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of course done. Otherwise, f (n), f (m) cannot both be smaller than N , as
g(n) ⇤ g(m). In both remaining cases, f (n) ⇤ g(n) ⇤ g(m) ⇤ f (N + 1)
and f (N + 1) ⇤ g(n) ⇤ g(m) ⇤ f (m), we are done. ⇤

We can now rule out the existence of equivalences between finite sets
of different size.

co
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e C�������� �.��.�. If m < n, then (Âk:N k < m) , (Âk:N k < n).

Another application of Definition �.��.� is a short proof of Euclidean
division.
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L���� �.��.�. For all n ,m : N with m > 0 there exist q , r : N such that r < m
and n ⇤ qm + r.

Proof. Define P(k) :⌘ (n  km). Since m > 0 we have P(n). Now set
k :⌘ µP(n) as in Definition �.��.�. If n ⇤ km and we set q :⌘ k and r :⌘ 0.
If n < km, then k > 0 and we set q :⌘ k � 1. By minimality we have
qm < n < km and hence n ⇤ qm + r for some r < m. ⇤

�.�� The type of finite types
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Recall from Section �.�.� the types False, True and Bool containing zero,
one and two elements, respectively. We now define generally the type of
n elements for any n : N.
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t D��������� �.��.�. For any type X define succ(X) :⌘ X q True. Define

inductively the type family F(n), for each n : N, by setting F(0) :⌘ ; and
F(S(n)) :⌘ succ(F(n)). Now abbreviate n :⌘ F(n). The type n is called
the type with n elements, and we denote its elements by 0, 1, . . . , n � 1
rather than by the corresponding expressions using inl and inr.

xc
a:
fi
ni
te
-t
yp
es

E������� �.��.�.

(�) Denote in full all elements of ;, 1, and 2.

(�) Show (using UA) that 1 ⇤ True, 2 ⇤ Bool.

(�) Show (using UA) that n ⇤ Âk:N k < n for all n : N.

(�) Show that n ⇤ m if m ⇤ n.
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��� Ân:NkX ⇤ nk is a proposition, for all types X.

��� ÂX:U Ân:NkX ⇤ nk ⇤ ÂX:U kÂn:N X ⇤ nk.

Proof. (�) Assume (n , p), (m , q) : Ân:NkX ⇤ nk. Then we have kn ⇤ mk,
so kn ⇤ mk by Exercise �.��.�. But N is a set by Theorem �.��.�, so
kn ⇤ mk ⇤ (n ⇤ m). It follows that (n , p) ⇤ (m , q).

(�) Follows from Ân:NkX ⇤ nk ⇤ kÂn:N X ⇤ nk, which is easily proved
by giving functions in both directions and using UA. ⇤

Bbb 0 here

univalence

univalence

m = n

It would be useful to call this proposition “being finite” now
and to introduce notation “isFinite”
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��A short proof can be obtained from
Lemma �.��.�.

The above lemma remains of course true if X ranges over Set. If a set
S is in the same component in Set as n we say that S has cardinality n or
that the cardinality of S is n.

de
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n D��������� �.��.�. The groupoid of finite sets is defined by

fin :⌘ Â
S:Set

kÂ
n:N

S ⇤ nk.

For n : N, the groupoid of sets of cardinality n is defined by

finn :⌘ Â
S:Set

kS ⇤ nk.

Observe that fin0 ⇤ fin1 ⇤ 1 and fin ⇤ Ân:N finn by Lemma �.��.�.
Note that fin is the image of the map F : N !U from Definition �.��.�,

and is hence essentiallyU -small (for any universeU ), by Principle �.��.�.

�.�� More equivalences
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es In this section we collect a number of useful results on equivalences.
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L���� �.��.�. If f : A ! B is an equivalence, then so is each ap f : (a ⇤

a0) ! ( f (a) ⇤ f (a0)) for all a , a0 : A.

Proof. Let f �1 : B ! A be the inverse of f , then we have ap f -1 : (b ⇤

b0) ! ( f �1(b) ⇤ f �1(b0)) for all b , b0 : B. Consider ap f -1 for b :⌘ f (a) and
b0 :⌘ f (a0). Then the codomain is f �1( f (a)) ⇤ f �1( f (a0)), and not a ⇤ a0.
However, we have h(x) : f �1( f (x)) ⇤ x for every x : A, so the codomain
of ap f -1 is equivalent to the domain of ap f .

We apply Lemma �.�.�. We take the inverse of ap f to map q :
f (a) ⇤ f (a0) to h(a0) · ap f -1(q) · h(a)�1 : a ⇤ a0. We then have to prove
h(a0) · ap f -1(ap f (p)) · h(a)�1 ⇤ p for all p : a ⇤ a0, as well as ap f (h(a0)) ·
ap f -1(q) · h(a)�1) ⇤ q for all q : f (a) ⇤ f (a0).

The first roundtrip is easy by induction on p. The reader may also
recognize a naturality square as in Definition �.�.� based on the homotopy
h. The second roundtrip also uses the other homotopy i(y) : f ( f �1(y)) ⇤
y for all y : B. This case is more involved and uses several applications
of Definition �.�.�. We refrain from giving all details.�� ⇤

The converse of Lemma �.��.� is not true: f : 1 ! 2 sending 0 to
0 is not an equivalence. As a function between sets, f is an injection
(one-to-one), but not a surjection. We need these important concepts
for types in general. We define them as close as possible to their usual
meaning in set theory: a function from A to B is surjective if the preimage
of any b : B is non-empty, and injective if such preimages contain at most
one element.

de
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n D��������� �.��.�. A function f : A ! B is an injection, or injective, if

f �1(b) is a proposition for all b : B. A function f : A ! B is a surjection,

use “isFinite” here


