T(b) is fully determined by two types, namely by the types T(no) and
T(yes). The elements of }_j.po01 T(b) are dependent pairs (no, x) with x
in T(no) and (yes, y) with y in T(yes). The resulting type can be viewed
as the disjoint union of T(no) and T'(yes): from an element of T(no) or an
element of T(yes) we can produce an element of }_j.go01 T(0).

Such types can be described more clearly in the following way. The
binary sum of two types X and Y, denoted X11Y, is an inductive type with
two constructors: inl : X - XY andinr : Y — X LI Y.* Proving a
property of any element of X L1 Y means proving that this property holds
of any inl, with x : X and any inr, with y : Y. In general, constructing a
function f of type [1,.x1ry T(z), where T(z) is a type depending on z, is
done by defining f(inly) for all x in X and f(inry) forall y in Y.

Identification of two elements 2 and b in X L1 Y is only possible if they
are constructed with the same constructor. Thus inl, = inry is always
empty, and identifications inl, = inl,- are equivalent to identifications x =
x”in X, and identifications inr, = inr, are equivalent to identifications
y=y'inY.

2.6.5 Unary sums

Sometimes it is useful to be able to make a copy of a type X: A new
type that behaves just like X, though it is not definitionally equal to
X. The unary sum or wrapped copy of X is an inductive type Copy(X)
with a single constructor in : X — Copy(X).?> Constructing a function
f Tzcopy(x) T(2), where T(z) is a type depending on z : Copy(X), is
done by defining f(in,) for all x : X. Taking T(z) to be the constant
family at X, we get a function out : Copy(X) — X, called the destructor,
with out(iny) := x for x : X, and the induction principle implies that
inguyz) = z for all z : Copy(X), so Copy(X) and X are equivalent, as
expected. In fact, we will assume that the latter equation even holds
definitionally. It follows that identifications in, = in,’ in Copy(X) are
equivalent to identifications x = x” in X, and identifications out z = out z’
in X are equivalent to identifications z = z” in Copy(X).

Here’s an example to illustrate why it can useful to make such a
wrapped type: We introduced the natural numbers N in Section 2.2.
Suppose we want a type consisting of negations of naturals numbers,
{...,=2,-1,0}, perhaps as an intermediate step towards building the set
of integers {...,-2,-1,0,1,2,...}.2° Of course, the type N itself would
do, but then we would need to pay extra attention to whether n : N is
supposed to represent n as an integer or its negation. So instead we
take the wrapped copy N~ := Copy(N) and write — :=in : N — N~
for the constructor. There is then no harm in also writing — := out :

N~ — N for the destructor. This means that N~ is a type equivalent to
N, whose elements are exactly —u for n : N, indeed, —(—n) = n for n an

element of either N or N7, and identifications = —n’ are equivalent

One harm would be that
-n is an integer, so we

expect -(-n) to be one, too.

SYMMETRY 15

24Be aware that in a picture, the same
point may refer either to x in X or to
inly in the sum X ITY:
o -
N
Y N
\
\

X1y,
e
1/
I

\
1
1
1

1

25A point x : X corresponds to the
point iny : Copy(X):
s LIREN

’ \\

! \

! \

| @ .
! I

' X I

\ '

\

o Copy(X)

Note that Copy(X) can also be
described as) _,.1ue Y(z), where

Y (thv) = X. \
\ Why not write X instead of Y(z)??

No, it’s not a description, it's
an alternative.

26(FIX) Maybe we’ll actually do just
that!

