
Paul Wilson

Inspired by Greg Wilson

Software Carpentry

If You Can’t Reproduce It,

Is It Still Science?

And how long will it take?

Reality of Research Computing

• Many scientists spend most of their
time developing, maintaining, or
running software

• Most don’t consider themselves
software engineers

• Few have ever been taught how

• Learned on-the-job

• Tribal knowledge

So What…

• Most results take longer to produce
than they need to

• Not because of a lack of computers

• Difficult to assess quality

• Often measured by reproducibility

• “System” doesn’t care

A Recent Story:
Sealing a Faceted Geometry

A Recent Story:
Sealing a Faceted Geometry

A Recent Story:
Sealing a Faceted Geometry

• Lost particles
through “leaks”

• Reduce confidence in
solution

A Recent Story:
Sealing a Faceted Geometry

Model
Particles Simulated

[millions]

Lost Particles

Original Robust

UW Nuclear Reactor 41 5649 ± 178 0

Advanced Test Reactor 74 141 ± 32 0

40° ITER Benchmark 225 67 ± 39 0

ITER TBM 205 665 ± 184 0

ITER

Module 4
59 59 ± 19 0

ITER

Module 13
79 450 ± 60 0

FNG Benchmark 1310 31273 ± 989 0

ARIES First Wall 4070 25 ± 18 0

HAPL IFE 286 65 ± 19 0

Z-Pinch Fusion 409 2454 ± 317 0

Software Carpentry to the
Rescue

• Best practices used by the best
software engineers whose business
is development of quality software

• They don’t always have formal training

• They don’t always follow all the
practices

• Growing evidence supported by
empirical studies

Write Programs for People,
Not Computers

• Most researchers will spend more
time reading code than writing code

• It’s the primary way to learn what it does
and how

• Recognize realities of human cognition

• Working memory is limited

• Pattern matching abilities are finely tuned

• Attention span is short

Automate Repetitive Tasks

• This is why we invented computers!!

• It’s not why we invented graduate
students

• Saves time & avoids errors

• Can track dependencies

• Unambiguous record of workflow

• Motivates command-line interfaces

Use the Computer
to Record History

• Careful record keeping is fundamental
to science

• A manual log book works for
experiments occurring at a “traditional”
pace

• What happens when you can perform
100 experiments/day? 1000? 10,000?

Use the Computer
to Record History

• Use software tools to track
computational work

• Unique identifiers/versions for data

• Unique identifiers/versions for software

• All input parameters

• Embed this information in output

Make Incremental Changes

• Long development cycles have many
disadvantages

• Human attention span

• Delayed identification
of bugs

• Adapt to changes
in requirements

• “Agile” development

time

c
o

s
t

Use Version Control

• Two big challenges

• Tracking all the changes to code over
time

• Synchronizing changes during
collaboration

• Bleeds back to provenance

• How do you know exactly which
version you used?

Use Version Control

• Ad-hoc solutions:

• Make separate copies for different
versions

• Dropbox, email for sharing

• All subject to human error

• Why not “Use the Computer to
Record [this] History”, too?

Use Version Control

• A great big “undo” button

• Focus on changes

Don’t Repeat Yourself
(or Others)

• Anything repeated in 2 or more
places is difficult to maintain

• Increases chance of errors and
inconsistencies

• Modularize the code you write

• Don’t reinvent the wheel

Plan for Mistakes

• Bugs are guaranteed!

• Finding bugs is hard!

• No single practice will catch all
defects – use in combination

• Defensive programming

• Testing

• Debuggers

Optimize Software Only
After it Works Correctly

• Correct is more important than fast

• Complexity of modern hardware &
software make it difficult to predict
bottlenecks

• Profile and test performance after it
works to identify need for
improvement

Optimize Software Only
After it Works Correctly

• Corollary: Use high level languages!

• Fixed: number of lines of code per
day, independent of the language

• Get more done with high-level
languages, even if slower

• Profile, measure and improve

Document the Design and Purpose
of Code Rather than its Mechanics

• Most research software will be handed
off at least once

• Large cost for “forensic” analysis

• Documentation is critical

• … but only if it’s good documentation

Document the Design and Purpose
of Code Rather than its Mechanics

• Document interfaces

• How to use something

• What behavior to expect & why

• Do not document implementation

• Well-written implementation should be self
explanatory

• If not, refactor it until it is

• May need to document reasons for specific
implementation decision

Conduct Code Reviews

• Peer review is a cornerstone of
modern research

• Reduces errors

• Improves communication/
understandability

• Why review publications based on
software and not the software itself?

A Recent Story:
Sealing a Faceted Geometry

• Why did this disruption happen?

• Inadequate testing

• Inadequate reporting of version
numbers

• Lack of automation

Combining Best Practices

• Continuous Integration

• Automatically rebuild and retest every
time a test is made

• Automation of repetitive task

• Supports agile development

• Relies on testing

Two Days ≠ Ten Practices

• Automation (requires Shell)

• Writing Code for People

• Don’t Repeat Yourself (or Others)

• Version Control

• Testing

• Collaboration

Make Incremental Changes
Redux

• This applies to HOW you work

• Choose one practice

• Implement it in your work

• Share it with your lab group

• Allow it to sink in

• Repeat

How to Choose Where to Start?

• It will depend on the nature of your
work

• Consider the purpose:

• Improve productivity

• Improve quality

Thoughts on Productivity and
Automation

Time

C
u

m
u

la
ti
v
e

 E
ff
o

rt

Thoughts on Productivity and
Automation

