T(b) is fully determined by two types, namely by the types T(no) and T(yes). The elements of $\sum_{b:Bool} T(b)$ are dependent pairs (no, x) with x in T(no) and (yes, y) with y in T(yes). The resulting type can be viewed as the *disjoint union* of T(no) and T(yes): from an element of T(no) or an element of T(yes) we can produce an element of $\sum_{b:Bool} T(b)$.

Such types can be described more clearly in the following way. The *binary sum* of two types *X* and *Y*, denoted *X* $\amalg Y$, is an inductive type with two constructors: inl : $X \to X \amalg Y$ and inr : $Y \to X \amalg Y$.²⁴ Proving a property of any element of *X* $\amalg Y$ means proving that this property holds of any inl_x with x : X and any inr_y with y : Y. In general, constructing a function *f* of type $\prod_{z:X \amalg Y} T(z)$, where T(z) is a type depending on *z*, is done by defining $f(\operatorname{inl}_x)$ for all *x* in *X* and $f(\operatorname{inr}_y)$ for all *y* in *Y*.

Identification of two elements *a* and *b* in X II Y is only possible if they are constructed with the same constructor. Thus $inl_x = inr_y$ is always empty, and identifications $inl_x = inl_{x'}$ are equivalent to identifications x = x' in X, and identifications $inr_y = inr_{y'}$ are equivalent to identifications y = y' in Y.

2.6.5 Unary sums

Sometimes it is useful to be able to make a copy of a type X: A new type that behaves just like X, though it is not definitionally equal to X. The *unary sum* or *wrapped copy* of X is an inductive type Copy(X) with a single constructor in : $X \to \text{Copy}(X)$.²⁵ Constructing a function $f : \prod_{z:\text{Copy}(X)} T(z)$, where T(z) is a type depending on z : Copy(X), is done by defining $f(\text{in}_x)$ for all x : X. Taking T(z) to be the constant family at X, we get a function out : Copy(X) $\to X$, called the *destructor*, with $\text{out}(\text{in}_x) \coloneqq x$ for x : X, and the induction principle implies that $\text{in}_{\text{out}(z)} = z$ for all z : Copy(X), so Copy(X) and X are equivalent, as expected. In fact, we will assume that the latter equation even holds definitionally. It follows that identifications $\text{in}_x = \text{in}_{x'}$ in Copy(X) are equivalent to identifications x = x' in X, and identifications out z = out z' in X are equivalent to identifications z = z' in Copy(X).

Here's an example to illustrate why it can useful to make such a wrapped type: We introduced the natural numbers \mathbb{N} in Section 2.2. Suppose we want a type consisting of negations of naturals numbers, $\{\ldots, -2, -1, 0\}$, perhaps as an intermediate step towards building the set of integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$.²⁶ Of course, the type \mathbb{N} itself would do, but then we would need to pay extra attention to whether $n : \mathbb{N}$ is supposed to represent n as an integer or its negation. So instead we take the wrapped copy $\mathbb{N}^- := \operatorname{Copy}(\mathbb{N})$ and write $- :\equiv in : \mathbb{N} \to \mathbb{N}^-$ for the constructor. There is then no harm in also writing $- :\equiv \operatorname{out} : \mathbb{N}^- \to \mathbb{N}$ for the destructor. This means that \mathbb{N}^- is a type equivalent to \mathbb{N} , whose elements are exactly -n for $n : \mathbb{N}$, indeed, $-(-n) \equiv n$ for n an element of either \mathbb{N} or \mathbb{N}^- , and identifications -n = -n' are equivalent

One harm would be that -n is an integer, so we expect -(-n) to be one, too.

²⁶(FIX) Maybe we'll actually do just that!

