
�������� ��

��Be aware that in a picture, the same
point may refer either to x in X or to
inlx in the sum X q Y:

X Y

x y

X q Y

��A point x : X corresponds to the
point inx : Copy(X):

x
X

$ inx

Copy(X)
Note that Copy(X) can also be
described as Âz:True Y(z), where
Y(triv) :⌘ X.

��(FIX) Maybe we’ll actually do just
that!

T(b) is fully determined by two types, namely by the types T(no) and
T(yes). The elements of Âb:Bool T(b) are dependent pairs (no, x) with x
in T(no) and (yes, y) with y in T(yes). The resulting type can be viewed
as the disjoint union of T(no) and T(yes): from an element of T(no) or an
element of T(yes) we can produce an element of Âb:Bool T(b).

Such types can be described more clearly in the following way. The
binary sum of two types X and Y, denoted XqY, is an inductive type with
two constructors: inl : X ! X q Y and inr : Y ! X q Y.�� Proving a
property of any element of X qY means proving that this property holds
of any inlx with x : X and any inry with y : Y. In general, constructing a
function f of type ’z:XqY T(z), where T(z) is a type depending on z, is
done by defining f (inlx) for all x in X and f (inry) for all y in Y.

Identification of two elements a and b in X q Y is only possible if they
are constructed with the same constructor. Thus inlx ⇤ inry is always
empty, and identifications inlx ⇤ inlx’ are equivalent to identifications x ⇤

x0 in X, and identifications inry ⇤ inry’ are equivalent to identifications
y ⇤ y0 in Y.

�.�.� Unary sums

se
c:
un
ar
y-
su
m-
ty
pe
s

Sometimes it is useful to be able to make a copy of a type X: A new
type that behaves just like X, though it is not definitionally equal to
X. The unary sum or wrapped copy of X is an inductive type Copy(X)
with a single constructor in : X ! Copy(X).�� Constructing a function
f : ’z:Copy(X) T(z), where T(z) is a type depending on z : Copy(X), is
done by defining f (inx) for all x : X. Taking T(z) to be the constant
family at X, we get a function out : Copy(X) ! X, called the destructor,
with out(inx) :⌘ x for x : X, and the induction principle implies that
inout(z) ⇤ z for all z : Copy(X), so Copy(X) and X are equivalent, as
expected. In fact, we will assume that the latter equation even holds
definitionally. It follows that identifications inx ⇤ inx’ in Copy(X) are
equivalent to identifications x ⇤ x0 in X, and identifications out z ⇤ out z0

in X are equivalent to identifications z ⇤ z0 in Copy(X).
Here’s an example to illustrate why it can useful to make such a

wrapped type: We introduced the natural numbers N in Section �.�.
Suppose we want a type consisting of negations of naturals numbers,
{. . . ,�2,�1, 0}, perhaps as an intermediate step towards building the set
of integers {. . . ,�2,�1, 0, 1, 2, . . .}.�� Of course, the type N itself would
do, but then we would need to pay extra attention to whether n : N is
supposed to represent n as an integer or its negation. So instead we
take the wrapped copy N� :⌘ Copy(N) and write � :⌘ in : N ! N�

for the constructor. There is then no harm in also writing � :⌘ out :
N� ! N for the destructor. This means that N� is a type equivalent to
N, whose elements are exactly �n for n : N, indeed, �(�n) ⌘ n for n an
element of either N or N�, and identifications �n ⇤ �n0 are equivalent

No, it’s not a description, it’s
an alternative.

Why not write X instead of Y(z)??

One harm would be that
-n is an integer, so we

expect -(-n) to be one, too.


