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1 Introduction

This document outlines the MIST algorithm. It describes the particular variant of the Image Stitching problem
being addressed and outlines the current solution strategy. The algorithm consists of three phases: (1) relative
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translation computation; (2) relative translation optimization; (3) image composition. Each phase is presented in
a depth first hierarchy.

The document will be treated as a live document that will be updated regularly to always reflect the group’s current
thinking about the project.

1.1 Problem Description

In our context, the Image Stitching problem comes up when an optical microscope, equipped with a digital camera,
generates overlapping partial images (a.k.a. image tiles) of a biological sample (plate) under study. We must then
use specialized software (”Image Stitching” software) to assemble these image tiles into a single large image. We
further restrict the problem by specifying that the image tiles are grayscale images where each pixel contains a
single scalar value.

This problem arises from a scale mismatch between the dimensions of the sample being studied and the microscope’s
field of view. Typically, the region of interest in a microscope’s plate is a 2×2 cm2 area (20×20 mm2). By contrast,
a microscope’s field of view has sides that are at least one order of magnitude smaller (≈ 1×1 mm2). For a particular
microscope currently used at NIST, a partial image is 1392 × 1040 pixels with each pixel covering a square area
whose side is 0.644µm.

To alleviate the scale mismatch, the sample is mounted on a motorized stage and moves with respect to the optical
column in the XY-plane. The microscope is then programmed to scan the XY-plane and repeatedly acquire image
tiles, partial pictures of the plate, to form an image grid. The image tiles are arranged in a rectangular grid and
overlap with each other to provide full coverage of the plate. We further restrict the problem by specifying that the
overlaps between images must be approximately constant in the horizontal direction and approximately constant
in the vertical direction. Figure 1 shows a demonstration image grid consisting of 25 image tiles with low overlap.

Figure 1: Example 5x5 Image Grid with individual images outlined in red.

1.2 Algorithm Overview

1.2.1 Translation Computation (Algorithm 1) Method Call Hierarchy

1. Phase Correlation Image Alignment Method (Algorithm 2)

(a) Peak Correlation Matrix (Algorithm 3)

(b) Multi-Peak Max (Algorithm 4)

(c) Interpret Translations (Algorithm 5)
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i. Extract Overlap Subregion (Algorithm 7)

ii. Normalized Cross Correlation (Algorithm 6)

1.2.2 Translation Optimization (Algorithm 8) Method Call Hierarchy:

Translation Optimization (Algorithm 8) Method Call Hierarchy:

1. Build Stage Model (Algorithm 9)

(a) Compute Image Overlap (Algorithm 10)

(b) Compute Stage Repeatability (Algorithm 13)

2. Apply Stage Model (Algorithm 14)

(a) Filter by Overlap and Correlation (Algorithm 15)

(b) Filter by Outliers (Algorithm 16)

(c) Filter by Repeatability (Algorithm 17)

(d) Replace Invalid Translations with Estimates

i. Replace Invalid Translations (Algorithm 18)

ii. Estimate Empty Row/Columns (Algorithm 19)

3. Bounded Translation Refinement (ncc hill climbing) (Algorithm 21)

1.3 Terminology

This section introduces terminology used throughout this document.

• Image Grid: a two dimensional array where each element contains a single image. The image grid is acquired
by the microscope using a motorized XY-Stage. It can be thought of as the input to this stitching algorithm.
An image’s position within this grid represents an approximation of where that image should be placed relative
to the other images in the grid, imgGrid[0, 0] (the top left array element) will be placed in the upper left hand
corner of the output mosaic image. Likewise, imgGrid[height − 1, width − 1] (bottom right array element)
will be placed in the bottom right hand corner of the output mosaic image. Empty elements (a.k.a. missing
images) are permissible so long as the set of non-empty elements forms a single connected graph.

• Image: a two dimensional array of grayscale pixel values. The x coordinate of a pixel increases from left to
right and the y coordinate of a pixel increases from top to bottom.

• Image Tile: an image within the image grid. Each image tile has three ancillary attributes: (1) an (x, y)
location in the output stitched mosaic image; (2) a North translation tuple containing the displacement
between this image and its North neighbor; and (3) a West translation tuple containing the displacement
between this image and its West neighbor.

• Translation: a triplet, 〈ncc, x, y〉, specifying the translation between two adjacent image tiles. The ncc value
represents translation quality; x is the horizontal translation in pixels; y is the vertical translation in pixels.

• Tuple: a set of two or more numbers which, when grouped together, form a single concept.

• PCIAM: (phase correlation image alignment method) an algorithm to align (register) a pair of equally sized
overlapping images. This method generates a translation tuple 〈ncc, x, y〉 denoting the displacement from one
image to the other [3, 4, 5].

• ncc: (normalized cross correlation) a double precision value ∈ [−1, 1] that represents a measure of similarity
of the overlapping subregion between two images given a displacement (x, y) from one image to the other.
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1.4 Organization

The remainder of this document is organized as follows: Section 2 describes the motorized XY-Stage movement
model and the assumptions therein; Section 3 describes the translation computation phase giving a pseudo-code
listing of it; Section 4 describes the translation optimization phase giving a pseudo-code listing of it; Section 5
briefly describes the image composition phase; Section ?? describes the algorithm testing and validation.

2 XY-Stage Actuator Movement Model

A motorized mechanical XY-Stage is used to move a biological sample with respect to the microscope’s optical
imaging system. This movement is done by two independent stepper motor linear actuators, one for each direction.

It is important to understand the mechanical limitations of a stepper motor linear actuator mainly with regards to
its accuracy and repeatability.

Accuracy: Actuator motion can only be as true as the mechanical components permit. The accuracy is the actua-
tor’s ability to provide precise increments of motion along its axis. In a mechanical system, this primarily concerns
the lead screw as well as the feedback device (encoder, linear scale etc.). Lead accuracy of the screw, resolution
of encoders, and ability of the controller must combine to produce the desired accuracy. In most microscopes, the
accuracy is very high and can be calibrated.

Repeatability: Repeatability is the ability of a device to reach a specific location multiple times. It does not
take into account the trueness of the position but rather the ability to go back to the same position. Many times
the actuator will follow a slightly bowed or twisted path due to imperfect construction. The repeatability is the
measure of uncertainty relative to a given actuator movement. The repeatability cannot be calibrated, but it can
be measured for any microscope stage. Each time the stage controller requests a position value, the actual resulting
position is within repeatability of the requested value.

In a grid tiling, the positions (x, y), that the stage will go to, have an uncertainty equal to the stage repeatability
(x± r, y ± r). However, translations (dx, dy) computed in the vertical or horizontal directions between consecutive
tiles are differences between respective positions. Thus, the uncertainty on the computed translation values is
2 × repeatability (dx ± 2rx, dy ± 2ry). The actuators are independent from one another. However, since they are
very similar and from the same manufacturer we will assume that rx = ry = r.

When computing vertical translations between two consecutive tiles, the dx and dy components will correspond to
the projection of the stage displacement on the camera coordinate systems (which might have a fixed rotational
angle) with an uncertainty equal to 2× repeatability. We use this information to estimate the stage repeatability
from the computed translations.

3 Translation Computation

Algorithm 1 details the relative translation computation phase which loops over all image tiles in the Image Grid
and, when applicable, computes two translations: one for the image tile and its western neighbor and another for
the image tile and its northern neighbor1. Each translation consists of a horizontal displacement (x), a vertical
displacement (y), and a normalized cross correlation (ncc) forming a translation tuple 〈ncc, x, y〉.

Translation Computation (Algorithm 1) Method Call Hierarchy:

1. Phase Correlation Image Alignment Method (Algorithm 2)

(a) Peak Correlation Matrix (Algorithm 3)

(b) Multi-Peak Max (Algorithm 4)

(c) Interpret Translations (Algorithm 5)

i. Extract Overlap Subregion (Algorithm 7)

1One can develop easily a modified version of the algorithm that computes translations for a tile’s eastern and southern neighbors.
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ii. Normalized Cross Correlation (Algorithm 6)

Algorithm 1: Relative-Translation-Computation

// Function translationComputation(imgGrid)
Input: Image Grid
Output: two arrays of translation tuples 〈ncc, x, y〉
begin

foreach I ∈ Image Grid do
Tw[I]← pciam(I#west, I) // when applicable

Tn[I]← pciam(I#north, I) // when applicable

end
return Tw, Tn

end

3.1 PCIAM

The function pciam (Algorithm 2) implements the Phase Correlation Image Alignment Method which operates on
two image tiles, I1 & I2. This is a direct image alignment method, a version of Kuglin and Hines’ phase correlation
image alignment method [3] that is modified to use normalized cross correlation coefficients as described by Lewis
[4, 5].

The pciam function uses three helper-functions, pcm, multiPeakMax, and interpretTranslation. The function
pcm (Algorithm 3) computes the Peak Correlation Matrix (PCM) for the input pair of images, I1 & I2. PCM
is a 2D matrix of double precision values ∈ [−1, 1]. The function multiPeakMax (Algorithm 4) finds n = 2 peaks
within the PCM . The value n = 2 was manually selected based on experimental testing performed on the available
datasets and was sufficient to achieve our required accuracy. The number of peaks to test in the PCM matrix is
an advanced parameter that can be adjusted based on the dataset being stitched.

There is no consensus in literature about the number of peaks to check for the PCIAM algorithm. The Fiji Grid
Collection Stitching plugin by Stephan Preibisch checks 5 peaks by default [8]. The paper by Yang Yu et al. checks
8 peaks [11]. Other papers advocate checking only a single peak.

The PCM peaks form a set of potential translations between the two images. Each translation peak is tested to deter-
mine the normalized cross correlation coefficient produced by that translation. The function interpretTranslation

(Algorithm 5) determines the correct interpretation of a given PCM peak. Each peak has several possible inter-
pretations due to the periodicity of the Fourier transform. For each possible interpretation the normalized cross
correlation value is computed. The interpretation that maximizes the ncc value is correct.

Algorithm 2: Phase-Correlation-Image-Alignment-Method

// Function pciam(I1,I2)
Input: two images—same size!
Output: translation tuple 〈ncc, x, y〉
begin

PCM ←pcm(I1,I2) // Compute PCM matrix

n← 2 // number of peaks to find

Peaks←multiPeakMax(PCM,n) // Perform Multi-Max Peak Search

// Peaks is a set of tuples, each tuple containing 〈x, y, val〉
foreach peak ∈ Peaks do
〈peak.val, peak.x, peak.y〉 ← interpretTranslation(I1, I2, peak.x, peak.y)

end

〈ncc, x, y〉 ← max(Peaks) // Find peak with maximum peak.ncc
return 〈ncc, x, y〉

end

5
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3.2 Peak Correlation Matrix

The function pcm (Algorithm 3) computes the PCM for the two input image tiles. The PCM matrix is the same
size as both input images. The value of PCM at index (i, j) (row-column matrix coordinates) can be interpreted
as the likelihood that the two input images, when offset by i pixels vertically and j pixels horizontally, form a single
scene. Figure 2 shows two individual images that overlap to form a single scene when the second image is translated
to the right by roughly 400 pixels. For this example, the PCM would have its maximum value at roughly (0, 400)
indicating a translation between the images of 0 pixels vertically and 400 pixels horizontally.

Figure 2: Example pair of images with different illuminations outlined in red whose content forms a single scene.
Overlapping region highlighted in green.

Algorithm 3: Peak-Correlation-Matrix

// Function pcm(I1, I2)
Input: two images—same size!
Output: 2D double precision PCM matrix

begin
F1 ← fft2D(I1)
F2 ← fft2D(I2)

FC ← F1. ∗ F2 // Operator F2 is complex conjugate

PCM ←ifft2D(FC./abs(FC)) // Operators .∗ and ./ are element-wise

return PCM

end

Under ideal conditions the PCM matrix (2D double precision values ∈ [−1, 1]) contains a single peak (impulse)
at the correct translation [10, 12]. Figure 2 shows an example. However, optical microscopy can generate images
with few distinguishing features available to guide image registration. Thus, for robustness, we need to account for
PCM matrices lacking a single well defined peak. Figure 3 shows a well behaved PCM with a single peak displayed
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as an image. Figure 4 shows the same PCM displayed as a surface plot to highlight the structure of the matrix.
Figure 5 shows a noisy PCM , lacking a single well defined peak, displayed as an image. Figure 6 shows the same
noisy PCM displayed as a surface plot.

Figure 3: High SNR PCM matrix displayed as an im-
age.

Figure 4: High SNR PCM matrix displayed as a surface
plot.

Figure 5: Low SNR (noisy) PCM matrix displayed as
an image.

Figure 6: Low SNR (noisy) PCM matrix displayed as
a surface plot.

The function pcm relies on forward and backward Fourier transforms to compute the PCM . The function fft2D is
the forward, two dimensional, Fourier transform of a 2D matrix (input image). The function ifft2D is the backward
(inverse) Fourier transform of the frequency domain matrix FC. Both are assumed to be library functions. The
MIST algorithm was developed in MATLAB which provides 2D fft libraries. The ImageJ/Fiji plugin developed in
Java relies on FFTW for native compiled 2D FFT libraries [1], cuFFT for CUDA GPU FFT libraries[7], and a Java
implementation of a FFT approximation from Dave Hale [2]. Note: Using the CUDA libraries requires the user to
download and install the CUDA toolkit [6]. Documenting discrete fast Fourier transform algorithms is beyond the
scope of this document, however for the interested reader the authors suggests the FFTW homepage as a starting
point [1].
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3.3 Multi-Peak Max Search

Under ideal conditions the PCM matrix would contain a single peak defining the correct translation. To account
for non-ideal PCM cases, we search for multiple peaks within the PCM and select the peak that maximizes the
implied normalized cross correlation value.

The function multiPeakMax (Algoritm 4) finds multiple discrete peaks within the PCM . A peak is defined as the
(x, y) location of an element in the PCM . A peak, (x, y) matrix location, is equivalent to a translation of x pixels
horizontally and y pixels vertically between the two input images used to compute the PCM . The set of peaks
multiPeakMax finds is defined as the highest (n = 2) PCM values. Potential (x, y) displacements are magnitude
values (always positive by definition) for which direction needs to be determined. A common constraint on the
PCM matrix is ensuring a peak is a local maxima within a specified radius, generally a 3x3 neighborhood, or
radius of

√
2 from the PCM peak [9][11]. However, in experimenting with synthetically created image tile grids we

found that enforcing this local maxima was detrimental to the percentage of correct translations that were found
by the PCIAM technique. Without the local maxima constraint, the multi-peak-max algorithm reduces to a single
selection of the highest n values (a variation of the k-select algorithm).

Algorithm 4: Multi-Peak-Max

// Function multiPeakMax(PCM,n)
Input: 2D double precision matrix, number of peaks to find
Output: set of tuples; each tuple is a peak containing 〈x, y〉
begin

Peaks← ∅ // initialize output set

foreach pixel ∈ PCM do
// pixel is a tuple containing 〈x, y, val〉
if pixel.val > min(Peaks.val) then

if pixel /∈ Peaks then
// remove element with min(Peaks.val) from Peaks
// add pixel to Peaks

end

end

end

return Peaks

end

3.4 Translation Interpretation

Once the set of peaks has been found using multiPeakMax the correct implied translation needs to be determined
for each peak. Fourier transforms are periodic in nature resulting in four possible interpretations of any magnitude
displacement tuple 〈x, y〉 extracted from the PCM matrix. Given the image width W and height H, the four
interpretations are [(x, y), (x,H−y), (W−x, y), (W−x,H−y)]. The function interpretTranslation (Algorithm 5)
determines which of the potential interpretations (translations) generates the maximum normalized cross correlation
value. Figure 7 shows the four possible translations that result from Fourier transform periodicity. Each translation
maps I2 into I1’s coordinate space given a magnitude displacement tuple 〈x, y〉.

In the general case, the translation from I1 to I2 can be any 〈x, y〉 so long as the two images overlap. Therefore,
given an input 〈x, y〉, where x and y are positive (by definition), we need to check 16 possible translations for
validity to find the interpretation that has the maximum normalized cross correlation. The 16 combinations arise
from the four Fourier transform possibilities, [(x, y), (x,H − y), (W − x, y), (W − x,H − y)], and the four direction
possibilities, (±x,±y) = [(x, y), (x,−y), (−x, y), (−x,−y)].

For this algorithm a priori knowledge limits the general case of 16 combinations per image pair to 8 combinations.
From the image grid we know that if I1 and I2 form a left-right pair I2 will always be to the right of I1. This reduces
the search space to the four possible Fourier transform combined with (x,±y). If I1 and I2 form an up-down pair,
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Figure 7: Translation interpretations resulting from Fourier transform periodicity. I1 in red, I2 in blue, and the
overlap region in green.

I2 will always be below I1. This reduces the search space to the four Fourier transform possibilities combined with
(±x, y).

In order to simplify the pseudo-code, Algorithm 5 presents the general case search of all 16 possible translation
interpretations.

Algorithm 5: Interpret-Translation

// Function interpretTranslation(I1, I2, xin, yin)
Input: two images—same size!, magnitude (x, y) displacement values
Output: translation tuple

begin
ncc← −∞ // Initialize outputs

x← 0, y ← 0

// find the translation interpretation with the highest ncc
foreach xmag ∈ {xin, width(I1)−xin} do

foreach ymag ∈ {yin, height(I1)−yin} do
foreach xsign ∈ {−1, 1} do

foreach ysign ∈ {−1, 1} do
subI1 ←extractOverlapSubregion(I1, (xmag ∗ xsign), (ymag ∗ ysign))

// the translation from I2 to I1 is the inverse of the translation from I1 to I2
subI2 ←extractOverlapSubregion(I2,−(xmag ∗ xsign),−(ymag ∗ ysign))

ncc val←ncc(subI1, subI2) // compute normalized cross correlation

if ncc val > nnc then
ncc← ncc val
x← xsign ∗ xmag
y ← ysign ∗ ymag

end

end

end

end

end
return 〈ncc, x, y〉

end

The function ncc (Algorithm 6) takes as input two arrays of the same size and returns the normalized cross
correlation coefficient factor relating their similarity. This function is used to compare equally sized subregions of
images.

The function extractOverlapSubregion (Algorithm 7) takes as input an image with a translation 〈x, y〉 and returns
the subregion implied if you take a sliding window the size of the image and translate it by x pixels horizontally and
y pixels vertically. Figure 8 shows an image with its translated view window, highlighting the extracted subregion
in green. This function extracts the subregion of the image that would overlap a hypothetical neighboring image
that is offset by the translation 〈x, y〉.

9
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Algorithm 6: Normalized-Cross-Correlation

// Function ncc(I1, I2)
Input: two images—same size!
Output: cross correlation factor (double)

begin
I1 ← I1−mean(I1) // Center both vectors

I2 ← I2−mean(I2)
n← I1 · I2 // dot product

d← |I1| ∗ |I2| // product of L2-norms

return n/d

end

Figure 8: The input image I has its view window translated (x, y) pixels to extract a subregion, shown in green.

Algorithm 7: Extract-Overlapping-Image-Subregion

// Function extractOverlapSubregion(I, x, y)
Input: image, translation (x, y)
Output: subregion of the image

begin
// get the size of the image

H ← height(I )
W ← width(I )

if (|x| >= W ) ∨ (|y| >= H) then
return null // if no overlap

end

// create subregion and constrain to valid image coordinates

xstart ← max(0, min(x,W − 1))
xend ← max(0, min(x+W,W − 1))
ystart ← max(0, min(y,H − 1))
yend ← max(0, min(y +H,H − 1))

// return the subregion from I1
return I[ystart : yend, xstart : xend]

end

10
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4 Translation Optimization

At the completion of the translation computation phase, each image tile in the image grid has a translation relative
to its western neighbor and another translation relative to its northern neighbor, if those neighbors exist.

The goal of the translation optimization phase is to filter and correct image tile translations using our stage actuator
movement model. Our model leverages knowledge of how a motorized XY-Stage operates to introduce constraints on
the translations. For model details and explanation see Section 2. The translation optimization phase pseudo-code
is given in Algorithm 8.

Translation Optimization (Algorithm 8) Method Call Hierarchy:

1. Build Stage Model (Algorithm 9)

(a) Compute Image Overlap (Algorithm 10)

(b) Compute Stage Repeatability (Algorithm 13)

2. Apply Stage Model (Algorithm 14)

(a) Filter by Overlap and Correlation (Algorithm 15)

(b) Filter by Outliers(Algorithm 16)

(c) Filter by Repeatability (Algorithm 17)

(d) Replace Invalid Translations with Estimates

i. Replace Invalid Translations (Algorithm 18)

ii. Estimate Empty Row/Columns (Algorithm 19)

3. Bounded Translation Refinement (ncc hill climbing) (Algorithm 21)

As part of the translation optimization, the algorithm will estimate the stage model parameters: (1) the estimated
uncertainty in the percent overlap between images; (2) the repeatability of the mechanical stage actuators (NORTH
and WEST); (3) and the percent overlap between images (NORTH and WEST). The percent overlap uncertainty
(pou) between images defaults to 3% but can be overridden by the user. Both the image overlap (per direction),
and the stage actuator repeatability (r) are estimated from the translations be default. Any of these estimated
values can be overridden by providing the correct value as a parameter.

The translation optimization phase filters and corrects the north and west translations independently; building the
stage model for each direction. The translation optimization then filters out the translations which do not fit into
the stage model, replacing them with estimates derived from the stage model. The translations are then refined by
using a bounded hill climbing search to maximize the normalized cross correlation values. The hill climbing search
allows translations to migrate to a local maximum ncc value in the normalized cross correlation (NCC) surface.
The NCC surface is a matrix where the value at element NCC[i, j] is the result of computing the normalized cross
correlation coefficient between the overlapping subregions of an image pair given the translation (x = j, y = i). The
psuedo-code for computing a single element of NCC surface is given here.

NCC[i, j]←ncc(extractOverlapSubregion(I1, j, i),extractOverlapSubregion(I2,−j,−i));2

Iterating over all valid i & j would fill in the surface producing an example like Figure 9. Using hill climbing
with normalized cross correlation as the cost function allows our stitching algorithm to find pixel level optimal
translations, presuming a reasonable starting translation estimate.

The hill climbing pseudo-code is given in Algorithm 21.

2The translation for I2 is the inverse of the translation for I1 because the translation from I2 to I1 is the opposite of the translation
from I1 to I2. Translation tuples use (x, y) coordinates and matrices use (i, j) coordinates; the conversion is x = j, y = i

11
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Figure 9: Example NCC matrix (surface) upon which hill climbing operates, with the hill climb starting point
(estimated translation) marked with a star.

Algorithm 8: Translation-Optimization

// Function translationOptimization(imgGrid, Tw, Tn)
Input: Image grid, two 2D arrays of translation tuples
Output: Two 2D arrays of corrected translation tuples

begin
pou← 3
modelw ←buildStageModel(imgGrid, Tw, pou,WEST) // build west stage model

modeln ←buildStageModel(imgGrid, Tn, pou,NORTH) // build north stage model

Tw ←applyStageModel(imgGrid, Tw,modelw, pou,WEST) // filter west translations

Tn ←applyStageModel(imgGrid, Tn,modeln, pou,NORTH) // filter north translations

repeatability ← 2∗max(modelw.r,modeln.r) +1
modelw.r ← repeatability
modeln.r ← repeatability

Tw ←refineTranslations(imgGrid, Tw,modelw,WEST) // refine west translations

Tn ←refineTranslations(imgGrid, Tn,modeln, NORTH) // refine north translations

return Tw, Tn
end

The function buildStageModel (Algorithm 9) uses the pairwise translations between images to estimate the overlap
and stage repeatability per direction (NORTH and WEST). The function applyStageModel (Algorithm 14) uses
the stage model and filters the pairwise translations to remove those with low confidence. The invalid translations
are then replaced with an appropriate estimate based on the stage model. The function refineTranslations

(Algorithm 20) takes the results of translation filtering and refines those translations to a local maximum using
normalized cross correlation as the cost function. This translation refinement is bounded by the stage model to
ensure that the resulting translations are reasonable.

4.1 Build Stage Model

The goal of translation optimization is to filter and correct image tile translations using our stage actuator movement
model. Our model leverages knowledge of how a motorized XY-Stage operates to introduce constraints on the
translations.

The algorithm estimates the following stage model parameters: (1) the estimated uncertainty in the overlap between
images as a percentage; (2) the repeatability of the mechanical stage actuators (NORTH and WEST); and (3) the
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overlap between images as a percentage (NORTH and WEST). The percent overlap uncertainty (pou) between
images defaults to 3% but can be overridden by the user. Both the image overlap (per direction), and the stage
actuator repeatability (r) are estimated from the translations by default. Any of these estimated values can be
overridden by providing the correct value as a parameter.

It is useful to think of the translations as being a matrix the same size and shape as the image tile grid. This results
in a matrix of vertical translations (each translation containing 〈x, y, ncc〉) and a matrix of horizontal translations.

The function buildStageModel (Algorithm 9) uses the pairwise translations between images to estimate the overlap
and stage repeatability per direction (NORTH and WEST).

Algorithm 9: Build Stage Model

// Function buildStageModel(imgGrid, T, pou, direction)
Input: Image grid, 1D array of translations,percent overlap uncertainty,direction
Output: stage model object containing repeatability and overlap

begin
// compute image overlap

overlap←computeOverlap(imgGrid, T, direction)

// limit to valid values

overlap←max(pou, min(overlap, 100− pou))
// compute stage actuator repeatability

repeatability ←computeRepeatability(imgGrid, T, overlap, pou, direction)

stageModel← [repeatability, overlap]

return stageModel

end

4.1.1 Compute Image Overlap

The function computeImageOverlap (Algorithm 10) determines an estimated percent overlap between images given
a set of translation tuples. For example, given a set of NORTH translations this function computes the estimated
overlap between image tiles and their northern neighbors. In other words, the stage model image overlap is computed
by fitting a model to the primary travel direction translations (x for WEST and y for NORTH) using maximum
likelihood estimation. When range filtering translations a percent overlap uncertainty (pou) margin is included to
account for variations in image overlap. This uncertainty margin can be provided by the user or left as default.

13



MIST (v. 2018-05-21) 4.1 Build Stage Model

Algorithm 10: Compute Image Overlap

// Function computeImageOverlap(imgGrid, T, direction)
Input: Image grid, 1D array of translations,direction
Output: percent overlap

begin
// Maximum Likelihood Estimation is used to fit a model to the translations

// finding MLE uses variant of stochastic local search (hill climbing)

if direction = NORTH then
range←// image tile height

T ← 100× T/range // scale translations into [0, 100]

else
range←// image tile width

T ← 100× T/range // scale translations into [0, 100]

end

// model contains [probUniform,mu, sigma, likelihood]
bestModel← [0, 0, 0,− inf]

// termination condition: optimization stalls for maxStallCount iterations

maxStallCount← 20
stallCount← 0

while stallCount < maxStallCount do
// generate random MLE model search starting point

// rand() generates a uniform random value ∈ [0, 1]
model← [100∗rand(), 100∗rand(), 100∗rand(), NaN ]

// perform percent resolution hill climbing

model←percentileResolutionHillClimb(model, T)

if model.likelihood > bestModel.likelihood then
bestModel← model
stallCount← 0

else
stallCount← stallCount+ 1

end

end

overlap← 100− bestModel.mu // mu is the average translation in percent

return overlap

end

The function percentileResolutionMleHillClimb (Algorithm 11) performs hill climbing in the stage model pa-
rameter space in order to find the MLE stage model with the highest likelihood.
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Algorithm 11: Perform Percentile Resolution MLE Hill Climbing

// Function percentileResolutionMleHillClimb(model, T)
Input: stage model, 1D array of translations
Output: stage model

begin
// get the valid translation range for the current direction

done← false
while ¬done do

// neighbors differ from model by distance of 1 in a single dimension

foreach neighbor do
// check all neightbors and select the one with the highest likelihood

temp← model
if neighbor is within bounds then

likelihood←computeMleLikelihood(model, T)
if likelihood > temp.likelihood then

temp← neighbor
end

end

end
if temp = model then

done← true
else

model← temp
end

end
return model

end

The function computeMle (Algorithm 12) computes the likelihood of a stage model given a set of translations. The
function requires the stage model in question and a vector of translations. The stage model contains the probability
that a translation comes from the uniform distribution, the mean of the expected normal distribution of valid
translations, and the sigma of the expected normal distribution of valid translations. This model assumes that a
vector of translations from the PCIAM can be split into two subsets. The subset of valid translations is expected to
be approximately normally distributed. The subset of invalid translations is expected to be approximately uniformly
distributed.
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Algorithm 12: Compute MLE

// Function computeMle(model, T)
Input: stage model, 1D array of translations
Output: model likelihood

begin
// by definition ∀T ∈ [0, 100]
// by definition the model parameters (probUniform, µ, σ) ∈ [0, 100]

// initialize likelihood

likelihood← 0

foreach t ∈ T do
// likelihood that t belongs to N(model.µ,model.σ)

normLikelihood← 1
model.σ

√
2π
e−(t−model.µ)

2/2model.σ2

// likelihood that t belongs to uniform distribution

uniformLikelihood← 1
100

// Convert model.probUniform from [0, 100] to [0, 1]
p← model.probUniform/100

// Compute likelihood update

l← p× uniformLikelihood+ (1− p)× normLikelihood
likelihood← likelihood+log(abs(l))

end
return likelihood

end

4.1.2 Compute Stage Repeatability

The function computeRepeatability (Algorithm 13) determines the XY-Stage actuator mechanical repeatability.
For a given translation direction (NORTH or WEST), the x & y repeatability are computed independently. The
repeatability for that translation direction (NORTH or WEST) is the max of the independent x & y repeatability
values. The max of the two repeatability values is selected to create a single repeatability value per direction the
encompass both repeatability values. The NORTH and WEST repeatability values are eventually combined into
a single repeatability value to bound the NCC Hill Climbing Translation Optimization 4. See Section 2 for more
detail on the stage repeatability.

16



MIST (v. 2018-05-21) 4.1 Build Stage Model

Algorithm 13: Compute Stage Repeatability

// Function computeRepeatability(imgGrid, T, overlap, pou, direction)
Input: Image grid, 2D array of translation tuples,overlap,percent overlap uncertainty,direction
Output: stage repeatability

begin
// filter translations by overlap± pou and correlation > 0.5
validTranslations←filterByOverlapAndCorrelation(imgGrid, T, overlap, pou, direction)

// filter translation outliers

validTranslations←filterOutliers(validTranslations, direction)

if direction = NORTH then
rx ← d(max(validTranslations.x)−min(validTranslations.x))/2e // x repeatability

ry ← 0 // y repeatability

for j ← 0 to width(T)− 1 do
min val←∞,max val← −∞
for i← 0 to height(T)− 1 do

if T [i, j] ∈ validTranslations then
min val←min(min val, T [i, j].y)
max val←max(max val, T [i, j].y)

end

end
column range← (max val −min val)
ry ← max(ry, (column range/2))

end

else

ry ← d(max(validTranslations.y)−min(validTranslations.y))/2e // y repeatability

rx ← 0 // x repeatability

for i← 0 to height(T)− 1 do
min val←∞,max val← −∞
for j ← 0 to width(T)− 1 do

if translations[i, j] ∈ validTranslations then
min val← min(min val,T[i,j].x)
max val← max(max val,T[i,j].x)

end

end
row range← (max val −min val)
rx ← max(rx, (row range/2))

end

end
return max(rx, ry)

end
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4.2 Apply Stage Model

The function applyStageModel (Algorithm 14) filters and corrects a 2D grid of translation tuples using the stage
model constructed in buildStageModel (Algorithm 9). Each translation direction (NORTH, WEST) is corrected
independently. Translations are filtered orthogonal to the primary direction of travel, the x components of NORTH
translations and the y components of WEST translations.

To extract an upper limit for the stage actuator repeatability from the computed translations this algorithm relies
on the fact that the image tile grid forms a regular grid. The authors define a regular grid such that the distance
between adjacent image tiles is approximately equal within a given direction. For NORTH translations the y
components are approximately equal, the x components are approximately equal, and the x components are close
to zero. For WEST translations the x components are approximately equal, the y components are approximately
equal, and the y components are close to zero.

Consider a single column of vertical translations from the image tile grid. To produce that column of images the
microscope mechanical stage is moved to a series of locations, each of which has the same x value and a different y
value. Similarly for a row of horizontal translations the stage is moved to a series of locations, each of which has the
same y value and a different x value. Thus for a matrix of NORTH translations one can look at the horizontal (x)
components to estimate an upper bound for the mechanical stage repeatability. For a matrix of WEST translations
one can look at the vertical (y) components to estimate an upper bound for the stage repeatability.

Figure 10: Grid of stage displacements as observed by the camera.

The goal of applyStageModel is to filter the translations into two sets, valid translations and invalid translations,
replacing the invalid translations with estimates derived from the valid set. The filtered and corrected translations
are later used in the hill climbing translation refinement stage.

The stage model repeatability is used to re-filter the translations and reclaim any that should be considered valid.
Translations are reclaimed if they fall within ±repeatability of the median valid translation for that row or column
and have a valid ncc value (ncc >= 0.5). This reclaiming step provides a stringent initial range filter, increases the
accuracy and robustness of the repeatability computation, and retains the correct pool of valid translations. The
re-filter and reclaim function, filterByRepeatability, is documented in Algorithm 17.

The function replaceInvalidTranslations (Algorithm 18) alters the translation estimate of every invalid transla-
tion which has at least one valid translation in its row (for NORTH) or column (for WEST). An invalid translation
is replaced with the median of the valid translations for that row or column. This estimated translation becomes
the starting point for the hill climbing search performed later and prevents the invalid translations from corrupting
the hill climbing search.
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The function estimateEmptyRowColumn (Algorithm 19) creates an estimated translation for any row (for NORTH)
or column (for WEST) without any valid translations. It replaces all translations in the row or column with the
estimate to provide the hill climbing with a reasonable starting point.

Algorithm 14: Apply Stage Model

// Function applyStageModel(imgGrid, T,model, pou, direction)
Input: Image grid, 2D array of translation tuples, stage model, direction, percent overlap uncertainty
Output: set of valid translations

begin
// Filter the translations by overlap and correlation

validTranslations←filterByOverlapAndCorrelation(imgGrid, T,model.overlap, pou, direction)

// Filter by translation outliers

validTranslations←fitlerOutliers(T, direction)

// Filter and reclaim the translations by stage repeatability

validTranslations←filterByRepeatability(imgGrid, T, validTranslations,model.r, direction)

if validTranslations = ∅ then
// compute estimated translation from overlap

// set all translation to the estimate

else

// replace invalid translations with the median valid translation per row/column

T ←replaceInvalidTranslations(T, validTranslations, direction)

// estimate translation for any completly empty row/column

T ←estimateEmptyRowColumn(imgGrid, T, validTranslations, direction)

end

return T

end

4.2.1 Filter By Overlap and Correlation

The function filterByOverlapAndCorrelation (Algorithm 15) range filters the translations. Range filtering the
translations is done in the primary movement direction. Horizontal translations have their x component filtered.
Vertical translations have their y component filtered. This range filtering is done in the primary movement direction
because, assuming a regular image grid, the primary movement component of all translations should be approxi-
mately equal. In an ideal case the NORTH translation y components will all be equal and the x components will
all be zero. In an ideal case the WEST translation y components will all be zero and the x components will all be
equal. By computing an estimated image overlap and then range filtering the translations any translations that are
not in the correct approximate range are discarded.

Valid translations fall within a percent overlap uncertainty (pou) of the estimated image overlap. In other words,
translations that result in an image overlap within a percent overlap uncertainty (pou) of the computed image
overlap (from Algorithm 10) are considered valid. For example, if a test case had an estimated image overlap of
7% for the north translations and a pou = 5% then the valid north translation are those that result in an image
overlap of 7± 5% and the translations that do not fall in this range are considered invalid.

Translations with low correlation values (ncc < 0.5) are removed on the assumption that they are unreliable.
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Algorithm 15: Filter Translations by Overlap and Correlation

// Function filterByOverlapAndCorrelation(imgGrid, T, overlap, pou, direction)
Input: Image grid, 2D array of translation tuples,overlap,percent overlap uncertainty,direction
Output: set of valid translations

begin
// get image size

H ←height(Image)
W ←width(Image)

// determine valid translation range

if direction = NORTH then
range← {(H − (overlap+ pou) ∗H/100), (H − (overlap− pou) ∗H/100)}

else
range← {(W − (overlap+ pou) ∗W/100), (W − (overlap− pou) ∗W/100)}

end

// range filter the translations

validTranslations← ∅
foreach t ∈ T do

if direction = NORTH then
if range.min <= t.y <= range.max then

validTranslations← validTranslations ∪ t
end

else
if range.min <= t.x <= range.max then

validTranslations← validTranslations ∪ t
end

end

end

// ncc filter the translations

foreach t ∈ validTranslations do
if t.ncc < 0.5 then

validTranslations← validTranslations \ t // Operator ’\’ is set difference

end

end
return validTranslations

end

4.2.2 Filter By Outliers

The function filterOutliers (Algorithm 16) removes any valid translations that qualify as outliers. Outliers are
defined as translations that are more than 1.5 ∗ inter quartile distance from the median of the valid translations.
This definition is taken from the NIST Engineering Statistics Handbook. The inter quartile distance is defined as
the difference between the 3rd and 1st quartiles of the translations.
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Algorithm 16: Filter Translation Outliers

// Function filterOutliers(T, direction)
Input: set of translations tuples,direction
Output: set of valid translations

begin
validTranslations← ∅
w ← 1.5 // w = 1.5 is default statistical outlier threshold (source)

if direction = NORTH then
q2←median(T.y) // get median translation (second quartile)

q1←median(T.y < q2) // get first quartile

q3←median(T.y > q2) // get thrid quartile

iqd←abs(q3− q1) // get inter-quartile distance

foreach t ∈ T do
if (q1− w × iqd) < t.y < (q3 + w × iqd) then

// add the translation to the valid set

validTranslations← validTranslations ∪ translation
end

end

else
q2←median(T.x) // get median translation (second quartile)

q1←median(T.x < q2) // get first quartile

q3←median(T.x > q2) // get thrid quartile

iqd←abs(q3− q1) // get inter-quartile distance

foreach t ∈ T do
if (q1− w × iqd) < t.x < (q3 + w × iqd) then

// add the translation to the valid set

validTranslations← validTranslations ∪ translation
end

end

end

return validTranslations
end

4.2.3 Filter By Repeatability

The function filterByRepeatability (Algorithm 17) finds currently invalid translations that have reasonable
values and adds them back into the valid translation set. While these translations might not have been required or
desirable when building the stage model, if they are within the stage model’s repeatability range and have a valid
ncc value, they should be considered valid translations.

In the previous range filtering steps the computed (or supplied) image overlap and the parameter percent overlap
uncertainty defined the valid range. For this filtering the median of the valid translations defines the center point
of the valid range. Any translation with a valid ncc that exists within a distance repeatability of the median of the
valid translations is reclaimed. This new range filter: median(validTranslations) ± repeatability is used only to
add translations to the valid set that were previously excluded.
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Algorithm 17: Filter By Repeatability

// Function filterByRepeatability(imgGrid, translaions, validTranslations, r, direction)
Input: Image Grid, 2D array of translation tuples, set of valid translations, repeatability, direction
Output: set of validTranslations that passed the filter

begin
if direction = NORTH then

foreach row ∈ imgGrid.rows do
foreach t ∈ row.translations do

medx ← median(row.validTranslations.x)
medy ← median(row.validTranslations.y)
if (t.ncc >= 0.5) ∧ (t.x ∈ [medx ± r]) ∧ (t.y ∈ [medy ± r]) then

validTranslations← validTranslations ∪ t
end

end

end

else
// direction = WEST
foreach col ∈ imgGrid.columns do

foreach t ∈ col.translations do
medx ← median(col.validTranslations.x)
medy ← median(col.validTranslations.y)
if (t.ncc >= 0.5) ∧ (t.x ∈ [medx ± r]) ∧ (t.y ∈ [medy ± r]) then

validTranslations← validTranslations ∪ t
end

end

end

end

return validTranslations

end

4.2.4 Replace Invalid Translations

The translation refinement phase performs a hill climbing optimization on the NCC surface in order to maximize
the ncc value. This hill climbing search requires that each pair of images has a translation that is reasonably close
to the correct value so that the hill climbing will converge to the pixel-wise correct answer. For translations in the
valid set (from previous filtering steps), nothing needs to be done in order to satisfy this requirement. However, for
translations that are not in the valid set, some form of correction or estimation is needed in order to provide the
hill climbing search a reasonable starting point.

The function replaceInvalidTranslations replaces all invalid translations with estimates derived from the set of
valid translations. The translation refinement phase uses the best estimate for an image translation as the starting
point for the hill climbing translation optimization. By replacing invalid translations with estimates, the starting
point of the hill climbing search is adjusted to increase the likelihood that it will find the correct local maxima in
the ncc surface. An invalid translation is replaced with the median valid translation for that row/column. If the
direction is NORTH, the invalid translation is replaced with the median of the valid translations for that row. If
the direction is WEST, the invalid translation is replaced with the median of the valid translations for that column.
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Algorithm 18: Replace Invalid Translations

// Function replaceInvalidTranslations(translations, validTranslations, direction)
Input: 2D array of translation tuples, valid translations set, direction
Output: updated translations

begin
if direction = NORTH then

foreach row ∈ imgGrid.rows do
if size(row.valid translations) > 0 then

foreach t ∈ row.translations do
if t /∈ row.validTranslationi then

t.x←median(row.validTranslations.x)
t.y ←median(row.validTranslations.y)
t.ncc← −1

end

end

end

end

else
foreach col ∈ imgGrid.cols do

if size(col.valid translations) > 0 then
foreach t ∈ col.translations do

if t /∈ col.validTranslations then
t.x←median(col.validTranslations.x)
t.y ←median(col.validTranslations.y)
t.ncc← −1

end

end

end

end

end
return translations

end

4.2.5 Estimate Empty Rows/Columns

The function estimateEmptyRowColumn (Algorithm 19) creates an estimated translation for any row or column
that has no valid translations. If the direction is NORTH and there exists a row without any valid translations,
then a translation must be estimated to replace all of the invalid translations in that row. If the direction is WEST
and there exists a column without any valid translation then a translation must be estimated to replace all of
the translations in that column. The median of the set of valid translations is used as the estimated replacement
translation.
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Algorithm 19: Estimate Empty Row Column

// Function estimateEmptyRowColumn(imgGrid, translations, validTranslations, direction)
Input: Image Grid, 2D array of translation tuples, valid translations set, repeatability, percent overlap

uncertainty, overlap, direction
Output: updated set of translations

begin
if direction = NORTH then

foreach row ∈ imgGrid.rows do
foreach t ∈ row.translations do

if t /∈ valid translations then
t.x←median(validTranslations.x)
t.y ←median(validTranslations.y)
t.ncc← −1

end

end

end

else
foreach col ∈ imgGrid.cols do

foreach t ∈ col.translations do
if t /∈ valid translations then

t.x←median(validTranslations.x)
t.y ←median(validTranslations.y)
t.ncc← −1

end

end

end

end

return translations

end
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4.3 Constrained Translation Refinement

Algorithm 20: Refine Translations

// Function refineTranslations(imgGrid, T,model, direction)
Input: Image grid, 2D array of translation tuples, stage model, direction
Output: 2D array of corrected translation tuples 〈ncc, x, y〉
begin

foreach I ∈ imgGrid do
if direction = WEST ∧ I#west exist then

t← T [I]
// Search range: bounds = [ymin, ymax, xmin, xmax]
bounds← [t.y − r, t.y + r, t.x− r, t.x+ r]
〈ncc, x, y〉 ←nccHillClimb(I, I#west,bounds, t.x, t.y)
T [I]← 〈ncc, x, y〉

end
if direction = NORTH ∧ I#north exist then

t← T [I]
// Search range: bounds = [ymin, ymax, xmin, xmax]
bounds← [t.y − r, t.y + r, t.x− r, t.x+ r]
〈ncc, x, y〉 ←nccHillClimb(I, I#north,bounds, t.x, t.y)
T [I]← 〈ncc, x, y〉

end

end
return T

end

At this point in the algorithm each adjacent pair of images has a translation obtained either from PCIAM or estima-
tion. These translations need to be refined to obtain pixel level image registration accuracy. This is accomplished
by performing a hill climbing search with normalized cross correlation as the cost function. The ncc cost function
takes as input the two images and the translation between them returning a single scalar value representing how
well correlated the overlapping regions are. This allows translations to be refined by comparing the ncc value of
the current translation with the ncc values for its 4 neighbors. If the translation in question was of high quality,
coming from the PCIAM function, it is likely the current translation is a local maximum in the ncc surface and the
hill climbing does nothing. On the other hand, estimated translations will most likely be adjusted before finding
the local maximum. See Figure 9 for an example ncc surface with the hill climbing starting point marked. The
pseudo-code for the ncc hill climbing is detailed in Algorithm 21.
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Algorithm 21: Bounded NCC Hill Climb Translation Refinement

// Function nccHillClimb(I1, I2, bounds, x, y)
Input: two 2D image arrays—same size, search bounds, (x,y) translation
Output: translation tuple containing 〈ncc, x, y〉
begin

// extract search bounds

ymin ← bounds[1], ymax ← bounds[2]
xmin ← bounds[3], xmax ← bounds[4]
ncc← −∞
// while a local max has not been found

while true do
bestDx ← 0
bestDy ← 0
deltax ← [−1, 1, 0, 0]
deltay ← [0, 0,−1, 1]

// find max in 3x3 four connected neighborhood

for i ∈ [1, 4] do
dx ← deltax[i]
dy ← deltay[i]
// if translation is within bounds

if (xmin <= (x+ dx) <= xmax) ∧ (ymin <= (y + dy) <= ymax) then
subI1 ← extractOverlapSubregion(I1, (x+ dx), (y + dy))
subI2 ← extractOverlapSubregion(I2,−(x+ dx),−(y + dy))
val← ncc(subI1, subI2)
if val > ncc then

ncc← val
bestDx ← dx
bestDy ← dy

end

end

end

x← x+ bestDx

y ← y + bestDy

// if current (x, y) is local max, stop

if (dx = 0) ∧ (dy = 0) then
return 〈ncc, x, y〉

end

end

end
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5 Image Composition

To perform mosaic image composition, each adjacent pair of images must have a relative translation (displacement).
These translations form an over-constrained system that one can represent as a directed acyclic graph where
vertices are images and edges relate adjacent images. The over-constraint in the system is due to the equivalence
between absolute displacements of images and path summations in the graph; these summations which must be
path invariant to yield a well-formed image. This phase resolves the over-constraint in the system and computes
absolute displacements. It selects a subset of the relative displacements or uses a global optimization approach to
adjust them to a path invariant state in the graph. These absolute displacements are used to compose the stitched
mosaic image.

A maximum spanning tree is used to resolve the system over-constraint by using the translation normalized cross
correlation values as the graph edge weights. The edge weights from valid translations are promoted with a constant
value to ensure they are always used before a non-valid (estimated) translation when determining the spanning tree.
A maximum spanning tree is used to maximize the set of edge weights used in assembling the tree because the
higher the edge weight the higher the confidence in that translation.

With the absolute displacements computed each image tile in the Image Grid has a global (x, y) location in the
stitched mosaic image. The stitched image is built by copying the individual image tiles into position within the
stitched image and blending the image tiles together.
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