since expectation is414

a linear operator. Hence, the transformed random
vector Q∗ has the desired correlation matrix C and416

Q∗ ∼ ND(µ, C). One of the requirements for the
Cholesky decomposition is that the matrix is pos-418

itive definite. In practice, the sample covariance
matrix is always at least positive semi-definite [19].420

In certain situations, the eigenvalues of a covariance
matrix can be zero. This can happen when the set422

of parameters includes constant or perfectly corre-
lated variables, or the sample size is too small. In424

this work, the covariance matrix is always assumed
to be positive definite.426

4.2. Rosenblatt Transformation
The Rosenblatt transformation [17] allows for a428

vector of independent random variables Q gener-
ated from the distribution ρQ to be transformed430
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Algorithm 2 SA Method with Correlations.
Generation of samples and their transformation:

1. Generate samples q1, . . . ,qN from the independent multivariate distribution ρQ.
2. Transform the samples qi ∈ ρQ to q∗

i ∈ ρ∗Q, i = 1, . . . , N , using:
(a) Cholesky transformation q∗

i = T (qi) = qiL from (14).
(b) Rosenblatt transformation q∗

i = T (qi) from (18).

Construction of the surrogate model:

1. Evaluate the true model Y ∗
1 = U(x, t,q∗

1), . . . ,Y
∗
N = U(x, t,q∗

N ) at q∗
i ∈ ρ∗Q.

2. Create a polynomial expansion Ψ1, . . . ,ΨP up to the P -th degree from ρQ.
3. Solve the linear regression problem: Y ∗

n =
∑

p ap Ψp(Qn) for a1, . . . , ap.
4. Construct the model approximation U(x, t,Q∗) ≈ Û(x, t,Q) =

∑
p ap Ψp(Q).

Algorithm 3 Evaluation of the Sensitivity Indices.
Variance-based analysis:

1. Compute the variance-based indices Si from the coefficients of Û(x, t,Q) according to (8) [5, 10].

Derivative-based analysis:
1. Compute the partial derivatives of the polynomial model Û(x, t,Q) with respect to Qi according to (11).
2. Evaluate the derivatives at the point of interest, e.g. the mean value of the parameters, in order to

obtain the sensitivity indices SD
i .

to the target distribution ρ∗Q which contains cor-
relations between the variables. The transformed432

samples Q∗ = T (Q) behave as if they were drawn
from the target density ρ∗Q.434

The Rosenblatt transformation can be derived
from a probability decomposition of a bivariate ran-436

dom variable Q∗ = (Q∗
1, Q

∗
2) with a correlation as

ρ∗Q = ρQ1
ρQ2|Q1

, (16)

where ρQ1 is a marginal density function, and438

ρQ2|Q1
is a conditional density. In a general mul-

tivariate case, the density decomposition has the440

form

ρ∗Q = ρQ1

D∏
di=2

ρ′Qdi
, (17)

where ρ′Qdi
= ρQdi

|ρQ1
, . . . , ρQdi−1

is conditioned442

on all components with lower indices. A forward
Rosenblatt transformation is then defined as444

T =
(
FQ′

1
, . . . , FQ′

d

)
, (18)

where FQ′
di

is the cumulative distribution function

FQ′
di

=

∫ qdi

−∞
ρQ′

di
(r | q1, . . . , qdi−1) dr. (19)

Note also that the Rosenblatt transformation is446

not limited to only Gaussian distributions. In this
work, the implementation of the transformation im-448

plemented in the Chaospy [3] package is used.

4.3. SA Method with Correlations450

The SA algorithm introduced in Alg. 1 needs to
be modified in presence of the correlated inputs in452

order to correctly represent the input-output inter-
actions and the sensitivity indices. The changes454

are summarized in the modified method presented
in Alg. 2.456

The modified method first needs to generate the
parameter samples including the correlations. As458

before, the set of the parameter samples q is gen-
erated from the independent joint distribution ρQ460

which are subsequently transformed according to
the stochastic dependency structure. The corre-462

lated samples q∗ = T (q) can be obtained using
either the Cholesky or Rosenblatt transformations.464

Having created the correlated samples, the mod-
ified method next evaluates the true model using466

the correlated samples Y ∗ = U(x, t,q∗). The sur-
rogate model is constructed in the transformed co-468

ordinate space compared to the independent model,
reflecting the correlated contributions which affect470
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the model outputs. This coordinate space is trans-
formed implicitly, by mapping the polynomial ex-472

pansion generated from the independent distribu-
tion ρQ, to the space of the correlated model out-474

puts Y ∗
n. In other words, the linear regression

Y ∗
n =

∑
p

ap(t) Ψp(qn) (20)

is solved, where the left-hand side term is in the476

correlated space, while the polynomial expansion
and the samples qn at the right-hand side is from478

the uncorrelated space. Such surrogate model is
then used to perform the SA summarized in Alg. 3.480

4.4. Interpretation of the Sensitivity Indices
The sensitivity indices computed following the482

method presented in Alg. 2 and 3 need to be inter-
preted differently, compared to their counterparts484

computed without any parameter dependencies (see
Sec. 3.1 and 3.2). One needs to consider the fact486

that the parameter transformations effectively in-
troduce new variables, which are a combination of488

the original ones in case of linear dependencies.
Consequently, the resulting indices either include490

the effects of the parameter itself together with its
dependence with other inputs or it can represents492

the sensitivity index without its mutual dependent
contributions with other parameters.494

When applying the transformation a particular
ordering of the parameters is assumed, e.g., the496

natural ordering P1 = (1, 2, . . . , D) with the pa-
rameters P1Q = (Q1, Q2, . . . QD). The transfor-498

mation is then applied sequentially, where the first
parameter is kept unmodified, while the others are500

transformed according to the particular correlation
structure. Considering a vector of the input param-502

eters P1Q, the correlated vector is formed as

Q∗
1 = Q1,

Q∗
2 = Q2|Q1,

Q∗
3 = Q3|Q1Q2, (21)
...

Q∗
D = QD|Q1Q2 . . . QD−1.

The resulting sensitivity indices obtained by ap-504

plying the SA with correlations using the trans-
formed samples Q∗ = (Q∗

1, Q
∗
2, . . . Q

∗
D) need to506

be interpreted differently, since different variables
have been used compared to the original variables508

Q. One needs to distinguish between the Full and

Independent indices. The Full index includes the510

effects of the parameter itself together with its de-
pendence with all other inputs. On the other hand,512

the Independent index represents the contribution
of a parameter without its mutual dependent in-514

teractions with other parameters. Using the per-
mutation P1, the Full index for the parameter Q1516

is obtained, together with the Independent index
for the parameter QD. The Full index is obtained518

for the first parameter in the permuted vector P1Q,
while the independent index corresponds to the last520

parameter in the permuted vector. The sensitiv-
ity indices of the remaining variables in the vector522

P1Q, that is (Q2, . . . QD−1), express the marginal
contribution of Qi, i = 2, . . . , D − 1 to the output524

variance without its correlative contributions with
parameters Qj , ∀j : j < i. Thus, under the per-526

mutation P1 the Full index for the parameter Q1 is
defined as528

S1 =
V(E(Yn|Q∗

1))

V(Yn)
, (22)

while the Independent index for the parameter QD

is defined as530

SD =
V(E(Yn|Q∗

D))

V(Yn)
. (23)

Note that the Full index is computed for the pa-
rameter Q∗

1 = Q1 which is chosen from its marginal532

distribution ρQ1
and that it carries mutual contri-

butions to the total variance due to the depen-534

dence on other parameters Qj , j > 1. On the
other hand, the Independent index for the parame-536

ter Q∗
D = QD|Q1Q2 . . . QD−1 does not contain the

mutual contributions with other parameters, since538

the parameter was drawn from the conditional dis-
tribution ρQD|Q1Q2...QD−1

.540

In order to compute the remaining Full and In-
dependent indices, different permutations need to542

be used. For example P2 = (2, . . . , D, 1), such that
P2Q = (Q2, Q3, . . . QD, Q1) from which the Full in-544

dex of parameter Q2 and Independent index of Q1

can be determined. Overall, there exist D! different546

permutations. However, both indices for all param-
eters can be obtained by circularly reordering the548

input vector Q, i.e., performing the SA D times in
total, as summarized in Tab. 1.550

5. Application Model

The coffee cup model [4] simulates a cooling pro-552

cess of a liquid contained in an open container. The
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Table 1: Sensitivity indices for different parameter permutations Pi.

Permutation Full Index Marginal Indices Independent Index
P1 = (1, 2, 3, . . . , D) Q1 Q2, . . . , QD−1 QD

P2 = (2, 3, . . . , D, 1) Q2 Q3, . . . , QD Q1

P3 = (3, . . . , D, 1, 2) Q3 Q4, . . . , QD, Q1 Q2

...
...

...
...

PD = (D, 1, 2, . . . , D − 1) QD Q1, . . . , QD−2 QD−1

model uses Newton’s law of cooling to evolve the554

temperature T over the simulation time t,
dT (t)

dt
= −κ(T (t)− Tenv). (24)

The parameter κ characterizes the container con-556

taining the liquid and the rate at which it dissipates
the heat to the environment. Ambient temperature558

of the environment is represented by the parameter
Tenv, while the initial temperature of the liquid is560

specified by the constant T0 = 95◦C.
In this study, the SA of the κ and Tenv parame-562

ters is studied. Due to the measurement error, in-
sufficient knowledge of the physical model or other564

reasons, the parameters κ and Tenv cannot be as-
signed an exact numerical value representing the566

modeled physical system. Instead the parameters
are modeled as uncertain and they are described568

with probability distributions. A normal distribu-
tion N (µ, σ) is assumed in this work, with a given570

mean µ and standard deviation σ for each parame-
ter,572

κ = N (0.05, 0.008),

Tenv = N (20, 1.5).
(25)

On top of the uncertainty in the individual pa-
rameters, these parameters might be correlated574

with each other. The correlation captures a physi-
cal property of the container’s material and its heat576

transfer rate, witch changes depending on the ambi-
ent temperature of the environment. For example,578

as the ambient temperature Tenv increases, the ma-
terial dissipates the heat more efficiently, increasing580

also the value of the parameter κ. The stochastic
dependency of the two parameters is described us-582

ing a correlation matrix C with correlation between
the parameters specified by ρC ,584

C =

(
1.0 ρC
ρC 1.0

)
. (26)

Fig. 1 illustrates the probability density function of
the parameters, both with and without the correla-586

tion. The goal of the SA is to analyze the impact

of the uncertain parameters to the outcome of the588

model, considering also the correlation between the
parameters.590

5.1. Software Tools and Libraries
The VECMA toolkit, or VECMAtk [20], is used592

to manage the simulations required for the analysis.
It enables automated verification, validation and594

UQ for complex applications, irrespective of their
source domain. VECMAtk is optimized for large596

scale computations, and can be deployed on emerg-
ing high-performance computing (HPC) platforms.598

The toolkit has previously been used for a range
of applications, such as a COVID model [21] (with600

computational complexity in order of 104 core hours
per experiment), a molecular dynamics model [22]602

(experiments consumed 2 · 106 core hours), and a
range of other applications [6].604

The EasyVVUQ package [16], a component of
the VECMA toolkit, has been developed to facili-606

tate forward UQ for HPC applications. EasyVVUQ
supports the definition of custom UQ and SA pro-608

cedures, which may include sampling and analysis,
without requiring users to modify their core appli-610

cations. It has been applied successfully to a diverse
set of applications, and is able to cope with pro-612

cedures that require thousands of simulation runs.
EasyVVUQ is open source and written in Python 3.614

6. Numerical Experiments

Numerical experiments are performed using the616

model introduced in Sec. 5. The initial condition
for the differential equation (24) used hereafter is618

T0 = 95◦C. The simulation time covers first t = 200
minutes of the cooling process, with the time dis-620

cretized into 150 time steps of length ∆t = 80 s.
The parameter distributions used in the numerical622

experiments, if not stated otherwise, are defined in
Eq. (25) and (26). The surrogate model is con-624

structed using polynomials up to the third order,
unless specified otherwise.626
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Figure 2: Surrogate models Ûρ0 , ÛρC for the coffee cup model with independent and correlated inputs at various time instants.
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Figure 3: Difference between the surrogate models Ûρ0 and ÛρC with independent and correlated inputs at various time instants.

6.1. Surrogate Models
The polynomial surrogates of the model (24) are628

examined in the vicinity of the mean value of the pa-
rameters (25). The surrogate model is built for each630

time instant of the discretized time horizon, depict-
ing the model output as a function of the particular632

values of the input parameters. The surrogate mod-
els at various time instants t for the coffee cup are634

illustrated in Fig. 2, demonstrating the effect of the
correlation in the parameters. Note that while the636

difference between the two models is small near the
begging of the simulation time, the gap between638
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the two grows as the time progresses. The changes
in the final temperature profile are exaggerated by640

the interaction of the parameters within the model
over time, thus the effect of the correlation is par-642

ticularly visible at advanced simulation time, i.e.,
t > 20 − 30min. The absolute difference between644

the uncorrelated and correlated surrogate models
e = ÛρC − Ûρ0

with ρC = 0.8 is illustrated in Fig. 3.646

It is also important to highlight different cur-
vature of the surrogate models, since during the648

derivative-based analysis a partial derivative of the
surrogate with respect to a parameter is evaluated650

at the mean value of the parameters. Similarly as
before, the curvature difference between the two652

models ÛρC , Ûρ0 grows with the proceeding sim-
ulation time.654

6.2. SA with Uncorrelated Parameters
In case the correlation matrix C is an identity656

matrix, i.e., there is no correlation between the pa-
rameters, the model evolution is shown in Fig. 4.658

The model variance due to the uncertainty in the
input parameters is shown as well. Note that the660

model variance at the initial point is zero, thus the
Sobol indices are not defined at this time instant.662

Variance-based Indices
The corresponding sensitivity indices are shown664

in Fig. 5, replicating the values of the variance-
based Sobol indices from previous works, e.g., [4].666

The difference of the first and total order variance-
based indices, shown in the left panel of Fig. 5, are668

less than 10−4, indicating there are no higher order
parameter interactions. The first order Sobol index670

of the κ parameter is the most influential in the first
75 minutes, while the ambient temperature param-672

eter dominates in the remaining simulation time.
After reaching near equilibrium, i.e. the ambient674

and the coffee cup temperature difference is less
than ≈ 0.1◦C, the ambient temperature parameter676
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Figure 5: First-order Sobol and derivative-based indices con-
sidering the independent parameters.
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Figure 6: Derivative-based indices using linear and logarith-
mic y-axis scale. Note that the absolute values of the sensi-
tivity indices are used in the latter case.

explains nearly all of the output variance as shown
in Fig. 4. Intuitively, this is an expected behavior678

or the model, since the end state of the coffee cup
after reaching the equilibrium is the environment680

temperature. Since there are no higher order inter-
actions, the first order Sobol indices add up to one.682

Consequently, the behavior of the indices is neces-
sarily complementary for the two parameters, i.e., if684

one index is increasing, the other is proportionally
decreasing and vice versa.686

Derivative-based Indices
The derivative-based indices, shown in the right688

panel of Fig. 5, provide an insight into the model
around the vicinity of a fixed point, in this case the690

mean value of the model parameters. Following the
definition in Eq. (11), the values of the derivative-692

based index correspond to the slope of a tangent
line to the model surface at the given spatial point694

and time instant. The magnitude of the individual
derivative-based sensitivity indices differs by more696

than two orders of magnitude, thus the sensitivity
indices are shown also in the logarithmic scale (con-698

sidering their absolute values) in Fig. 6. Note that
the sensitivity of the parameter Tenv is near zero at700

the beginning of the simulation, which reflects the
fact that it has very small contribution to the model702

output as the temperature of the coffee cup is driven
mainly by the heat transfer constant. As the time704

progresses, the sensitivity of Tenv increases and ap-
proaches one, meaning that a change of the ambient706

temperature will have the proportional effect on the
model output. This reflects the fact that the final708
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0 50 100 150 200
Time t (min)

0.0

0.2

0.4

0.6

0.8

1.0

Fir
st

-o
rd

er
 S

ob
ol

 in
di

ce
s

Parameter Tenv

P1 = ( , Tenv)
P2 = (Tenv, )
Uncorr.

0 50 100 150 200
Time t (min)

0.00

0.05

0.10

0.15

0.20

0.25

Ab
so

lu
te

 e
rro

r

Sobol index error (Absolute)
P1 = ( , Tenv)-Uncorr.
P2 = (Tenv, )-Uncorr.

(b) Full (P2) and Independent (P1) sensitivity indices of Tenv .

Figure 7: Variance-based indices considering correlated pa-
rameters (ρC = 0.4) and the absolute difference with the
uncorrelated indices from Fig. 5.

temperature of the coffee cup is equal to the am-
bient temperature, thus the change in the ambient710

temperature induces an equal change in the final
state of the coffee cup. On the other hand, the sen-712

sitivity of the parameter κ is significantly larger but
the sensitivity of the parameter decreases over the714

simulation time, since the heat transfer is driven
mainly by the temperature gradient between the716

coffee cup and the surrounding environment which
is largest in the begging of the simulation. As this718

temperature differential decreases, the heat trans-
fer becomes less significant. Note also the negative720

value of the sensitivity index, meaning that as the
heat transfer parameter κ increases, the output of722

the model, that is the coffee cup temperature, de-
creases due to a larger effect of the heat transfer.724

6.3. SA with Parameter Dependency
Next, the correlation matrix C is modified, such726

that the off-diagonal elements are no longer zero,
indicating parameter correlation. If not stated oth-728

erwise, the numerical experiments use the value
ρC = 0.4 for the Pearson correlation coefficient. The730

ordering of the indices in SA with correlations be-
comes important and the SA needs to be performed732

for different permutations, as detailed in Sec. 4.4.

Variance-based Indices734

The Sobol indices for the correlated parameters
and their difference relative to the baseline exper-736

iment with independent parameters is shown in

Fig. 7. In order to obtain the complete set of the738

Full order and Independent indices for both param-
eters, the SA needs to be executed twice, each time740

with different parameter permutation. First the
permutation P1 = (κ, Tenv) is used to obtain the742

Full order index of the κ and the Independent index
for the parameter Tenv. Using the second permu-744

tation, P2 = (Tenv, κ), the Full order index of the
Tenv and the Independent index for the parameter746

κ are obtained.
The Full order and Independent indices for the748

parameter κ are shown in Fig. 7a, comparing them
to the sensitivity index shown in the previous sec-750

tion with uncorrelated parameters. Considering the
Full order index of the κ parameter (permutation752

P1), the contribution of this parameter to the out-
put variance near the end of the simulation time is754

increased compared to the independent case. Since
the parameters are positively correlated, increasing756

the value of parameter κ induces growth also in
the Tenv parameter, thus increasing the end state758

equilibrium temperature of the coffee cup. Previ-
ously, there was no such interaction of the param-760

eters, thus the variance-based index of the κ pa-
rameter was zero at the end of the simulation time.762

However, the Full index is lower around the simu-
lation time t ≈ 100min compared to the uncorre-764

lated case. This is due to to the fact that increasing
κ induces growth of the Tenv parameter, which in766

turn decreases the temperature gradient. Consid-
ering the dynamics of the model in (24), the in-768

duced of the ambient temperature counteracts the
elevated heat transfer, thus the sensitivity of the770

heat transfer parameter has decreased. When the
Independent index is considered (permutation P2),772

the effect of the correlation is removed and the in-
dex is nearly identical to the independent case in774

the simulation time t > 100min. However, in the
simulation time around t ≈ 50 the sensitivity of the776

κ parameters has increased, thus emphasizing the
importance of the parameter at the time instants778

when the temperature gradient is large. Fig. 7a
also shows the absolute difference of the Full order780

and Independent index compared to the uncorre-
lated case, in order to illustrate the magnitude of782

the difference.
The behavior of the first order Sobol index for784

Tenv parameter, as shown in Fig. 7b, is opposite
to that of the κ parameter. The Full order index786

(permutation P2) matches the independent case at
the end of the simulation time (since it was already788

at the maximum value of 1). Removal of the con-
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Figure 8: Complementary behaviors of the indices.

tribution of the correlation decreases the value of790

the index. The magnitude of the change is propor-
tional to the difference in the κ parameter indices792

(Full vs. Independent index). This behavior of the
indices can be interpreted such that the portion of794

the output variance can be explained by both pa-
rameters simultaneously since they are correlated.796

It can be equally said that some output variance is
explained either by one or the other parameter. In798

an extreme case of the perfect correlation, ρ12 = 1,
it is equivalent to say that the output variance is ex-800

plained either by one or the other parameter, since
the value of one parameter completely determines802

the value of the other.
It is also interesting to observe the complement804

of the indices to one, shown in Fig. 8. Consider
the Full index of the κ parameter, as shown in806

Fig. 8a. Its complement to one explains the output
variance contributed by the other parameter alone808

without its correlated contribution with κ. In case
of two parameters, this complement is the Indepen-810

dent Sobol index of the Tenv parameter. In general
case with a set of D parameters, complement of the812

Full index of the parameter i explains the amount of
variance contributed by the remaining D−1 param-814

eters without their correlated contribution with i.
A similar relationship is observed between the com-816

plement of the Full index of Tenv and Independent
index of κ in Fig. 8b. Note the presence of a numer-818

ical error in this case, in order to eliminate it, the
indices should be computed with higher order poly-820

nomials in the PCE analysis (see Sec. 6.5). Simi-
larly, Fig. 8c,d illustrate the relationship between822

the complement of the Independent indices and the
Full indices of the other parameter.824
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Figure 9: Derivative-based indices considering dependent pa-
rameters with correlation ρC = 0.4 and the absolute differ-
ence with the uncorrelated indices.

Derivative-based Indices
Behavior of the derivative-based indices in the826

correlated case for the parameter κ is shown in
Fig. 9a. In Sec. 6.2 it was shown that the signif-828

icance of the heat transfer diminishes toward the
end of the simulation time, t > 150min, and the830

value of the derivative-based index approaches zero.
This is due to the fact that the final equilibrium is832

completely determined by the ambient temperature
parameter Tenv. However, when we consider corre-834

lation between the parameters and the Full order
index (permutation P1) the significance of the pa-836

rameter κ is increased since the Full order index
includes also the interaction with the other param-838

eters due to the correlations. In physical terms, it
can be interpreted such as when the parameter κ840

is increased, the ambient temperature Tenv will be
increased due to their positive correlation ρC = 0.4.842

Consequently, the final temperature of the coffee
cup will be increased as well and this is reflected844

accordingly in the Full order index of the κ param-
eter which is no longer zero as in the uncorrelated846

case. It is also interesting to observe the behav-
ior around the simulation time t ≈ 20min. Note848

that the magnitude of the Full order index is re-
duced compared to the uncorrelated case. The rea-850

son for this is again the correlated interaction with
the Tenv parameter. Studying the effect of increas-852

ing the κ incurs also an increase in the Tenv due
to their correlation. This however reduces the tem-854

perature gradient when assuming constant initial
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Figure 10: Sobol indices considering dependent parameters with increasing correlation ρC and permutation (κ, Tenv), showing
also difference with respect to the uncorrelated indices.

temperature of the coffee cup, thus the cooling pro-856

cess is reduced, even though the heat transfer coef-
ficient was increased. This effect is represented by858

the reduced magnitude of the Full order index of κ
parameter around the simulation time t ≈ 20min.860

Similar logic applies when considering the Inde-
pendent index. Consider the Independent index of862

the Tenv parameter (permutation P1) in Fig. 9b.
In the uncorrelated case, the equilibrium near the864

end of the simulation time, t > 150min, was com-
pletely determined by the Tenv parameter. In the866

correlated case, after removing the effect of the cor-
relation, the Independent index is proportionally868

reduced since a part of the ambient temperature
growth was induced by the effect of the κ parame-870

ter and the Independent index eliminates these pa-
rameter interactions.872

6.4. Parameters with Increasing Correlation

It is important to understand the effect of the cor-874

relation to the value of the indices. In this section,
the correlation ρC is gradually increasing in incre-876

ments of 0.2, ranging from zero all the way to one
(i.e. from no correlation up to perfect correlation).878

The largest value of the correlation is slightly re-

duced, ρC = 1.0− ϵ, ϵ = 10−10, in order to preserve880

positive definiteness of the correlation matrix C.

6.4.1. Variance-based Sensitivity882

The study of the First order Sobol indices is first
performed considering the permutation (κ, Tenv),884

which is used to compute Full Sobol index for κ and
an Independent index for Tenv shown in Fig. 10. It886

can be observed that as the correlation increases,
the Full index of κ at t > 125min in Fig. 10a is888

gradually increasing, while at the same time the In-
dependent index of the other parameter in Fig. 10b890

proportionally decreases. This reflects the fact that
due to the correlation, the Full index κ becomes892

gradually more significant due to its correlation
with the Tenv parameter, not because of the pa-894

rameter κ itself. On the other hand, the amount
of the variance explained by Tenv alone decreases896

with increasing correlation, because of its interac-
tion with κ. In the limit situation when ρ12 = 1,898

the parameters alone become insignificant and all
of the variance is explained by their correlated in-900

teraction. Note that the Independent index is zero
(Fig. 10b) while the Full index is one (Fig. 10a).902

Similar effect can be observed using the permuta-

14



0 50 100 150 200
Time t (min)

500

400

300

200

100

0

100

200
De

riv
at

iv
e-

ba
se

d 
in

di
ce

s
Parameter 

= 0.0
= 0.2
= 0.4
= 0.6
= 0.8
= 1.0

0 50 100 150 200
Time t (min)

0

25

50

75

100

125

150

175

Ab
so

lu
te

 e
rro

r

Derivative-based index error (Absolute)
= 0.2- = 0.0
= 0.4- = 0.0
= 0.6- = 0.0
= 0.8- = 0.0
= 1.0- = 0.0

(a) First order Full index of the κ parameter.

0 25 50 75 100 125 150 175 200
Time t (min)

0.0

0.2

0.4

0.6

0.8

1.0

De
riv

at
iv

e-
ba

se
d 

in
di

ce
s

Parameter Tenv

= 0.0
= 0.2
= 0.4
= 0.6
= 0.8
= 1.0

0 25 50 75 100 125 150 175 200
Time t (min)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 e
rro

r

Derivative-based index error (Absolute)
= 0.2- = 0.0
= 0.4- = 0.0
= 0.6- = 0.0
= 0.8- = 0.0
= 1.0- = 0.0

(b) First order Independent index of the Tenv parameter.

Figure 11: Derivative-based indices considering dependent parameters with increasing correlation ρC and permutation (κ, Tenv),
showing also difference relative to the uncorrelated indices.

tion (Tenv, κ) used to compute Independent Sobol904

index for κ and the Full index for Tenv.

6.4.2. Derivative-based Sensitivity906

The effect of increasing correlation for the
derivative-based sensitivity indices is shown in908

Fig. 11. It shows the indices obtained from the per-
mutation (κ, Tenv), which corresponds to the per-910

mutation P1 in Fig. 9. It can be seen that the in-
creasing correlation intensifies the effects described912

in Sec. 6.3. Note that in the extreme case of cor-
relation ρC = 1.0 the Independent index becomes914

zero across the whole simulation, as the parameter
Tenv is completely explained by the parameter κ.916

Note that, as opposed to the variance-based sensi-
tivity indices, this doesn’t mean that the Full order918

index is equal to one across the simulation time,
since the range of the index values is not bound to920

the interval (0, 1) nor there is any property similar
to Eq. (10).922

6.5. Convergence Analysis
The convergence of the QMC method is tested,924

which is later used as a reference value for the PCE
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Figure 12: Convergence of the QMC method for Sobol in-
dices using permutation (κ, Tenv) with correlation ρC =
0.417.

method. The QMC method is run with an increas-926

ing number of samples, and the resulting first order
indices are shown in Fig. 12. The absolute differ-928

ence between the indices is well below the threshold
of significance 0.05, thus the method is considered930

to have converged. The rather arbitrary value of
0.05 is frequently accepted for this type of analysis932

for distinguishing important parameters from the
unimportant ones [23], thus similar idea can be ap-934

plied to declare a method to converge.
The PCE method is run with an increasing poly-936

nomial order, ranging from 2nd to 7th order. Fig-
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Figure 13: Convergence of PCE method for variance-based
indices with increasing polynomial order (PO) using permu-
tation (κ, Tenv) with correlation ρC = 0.417.
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Figure 14: Convergence of PCE method for derivative-based
indices using permutation (κ, Tenv) with correlation ρC =
0.417.

ure 13 illustrates that the variance-based indices938

computed by the PCE method differ from the refer-
ence value of the QMC by less than 0.05 for polyno-940

mial order three and higher orders. For the fourth
polynomial order, the difference is below 0.01. For942

practical purposes the analysis can be run with
third of fourth order polynomials. The difference944

in the initial point is attributed to the fact that the
variance in this point is zero and the variance-based946

Sobol indices are not defined, thus the difference is

meaningless here. Convergence of the derivative-948

based indices with the surrogate polynomial order
are shown in Figure 14.950

7. Conclusions and Future Work

The SA methods introduced in this paper pro-952

vides a comprehensive way to quantify the uncer-
tainty and sensitivity of a model with correlated954

inputs. As demonstrated in the numerical exper-
iments, the sensitivity indices ignoring parameter956

correlations significantly differ from their counter-
parts which do account for the correlation. This958

can have profound implications for assessing the in-
fluence of the individual indices on the model sen-960

sitivity. In case of the variance-based sensitivity,
the model uncertainty can be over/under-estimated962

at the presence of the correlation. In case of the
derivative-based indices, it was demonstrated that964

the sensitivity of the associated parameters can not
only differ in magnitude, but even invert the sign966

of the derivative-based index, thus reversing the
model behavior compared to the prediction of the968

study disregarding the correlations. In conclusion,
it is essential to consider the parameter correlations970

during the SA in order to get realistic estimation of
the sensitivity indices.972

A comprehensible and easy to understand appli-
cation model in this work was intentionally chosen974

in order to intuitively understand the input-output
interactions and to clearly demonstrate the impact976

of the input parameter correlations on the sensitiv-
ity indices. In the follow-up work we will apply the978

method to a large-scale model from the domain of
energy markets, where the input parameters such980

as fossil fuel prices are often correlated. We will
evaluate the impact of the correlations on the sen-982

sitivity analysis, and explore also associated high-
performance computational aspects.984
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