
8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 1/15

tcplfit2 Vignette
Center for Computational Toxicology and Exposure

Getting started with tcplfit2
Example 1: Running a single concentration-response calculation
Example 2: Running a series of concentration-response models for a single assay
Example 3: Plotting concentration-response modeling on transcriptional signatures
Example 4: Running tcpl-like multi-concentration response data without a database
connection

Adjustments
Normalization
Dose-Response Curve Fitting
Continuous Hitcalling

Getting started with tcplfit2
The package tcplfit2 contains the core concentration-response functionality of the package tcpl (The
ToxCast Pipeline) built to process all of the ToxCast high-throughput screen (HTS) data at the US EPA.
Much of the rest of the code in tcpl is used to do data processing, normalization, and database
storage. We wanted to reuse the core concentration-response code for other projects, and add
extensions to it, which was the origin of the current package tcplfit2 . The main set of extensions
was to include all of the concentration-response models that are contained in the program
BMDExpress. These include exponential, polynomial, and power functions in addition to the original
Hill, gain-loss and constant models. Additionally, we wanted to include BMD (Benchmark Dose
Modeling) outputs, which is simply defining a Benchmark Response (BMR) level and setting the BMD to
the concentration where the curve crosses the BMR level. One final addition was to let the hitcall value
be a continuous number ranging from 0 to 1. The hitcall number is a product of three probabilities.
This vignette describes some functionality of the tcplfit2 package with a few simple examples.

Example 1: Running a single concentration-response calculation

All calculations use the function concRespCore which has several key inputs. The first set are put into
a named list called ‘row’:

conc - a vector of concentrations (not log concentrations)

https://assessments.epa.gov/bmds/document/&deid=353980

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 2/15

resp - a vector of responses, of the same length as conc . Note that replicates are allowed,
i.e. there can be multiple pairs of conc and resp with the same concentration value.
cutoff - this is the value that the response must exceed before a a curve can be called a hit. For
ToxCast, this is usually some multiple (typically 3) of the median absolute deviation (BMAD) around
baseline for the lowest two concentration. The user is free to make other choices
bmed - this is the median of the baseline. The entire response series will be shifted by this amount.
Set to zero if the data is zero-centered.
onesd - This is one standard deviation of the noise around the baseline. The BMR value =
onesd * bmr_scale . The default bmr_scale is 1.349.

The function concRespCore can also have other optional elements which will be included in the
output. These can be, for instance, the name of the chemical (or other identifiers) or the name of the
assay being modeled. Two other parameters might be used. The first is a Boolean conthits . If TRUE
(the default, and recommended usage), the hitcall returned will be a continuous value between 0 and
1. The other is do.plot . If this is set to TRUE (default is FALSE), a plot of the curve will be generated.
The user can also select only a subset of the models to be run. The example below has all of the
possible ones included. the model cnst always needs to be included. For some applications, we
exclude the gnls model.

To run a simple example, use the following code …

 conc <- list(.03,.1,.3,1,3,10,30,100)
 resp <- list(0,.2,.1,.4,.7,.9,.6, 1.2)
 row = list(conc = conc, resp = resp, bmed = 0, cutoff = 1, onesd = .5,name="some

chemical")
 res <- concRespCore(row,fitmodels = c("cnst", "hill", "gnls", "poly1", "poly2", "pow",

"exp2", "exp3",
 "exp4", "exp5"),conthits = T, do.plot=T)

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 3/15

The output of this run will be a data frame with one row, summarizing the results for the winning
model.

Example 2: Running a series of concentration-response models
for a single assay

Show 10 entries Search:

Showing 1 to 1 of 1 entries Previous 1 Next

name ▲▼ n_gt_cutoff▲▼ cutoff▲▼ fit_method▲▼ top_over_cutoff▲▼ rmse▲▼ a▲▼

some
chemical

1 1 hill 1.225599329606842 0.1750311682092355

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 4/15

The input data for this example is taken from one of the Tox21 HTS assays, for estrogen receptor (ER)
agonist activity. The data is from the mc3 table in the database invitrodb , which is the back end for
tcpl . The input data is Level 3 data, which mean they have already been through some prepossessing
steps. The concentration data have been normalized and response data have been transformed. This
example will run 6 chemicals out of the 100 that are included in the data set, and will create plots for
these. The plotting routine concRespPlot is somewhat generic, and we anticipate that users will make
their own version of this. To run this example, use the following code …

 # read in the data
 # Loading in the level 3 example data set from invitrodb
 data("mc3")

 # set up a 3 x 2 grid for the plots
 oldpar <- par(no.readonly = TRUE)
 on.exit(par(oldpar))
 par(mfrow=c(3,2),mar=c(4,4,2,2))

 # determine the background variation
 temp <- mc3[mc3$logc<= -2,"resp"]
 bmad <- mad(temp)
 onesd <- sd(temp)
 cutoff <- 3*bmad

 # select six samples. Note that there may be more than one sample processed for a given
chemical

 spid.list <- unique(mc3$spid)
 spid.list <- spid.list[1:6]

 for(spid in spid.list) {
 # select the data for just this sample
 temp <- mc3[is.element(mc3$spid,spid),]

 # The data file has stored concentration in log10 form, so fix that
 conc <- 10**temp$logc
 resp <- temp$resp

 # pull out all of the chemical identifiers and the name of the assay
 dtxsid <- temp[1,"dtxsid"]
 casrn <- temp[1,"casrn"]
 name <- temp[1,"name"]
 assay <- temp[1,"assay"]

 # create the row object
 row <- list(conc = conc, resp = resp, bmed = 0, cutoff = cutoff, onesd =

onesd,assay=assay,dtxsid=dtxsid,casrn=casrn,name=name)

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 5/15

One would typically save the result rows in a data frame end export these for further analysis. You
could remove the plotting function from the current loop and have a loop that read from the overall

 # run the concentration-response modeling for a single sample
 res <- concRespCore(row,fitmodels = c("cnst", "hill", "gnls", "poly1", "poly2", "pow",

"exp2", "exp3",
 "exp4", "exp5"),conthits = T, aicc =

F,bidirectional=F)

 # plot the results
 concRespPlot(res,ymin=-10,ymax=100)
 }

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 6/15

results data frame and only plot selected results (e.g. those with significant responses).

Example 3: Plotting concentration-response modeling on
transcriptional signatures

The input data for this example contains 6 signatures for one chemical in a transcriptomics data set.
Each signature is a different assay endpoint of the given chemical and is stored as one row in the data.
This data set is a sample from the signature scoring method that provides the cutoff, one standard
deviation, and the concentration-response data. The example illustrates two kinds of plots available in
tcplfit2 . In the call to concRespCore() , the argument do.plot is set to TRUE , which provides a
simple plot showing results of all the different curve fitting methods. Next, utilizing the function
concRespPlot() provides a more informative plot for the winning model.

 # call additional R packages
 library(stringr) # string management package

 # read in the file
 data("signatures")

 # set up a 3 x 2 grid for the plots
 oldpar <- par(no.readonly = TRUE)
 on.exit(par(oldpar))
 par(mfrow=c(3,2),mar=c(4,4,2,2))

 # fit 6 observations in signatures
 for(i in 1:nrow(signatures)){
 # set up input data
 row = list(conc=as.numeric(str_split(signatures[i,"conc"],"\\|")[[1]]),
 resp=as.numeric(str_split(signatures[i,"resp"],"\\|")[[1]]),
 bmed=0,
 cutoff=signatures[i,"cutoff"],
 onesd=signatures[i,"onesd"],
 name=signatures[i,"name"],
 assay=signatures[i,"signature"])
 # run concentration-response modeling (1st plotting option)
 out = concRespCore(row,conthits=F,do.plot=T)
 if(i==1){
 res <- out
 }else{
 res <- rbind.data.frame(res,out)
 }
 }

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 7/15

 # set up a 3 x 2 grid for the plots
 oldpar <- par(no.readonly = TRUE)
 on.exit(par(oldpar))
 par(mfrow=c(3,2),mar=c(4,4,2,2))
 # plot results using `concRespPlot`(2nd plotting option)
 for(i in 1:nrow(res)){
 concRespPlot(res[i,],ymin=-1,ymax=1)
 }

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 8/15

Example 4: Running tcpl-like multi-concentration response data
without a database connection

The ToxCast pipeline tcpl is an R package that manages, curve-fits, plots, and stores ToxCast data to
populate its linked MySQL database, InvitroDB. The original tcplFit() function within tcpl
performed basic concentration response curve fitting. Processing with tcpl_v3 and beyond depends on
tcplfit2 to allow a wider variety of concentration-response models when using invitrodb in the
4.0 schema and beyond. Within this update, tcplLite became deprecated within tcpl because
tcplFit2 can be used to curve-fit data and make hitcalls independent of invitrodb, as the example
below illustrates. For additional information, please consult vignettes for library(tcpl) at
https://CRAN.R-project.org/package=tcpl.

https://cran.r-project.org/package=tcpl

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 9/15

The input for this example comes from the ACEA_AR assay. Data from the assay component
ACEA_AR_agonist_80hr was analyzed in the positive analysis fitting direction relative to DMSO as the
neutral control and baseline of activity. Using a electrical impedance as a cell growth reporter,
increased activity can be used to infer increased signaling at the pathway-level for the androgen
receptor (as encoded by the AR gene). Given heterogeneous assay data, source data often must go
through pre-processing steps to transform into a uniform data format, often like this level 0. The
below table is identical to the multi-concentration level 0 data (mc0) table that would be seen in
invitrodb and recognized by tcpl . Columns include:

m0id = Level 0 id
spid = Sample id
acid = Unique assay component id; unique numeric id for each assay component
apid = Assay plate id
coli = Column index (location on assay plate)
rowi = Row index (location on assay plate)
wllt = well type
wllq = well quality
conc = concentration
rval = raw value
srcf = Source file name
clowder_uid = clowder unique id for source files
git_hash = hash key for pre-processing scripts

Loading in the level 0 example data set from invitrodb
data("mc0")
library(data.table)
dat <- mc0
DT::datatable(head(dat[wllt=='t',]),rownames= FALSE, options = list(scrollX = T))

Show 10 entries Search:

m0id▲▼ spid ▲▼ acid▲▼ apid ▲▼ rowi

519762672 TP0001364A01 1829 Experiment.ID:1502051323HT1_A113641_AP01_RA_P09

519762768 TP0001364A02 1829 Experiment.ID:1502051323HT1_A113641_AP01_RA_P09

519762864 TP0001364A03 1829 Experiment.ID:1502051323HT1_A113641_AP01_RA_P09

519762960 TP0001364A04 1829 Experiment.ID:1502051323HT1_A113641_AP01_RA_P09

519763056 TP0001364A05 1829 Experiment.ID:1502051323HT1_A113641_AP01_RA_P09

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 10/15

To run standalone tcplfit2 fitting without the need for a MySQL database connection like
invitrodb , the user will replicate stepping through the multiple levels of processing. A detailed
explanation of processing levels can be found within tcpl ’s Data Processing vignette.

Level 1 importantly establishes the concentration index. The concentration index is simply the distinct
concentrations ranked from lowest to highest, and this index can be used to calculate the baseline
median absolute deviation for an assay.

Showing 1 to 6 of 6 entries Previous 1 Next

519763152 TP0001364A06 1829 Experiment.ID:1502051323HT1_A113641_AP01_RA_P09

library(tcpl)
#> Warning: package 'tcpl' was built under R version 4.2.3
#> tcpl (v3.0.1) loaded with the following settings:
#> TCPL_DB: C:/Program Files/R/R-4.2.2/library/tcpl/csv
#> TCPL_USER: NA
#> TCPL_HOST: NA
#> TCPL_DRVR: tcplLite
#> Default settings stored in tcpl config file. See ?tcplConf for more information.
Order by the following columns
setkeyv(dat, c('acid', 'srcf', 'apid', 'coli', 'rowi', 'spid', 'conc'))

Define replicate id (rpid) column for test compound wells
nconc <- dat[wllt == "t" , ## denotes test well as the well type (wllt)
 list(n = lu(conc)), #total number of unique concentrations
 by = list(acid, apid, spid)][, list(nconc = min(n)), by = acid]
dat[wllt == "t" & acid %in% nconc[nconc > 1, acid],
 rpid := paste(acid, spid, wllt, srcf, apid, "rep1", conc, sep = "_")]
dat[wllt == "t" & acid %in% nconc[nconc == 1, acid],
 rpid := paste(acid, spid, wllt, srcf, "rep1", conc, sep = "_")]

Define rpid column for non-test compound wells
dat[wllt != "t",
 rpid := paste(acid, spid, wllt, srcf, apid, "rep1", conc, sep = "_")]

set repid based on rowid
dat[, dat_rpid := rowid(rpid)]
dat[, rpid := sub("_rep[0-9]+.*", "",rpid, useBytes = TRUE)]
dat[, rpid := paste0(rpid,"_rep",dat_rpid)]

Define concentration index

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 11/15

Adjustments

Levels 2 and 3 are used for data adjustments and normalization. Generally if the response values (rval)
need to be logged or transformed in some way from their original values this is where that adjustment
would occur. Response values that have been transformed are referred as the corrected value and is
represented by cval . However, in this case, the corrected value (cval) is identical to the original
response values (rval).

Once the data is initialized to a point where the required fields are available, the methods included in
the tcpl package can be identified and applied without the need for a database connection. You can
see the list of available methods for Level 3 in the table below:

indexfunc <- function(x) as.integer(rank(unique(x))[match(x, unique(x))])
dat[, cndx := indexfunc(conc), by = list(rpid)]

If no adjustments are required for the data, the corrected value (cval) should be set as
original rval

dat[,cval := rval]

Poor well quality (wllq) wells should be removed
dat <- dat[!wllq == 0,]

Fitting generally cannot occur if response values are NA therefore values need to be
removed

dat <- dat[!is.na(cval),]

A column for log10 concentration is added as some of the mc3 methods require logc. Given
logging concentration, conc=0 are not allowed therefore a dummy non-zero value
should be used

dat[conc == 0 , conc := 0.0001]
dat[, logc := log10(conc)]

#As a final step to prepare the dataset tcplfit2 processing, a dummy aeid is required if
using mc3_mthds from tcpl

dummy_aeid <- 99999
dat[,aeid := dummy_aeid]

Set aeid as a key
setkey(dat,aeid)

mthd_funcs <- tcpl:::mc3_mthds()
DT::datatable(tcpl::tcplMthdList(3),rownames= FALSE, options = list(scrollX = T))

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 12/15

Normalization

Here three normalization methods are selected and applied to the data. Note because of the way
tcpl handles the application of functions, the dataframe must be called dat . In the future, tcpl will
export these functions so that they can be applied to any dataset without the need for a specific name
or dummy aeid.

Show 10 entries Search:

Showing 1 to 10 of 37 entries Previous 1 2 3 4 Next

mc3_mthd_id▲▼ mc3_mthd ▲▼ desc ▲▼

1 none apply no level 3 method

2 bval.apid.lowconc.med
plate-wise baseline based on low conc median
value

3 pval.apid.medpcbyconc.max
plate-wise median response of positive control
(max)

4 pval.apid.medpcbyconc.min
plate-wise median response of positive control
(min)

5 resp.pc response percent activity

6 resp.multneg1 multiply the response by -1

7 resp.log2 take the log base 2 of the response

8 resp.mult25 multiply the response by 25

9 resp.fc calculate response as fold-change

11 bval.apid.nwlls.med
plate-wise baseline based on neutral ctrl median
value

apply level 3 methods
These methods directly apply the normalization methods from tcpl without the need for a

DB connection
lapply(mthd_funcs[["bval.apid.nwlls.med"]](dummy_aeid), eval)
lapply(mthd_funcs[["pval.apid.medncbyconc.min"]](dummy_aeid),eval)
lapply(mthd_funcs[["resp.pc"]](dummy_aeid),eval)

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 13/15

Level 4 determines the baseline variability, or noise, that will later be used for cutoff calculation. Using
the established concentration index, the level 4 methods can be loaded in a similar way to level 3.

There are much fewer level 4 methods, but generally it is a requirement to assign a method that
calculates the bmad and assign a method that calculates the standard deviation of the noise for
tcplfit2 fitting.

Dose-Response Curve Fitting

After methods up to level 4 have been applied, the model fitting can begin. In tcpl , this would be
considered level 4, and is where tcplfit2 is used to fit all of the models as a dependency for tcpl .

mthd_funcs_l4 <- tcpl:::mc4_mthds()
DT::datatable(tcpl::tcplMthdList(4), rownames= FALSE, options = list(scrollX = T))

Show 10 entries Search:

Showing 1 to 2 of 2 entries Previous 1 Next

mc4_mthd_id▲▼ mc4_mthd ▲▼ desc ▲▼

1 bmad.aeid.lowconc.twells
bmad based on two lowest concentration of
treatment wells

2 bmad.aeid.lowconc.nwells bmad based on two lowest concentration of nwells

apply level 4 methods
These methods directly apply the noise calculation and fitting methods from tcpl without

the need for a DB connection
lapply(mthd_funcs_l4[["bmad.aeid.lowconc.twells"]](),eval)
lapply(mthd_funcs_l4[["onesd.aeid.lowconc.twells"]](),eval)
lapply(mthd_funcs_l4[["bidirectional.false"]](),eval)

#do tcplfit2 fitting
myfun <- function(y) {
 res <- tcplfit2::tcplfit2_core(y$conc,
 y$resp,
 cutoff = unique(y$bmad),
 bidirectional = TRUE,
 verbose = FALSE,
 force.fit = TRUE,
 fitmodels = c("cnst", "hill", "gnls", "poly1",

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 14/15

The following code performs dose-response modeling for all spids in the dataset. Warning: The
fitting step for the full data set, dat , can take 7-10 minutes to run. Hence the code chunk
following provides a subset example of data for curve fitting and hitcalling. The subset data only
contains records of six samples.

Continuous Hitcalling

After all of the models have been fit, hitcalling can occur. The output of level 4 can be fed directly into
the tcplhit2_core function. The results are then pivoted and shown in the resulting datatable.

 "poly2", "pow", "exp2", "exp3",
 "exp4", "exp5")
)
 list(list(res)) #use list twice because data.table uses list(.) to look for values to

assign to columns
}

only want to run tcplfit2 for test wells in this case
this chunk doesn't run, fit the curves on the subset below
dat[wllt == 't',params:= myfun(.SD), by = .(spid)]

create a subset that contains 6 samples and run curve fitting
subdat <- dat[spid %in% unique(spid)[10:15],]
subdat[wllt == 't',params:= myfun(.SD), by = .(spid)]

myfun2 <- function(y) {
 res <- tcplfit2::tcplhit2_core(params = y$params[[1]],
 conc = y$conc,
 resp = y$resp,
 cutoff = 3*unique(y$bmad),
 onesd = unique(y$osd)
)
 list(list(res))
}

continute with hitcalling
res <- subdat[wllt == 't', myfun2(.SD), by = .(spid)]

#pivot wider
res_wide <- rbindlist(Map(cbind, spid = res$spid, res$V1))

8/31/23, 11:12 AM tcplfit2 Vignette

file:///C:/Users/zzhao/AppData/Local/Temp/RtmpqYBaDe/preview-78a810232c49.dir/tcplfit2-vignette.html 15/15

The same hitcalling can be done with the full data set, dat , as well.

This output table is the same format as the res table in example 3. Users can use the plot code in the
chunk that demonstrates the use of concRespPlot in example 3 to visualize fits from this output
table.

DT::datatable(res_wide,options = list(scrollX = T))

Show 10 entries Search:

Showing 1 to 6 of 6 entries Previous 1 Next

spid ▲▼ n_gt_cutoff▲▼ cutoff▲▼ fit_method▲▼ top_over_cutoff▲▼

1 TP0001366A03 0 49.28306384522267 gnls 0.2819010005117448 8.

2 TP0001366A04 0 49.28306384522267 poly1 0.2851168135965973 1

3 TP0001366A05 0 49.28306384522267 gnls 0.2305796630362356 9.

4 TP0001366A06 0 49.28306384522267 poly1 0.1301443807450612 11

5 TP0001366A07 0 49.28306384522267 gnls 0.2548054752540804 8.

6 TP0001366A08 0 49.28306384522267 gnls 0.4400229249416137 7.

