of course done. Otherwise, f(n), f(m) cannot both be smaller than N, as g(n) = g(m). In both remaining cases, f(n) = g(n) = g(m) = f(N + 1) and f(N + 1) = g(n) = g(m) = f(m), we are done.

We can now rule out the existence of equivalences between finite sets of different size.

COROLLARY 2.17.7. If m < n, then $(\sum_{k:\mathbb{N}} k < m) \neq (\sum_{k:\mathbb{N}} k < n)$.

Another application of Definition 2.17.4 is a short proof of Euclidean division.

LEMMA 2.17.8. For all $n, m : \mathbb{N}$ with m > 0 there exist $q, r : \mathbb{N}$ such that r < m and n = qm + r.

Proof. Define $P(k) :\equiv (n \leq km)$. Since m > 0 we have P(n). Now set $k :\equiv \mu_P(n)$ as in Definition 2.17.4. If n = km and we set $q :\equiv k$ and $r :\equiv 0$. If n < km, then k > 0 and we set $q :\equiv k - 1$. By minimality we have qm < n < km and hence n = qm + r for some r < m.

2.18 The type of finite types

Recall from Section 2.6.1 the types False, True and Bool containing zero, one and two elements, respectively. We now define generally the type of n elements for any $n : \mathbb{N}$.

DEFINITION 2.18.1. For any type *X* define $succ(X) :\equiv X \amalg$ True. Define inductively the type family F(n), for each $n : \mathbb{N}$, by setting $F(0) :\equiv \emptyset$ and $F(S(n)) :\equiv succ(F(n))$. Now abbreviate $\mathbb{m} :\equiv F(n)$. The type \mathbb{m} is called the type with *n* elements, and we denote its elements by $0, 1, \ldots, n - 1$ rather than by the corresponding expressions using inl and inr.

Exercise 2.18.2.

(1) Denote in full all elements of θ , 1, and 2.	Bbb 0 here	
(2) Show (using UA) that $1 = True$, $2 = Bool$.		univalence
(3) Show (using UA) that $\mathbb{n} = \sum_{k \in \mathbb{N}} k < n$ for all n	: ℕ.	univalence

(4) Show that m = m if m = n. m = n

Lemma 2.18.3.

(1) $\sum_{n:\mathbb{N}} ||X = \mathbb{n}||$ is a proposition, for all types X.

It would be useful to call this proposition "being finite" now and to introduce notation "isFinite"

(2)
$$\sum_{X:\mathcal{U}} \sum_{n:\mathbb{N}} ||X = \mathbb{n}|| = \sum_{X:\mathcal{U}} ||\sum_{n:\mathbb{N}} X = \mathbb{n}||.$$

Proof. (1) Assume $(n, p), (m, q) : \sum_{n:\mathbb{N}} ||X = \mathbb{n}||$. Then we have $||\mathbb{n} = \mathbb{m}||$, so ||n = m|| by Exercise 2.18.2. But \mathbb{N} is a set by Theorem 2.16.2, so ||n = m|| = (n = m). It follows that (n, p) = (m, q).

(2) Follows from $\sum_{n:\mathbb{N}} ||X = \mathbb{n}|| = ||\sum_{n:\mathbb{N}} X = \mathbb{n}||$, which is easily proved by giving functions in both directions and using UA.

Sec. : Uperi

The above lemma remains of course true if *X* ranges over Set. If a set *S* is in the same component in Set as \mathbb{n} we say that *S* has cardinality *n* or that *the cardinality of S* is *n*.

DEFINITION 2.18.4. The groupoid of finite sets is defined by

$$\operatorname{fin} :\equiv \sum_{S:\operatorname{Set}} \|\sum_{n:\mathbb{N}} S = \mathfrak{m}\|.$$

use "isFinite" here

For $n : \mathbb{N}$, the groupoid of sets of cardinality n is defined by

$$\operatorname{fin}_n :\equiv \sum_{S:\operatorname{Set}} \|S = \mathfrak{m}\|.$$

Observe that $fin_0 = fin_1 = 1$ and $fin = \sum_{n:\mathbb{N}} fin_n$ by Lemma 2.18.3.

Note that fin is the image of the map $F : \mathbb{N} \to \mathcal{U}$ from Definition 2.18.1, and is hence essentially \mathcal{U} -small (for any universe \mathcal{U}), by Principle 2.15.6.

2.19 More equivalences

In this section we collect a number of useful results on equivalences.

LEMMA 2.19.1. If $f : A \to B$ is an equivalence, then so is each $ap_f : (a = a') \to (f(a) = f(a'))$ for all a, a' : A.

Proof. Let $f^{-1} : B \to A$ be the inverse of f, then we have $ap_{f^{-1}} : (b = b') \to (f^{-1}(b) = f^{-1}(b'))$ for all b, b' : B. Consider $ap_{f^{-1}}$ for $b :\equiv f(a)$ and $b' :\equiv f(a')$. Then the codomain is $f^{-1}(f(a)) = f^{-1}(f(a'))$, and not a = a'. However, we have $h(x) : f^{-1}(f(x)) = x$ for every x : A, so the codomain of $ap_{f^{-1}}$ is equivalent to the domain of ap_f .

We apply Lemma 2.7.8. We take the inverse of ap_f to map q: f(a) = f(a') to $h(a') \cdot ap_{f^{-1}}(q) \cdot h(a)^{-1}$: a = a'. We then have to prove $h(a') \cdot ap_{f^{-1}}(ap_f(p)) \cdot h(a)^{-1} = p$ for all p : a = a', as well as $ap_f(h(a')) \cdot ap_{f^{-1}}(q) \cdot h(a)^{-1} = q$ for all q : f(a) = f(a').

The first roundtrip is easy by induction on *p*. The reader may also recognize a naturality square as in Definition 2.4.4 based on the homotopy *h*. The second roundtrip also uses the other homotopy $i(y) : f(f^{-1}(y)) = y$ for all y : B. This case is more involved and uses several applications of Definition 2.4.4. We refrain from giving all details.⁴¹

⁴¹A short proof can be obtained from Lemma 2.19.8.

0 is not an equivalence. As a function between sets, f is an injection (one-to-one), but not a surjection. We need these important concepts for types in general. We define them as close as possible to their usual meaning in set theory: a function from A to B is surjective if the preimage of any b : B is non-empty, and injective if such preimages contain at most one element.

The converse of Lemma 2.19.1 is not true: $f : \mathbb{1} \to 2$ sending 0 to

DEFINITION 2.19.2. A function $f : A \to B$ is an *injection*, or *injective*, if $f^{-1}(b)$ is a proposition for all b : B. A function $f : A \to B$ is a *surjection*,

