of course done. Otherwise, f(n), f(m) cannot both be smaller than N, as
g(n) = g(m). In both remaining cases, f(n) = g(n) = g(m) = f(N +1)
and f(N +1) = g(n) = g(m) = f(m), we are done. O

We can now rule out the existence of equivalences between finite sets
of different size.

CoOROLLARY 2.17.7. If m < n, then (Ynk < m) # (Lpn k < n).

Another application of Definition 2.17.4 is a short proof of Euclidean
division.
LemMma 2.17.8. Forall n, m : Nwith m > O there exist q,r : Nsuch that v < m
andn =qm +r.

Proof. Define P(k) := (n < km). Since m > 0 we have P(n). Now set
k := pup(n) as in Definition 2.17.4. If n = km and we set g := k and r := 0.
If n < km, then k > 0 and we set g4 := k — 1. By minimality we have
gm < n < km and hence n = gm + r for some r < m. m]

2.18 The type of finite types

Recall from Section 2.6.1 the types False, True and Bool containing zero,
one and two elements, respectively. We now define generally the type of
n elements for any n : N.

DerINITION 2.18.1. For any type X define succ(X) := X LI True. Define
inductively the type family F(n), for each n : N, by setting F(0) := 0 and
F(S(n)) := succ(F(n)). Now abbreviate n := F(n). The type n is called
the type with n elements, and we denote its elements by 0,1,...,n -1
rather than by the corresponding expressions using inl and inr.

ExERrcISE 2.18.2.

(1) Denote in full all elements of-%; 1, and 2. Bbb 0 here

(2) Show (using B4A) that 1 = True, 2 = Bool. univalence
(3) Show (using BA) thatn =Y .y k < n forall n : N. univalence
(4) Show that #—=--if m = n. m=n

Lemma 2.18.3.
(1) L.nlIX = nl| is a proposition, for all types X.
(2) ZX:’U Zn:N”X = lT]]H = ZX:‘U”Z?I:N X= I]'l]||

Proof. (1) Assume (1, p),(m, q) : _,~|IX = n||. Then we have ||n = ml||,
so ||n = m|| by Exercise 2.18.2. But N is a set by Theorem 2.16.2, so
|ln = m|| = (n = m). It follows that (1, p) = (m, q).

(2) Follows from Y, |1 X = n|| = ||X,.x X = n||, which is easily proved
by giving functions in both directions and using UA. O

SYMMETRY

It would be useful to call this proposition “being finite” now
and to introduce notation “isFinite”
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The above lemma remains ef-eeurse true if X ranges over Set. If a set
S is in the same component in Set as n we say that S has cardinality n or
that the cardinality of S is n.

DEerINITION 2.18.4. The groupoid of finite sets is defined by
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fin:= ) I} S=nl. use “isFinite” here

S:Set nm:N

For n : N, the groupoid of sets of cardinality n is defined by

fin, := 2 IS = m]|.
S:Set
Observe that fing = fin; = 1 and fin = }_,, \ fin, by Lemma 2.18.3.
Note that fin is the image of the map F : N — €U from Definition 2.18.1,
and is hence essentially 7/-small (for any universe 1), by Principle 2.15.6.

2.19 More equivalences

In this section we collect a number of useful results on equivalences.

Lemma 2.19.1.If f + A — B is an equivalence, then so is each ap, : (a =

a’) = (f(a) = f(a")) foralla,a’ : A.

Proof. Let f~! : B — A be the inverse of f, then we have ap =% b=
b’y — (f~1(b) = f~1(b’)) forall b, b’ : B. Consider ap forb := f(a) and
b’ := f(a’). Then the codomain is f~'(f(a)) = f~'(f(a’)), and nota = a’.
However, we have h(x) : f~1(f(x)) = x for every x : A, so the codomain
of ap ¢, is equivalent to the domain of ap .

We apply Lemma 2.7.8. We take the inverse of ap; to map g :
f(a) = f(@) to h(a’) - ap 1 (q) - h(a)™' : a = a’. We then have to prove
h(a’) - ap r1(ap (p)) - h(a)' =pforallp:a=a’,as well as ap(h(a’)) -
ap+(q) -h(a)™) = g forall  : f(a) = ().

The first roundtrip is easy by induction on p. The reader may also
recognize a naturality square as in Definition 2.4.4 based on the homotopy
h. The second roundtrip also uses the other homotopy i(y) : f(f~(y)) =
y for all y : B. This case is more involved and uses several applications
of Definition 2.4.4. We refrain from giving all details.** O

The converse of Lemma 2.19.1 is not true: f : T — 2 sending 0 to
0 is not an equivalence. As a function between sets, f is an injection
(one-to-one), but not a surjection. We need these important concepts
for types in general. We define them as close as possible to their usual
meaning in set theory: a function from A to B is surjective if the preimage
of any b : B is non-empty, and injective if such preimages contain at most
one element.

DEerINITION 2.19.2. A function f : A — B is an injection, or injective, if
f71(b) is a proposition for all b : B. A function f : A — B is a surjection,

41 A short proof can be obtained from
Lemma 2.19.8.



