O
If You Can’t Reproduce I,
Is It Still Science?

And how long will it take?

Paul Wilson

Inspired by Greg Wilson
Software Carpentry

og Reality of Research Computing

* Many scientists spend most of their
time developing, maintaining, or
running software

* Most don't consider themselves
software engineers

* Few have ever been taught how

* Learned on-the-job
* Tribal knowledge

o% So What...

* Most results take longer to produce
than they need to

* Not because of a lack of computers
 Difficult to assess quality

« Often measured by reproducibility
« "System” doesn’t care

A Recent Story:
Sealing a Faceted Geometry

g—— A Recent Story:
© Sealing a Faceted Geometry

-

0,

* Lost particles
through “leaks”

* Reduce confidence In

A Recent Story:
Sealing a Faceted Geometry

solution

g—ﬁ A Recent Story:
© Sealing a Faceted Geometry

Particles Simulated Lost Particles
Model - —
[millions] Original Robust

UW Nuclear Reactor 41 5649 + 178 0
Advanced Test Reactor 74 141 + 32 0
40° ITER Benchmark 225 67 £ 39 0
ITER TBM 205 665 + 184 0
=3 56 504 19 0
MoI(-JII-LIJEIeR 13 79 450 £ 60 0

FNG Benchmark 1310 31273 £ 989 0
ARIES First Wall 4070 25+ 18 0
HAPL IFE 286 65+ 19 0
Z-Pinch Fusion 409 2454 + 317 0

£—ﬁ Software Carpentry to the

Rescue

Best practices used by the best
software engineers whose business
IS development of quality software

They don’t always have formal training

They don’t always follow all the
practices

Growing evidence supported by
empirical studies

f—ﬁ Write Programs for People,
Not Computers

* Most researchers will spend more
time reading code than writing code

* |t's the primary way to learn what it does
and how

* Recognize realities of human cognition
* Working memory is limited
» Pattern matching abllities are finely tuned
» Attention span is short

og Automate Repetitive Tasks

* This is why we invented computers!!

 |t's not why we invented graduate
students

« Saves time & avoids errors

» Can track dependencies

* Unambiguous record of workflow

* Motivates command-line interfaces

g—ﬁ Use the Computer
© to Record History

» Careful record keeping Is fundamental
to science

* A manual log book works for

experiments occurring at a “traditional”
pace

* What happens when you can perform
100 experiments/day? 10007? 10,0007

g—ﬁ Use the Computer
© to Record History

e Use software tools to track
computational work

» Unique identifiers/versions for data
* Unique identifiers/versions for software
 All input parameters

* Embed this information in output

og Make Incremental Changes

* Long development cycles have many
disadvantages

 Human attention span

 Delayed identification _ |
of bugs

» Adapt to changes
IN requirements

Agile” development

cost

@
“““““““““““““““““““““““““

time

-

o Use Version Control

* Two big challenges

* Tracking all the changes to code over
time

» Synchronizing changes during
collaboration

» Bleeds back to provenance

» How do you know exactly which
version you used?

-

o Use Version Control

 Ad-hoc solutions:

» Make separate copies for different
versions

* Dropbox, email for sharing
 All subject to human error

* Why not “Use the Computer to
Record [this] History”, too?

-

o Use Version Control

* A great big “undo” button

* Focus on changes

g—ﬁ Don’'t Repeat Yourself
© (or Others)

» Anything repeated in 2 or more
places Is difficult to maintain

 |Increases chance of errors and
Inconsistencies

* Modularize the code you write
 Don’t reinvent the wheel

-

& Plan for Mistakes

* Bugs are guaranteed!
* FIinding bugs Is hard!

* No single practice will catch all
defects — use In combination

» Defensive programming
* Testing
* Debuggers

g—ﬁ Optimize Software Only
© After it Works Correctly

* Correct Is more important than fast

* Complexity of modern hardware &
software make It difficult to predict
bottlenecks

* Profile and test performance after it
works to identify need for
Improvement

g—ﬁ Optimize Software Only
© After it Works Correctly

» Corollary: Use high level languages!

* Fixed: number of lines of code per
day, independent of the language

* Get more done with high-level
languages, even If slower

* Profile, measure and improve

f—ﬁDocument the Design and Purpose
O of Code Rather than its Mechanics

* Most research software will be handed
off at least once

» Large cost for “forensic” analysis
» Documentation Is critical
» ... butonlyifit's good documentation

f—ﬁDocument the Design and Purpose
O of Code Rather than its Mechanics

« Document interfaces

 How to use something
 What behavior to expect & why

* Do not document implementation

« Well-written implementation should be self
explanatory

 |f not, refactor it until it 1s

 May need to document reasons for specific
Implementation decision

-

d Conduct Code Reviews

e Peer review IS a cornerstone of
modern research

e Reduces errors

* Improves communication/
understandabillity

* Why review publications based on
software and not the software itself?

g—ﬁ A Recent Story:
© Sealing a Faceted Geometry

* Why did this disruption happen?
* |nadequate testing

* |nadequate reporting of version
numbers

 Lack of automation

-

d Combining Best Practices

» Continuous Integration

« Automatically rebuild and retest every
time a test Is made

« Automation of repetitive task
« Supports agile development
* Relies on testing

Two Days # Ten Practices

Automation (requires Shell)
Writing Code for People

Don’t Repeat Yourself (or Others)
Version Control

Testing

Collaboration

f—ﬁ Make Incremental Changes
Redux

* This applies to HOW you work

* Choose one practice

* Implement it in your work
« Share it with your lab group
* Allow it to sink In

* Repeat

og How to Choose Where to Start?

|t will depend on the nature of your
work

» Consider the purpose:

* |Improve productivity
* Improve quality

f—ﬁ Thoughts on Productivity and

Cumulative Effort

Automation

Time

Thoughts on Productivity and
Automation

HOW LONG CAN YOU \WORK ON MAKING A ROUTINE. TRSK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?
(ACROSS FIVE YEARS)

| HOW OFTEN YOU DO THE. TRSK |
/. Sbay DALY WEEKY MONFLY YEPRLY

1 SECOND (11 | DAY | 2 HOURS Hu»ﬁtﬁ m‘drms milf'mt 5ﬂ:§q:=5
5 SECONDS | (5] DAYS | 12 HouRS | 2 HovRs r1|u2urlr55 nm?m& sclos

TME. 5 MINUTES

