
�Since the symmetries p : a ⇤A a are
paths that start and end at the point
a : A, we also call them loops at a.

a

A

p

�
Groups

ch
:g
ro
up
s The identity type is not just any type: in the previous sections we have

seen that the identity type a ⇤A a reflects the “symmetries” of an element
a in a type A.� Symmetries have special properties; for instance you
can rotate a square by 90°, and you can rotate it by �90°, undoing the
first rotation. Symmetries can also be composed, and this composition
respects certain rules that holds in all examples. One way to study the
concept of “symmetries”, would be to isolate the common rules for all
our examples, but also show, conversely, that anything satisfying these
rules actually is an example.

With inspiration of geometric and algebraic origins, it became clear to
mathematicians at the end of the ��th century that the properties of such
symmetries could be codified by saying that they form an abstract group.
In Section �.� we saw that the identity type was “reflexive, symmetric
and transitive” – and an abstract group is just a set with such operations
satisfying certain rules.

We attack the issue more concretely; instead of focusing on the abstract
properties, we promote the type exhibiting the symmetries, and the
axioms for an abstract group follow from the rules for identity types
without needing us to worry about them. However, we will show that
the two approaches give the same end result.

In this chapter we lay the foundations and provide some basic examples
of groups.

�.�.� Brief overview of the chapter

In Section �.� we give the formal definition of a group along with some
basic examples. In Section �.� we spell out the details, expanding on
the properties of the identity type of a group and comparing these
properties with those of an abstract group. We then return in Section �.�
to groups more generally, explaining how these map to each others
through “homomorphisms” (which to us are simply pointed maps) and
what this entails for the identity types: all the abstract group properties
are preserved.

��

�������� ��

�((THEN SUBGROUPS TAKE CEN-
TRAL STAGE, BUT I POSTPONE
DISCUSSING THESE IN CASE THIS
CHAPTER IS ALREADY OVERLY
LONG AND WE WANT TO PUT
THEM IN A SEPARATE CHAPTER))

In most of our exposition we make the blanket assumption that the
identity type in question is a set, but in Section �.� we briefly discuss
1-groups where this assumption is dropped.

Classically, groups have appeared because they “act” on a set (or more
general objects), that is to say, they collect some of the symmetries of the
set. This is a point of view that we will return to many times and we give
the basic theory in Section �.�. This section should remind the reader
very much of what happened in Chapter �, where we did much of the
same considerations for the special case of the integers. More generally,
connected set bundles now reappear in the guise of “transitive G-sets”,
laying the groundwork for our later discussion of the set of subgroups.

Another important thing which is discussed in Section �.� is the type
of “G-torsors”, which at first glance can appear frightening. However, a
G-torsor correspond to a universal set bundle and the important step is
to consider the type of these: This idea is used in Section �.� to build the
equivalence between our definition of a group and the abstract version
taught in most algebra classes. This is followed up for homomorphisms
in Section �.� and for G-sets in Section �.��.

With all this in place, the structure of the type of groups is in the
large in many aspects similar to the universe in the sense that many of
the constructions we’re used to from the universe have their analog for
groups. The functions are replaced by the homomorphisms. Products
stay “the same” as we will see already in Example �.�.�� (and more
generally, ⇧-types over sets). The sum of two groups is simple enough:
It is the sum of the underlying types with the base points identified,
as defined more precisely in Definition �.��.�. In the usual treatment
this is a somewhat more difficult subject involving “words” taken from
the two groups. This reappears in our setting when we show that
homomorphisms out of a sum correspond to pairs of homomorphisms
(just as for sum and functions in types).

�

�.� The type of groups

se
c:
ty
pe
gr
ou
p

D��������� �.�.�. Given a pointed type X ⌘ (A, a), we define its type of
loops by ⌦ X ⌘ ⌦(A, a) :⌘ (a ⇤A a).

ex
:b
as
e=
ba
se

E������ �.�.�. We defined the circle S1 in Definition �.�.� by declaring
that it has a point • and an identification (“symmetry”) : (• ⇤ •) ⌘ ⌦ S1,
and we proved in Corollary �.�.� that ⌦ S1 is equivalent to the set Z (of
integers), where n 2 Z corresponds to the n-fold composition of with
itself (which works for both positive and negative n). We can think of this
as describing the symmetries of •: we have one “generating symmetry”
 , and this can be applied any number of times, giving a new symmetry
for each new number. Here, composition of loops corresponds to usual

corresponds universal??
bundle over what?

comma

“stay the same”

can’t we say “products”?

from a sum to another group

sums of types
and functions
between types

�������� ��

�The type a ⇤A a0 does have an
interesting ternary composition,
mapping p , q , r to pq�1r. A set with
this kind of operation is called a heap,
and we’ll return to heaps in ??.

a b

· · ·

AA(a)

p

addition of integers.
Hence, the circle is a very cheap packaging of the “group” of integers,

the declaration of • and not only gives the set Z of integers, but at the
same time the addition.
E������ �.�.�. Recall the finite set 2 : fin2 from Definition �.��.�, con-
taining two elements. According to Exercise �.�.�, 2 ⇤ 2 has exactly two
distinct elements, refl2 and twist, and doing twist twice gives you back
refl2. We see that this is exactly all the symmetries you’d expect to have
of a two point set: You can let everything stay in place (refl2), or you can
swap the two elements (twist); and if you swap twice, everything is let
be. The pointed type fin2 (of “finite sets with two elements”), with 2 as
the base point, is our embodiment of these symmetries,i.e., ⌦ fin2.

Observe that (by the definition of S1) there is an interesting function
S1 ! fin2, sending • : S1 to 2 : fin2 and to twist.

The examples Klein and Lie were interested in were of a type making
it admissible to say that a group is the loops ⌦(A, a) ⌘ (a ⇤A a) for
some type A and some element a : A. However, in elementary texts it is
customary to restrict the notion of a group to the case when a ⇤A a is a
set as we will do, starting in Section �.�. This makes some proofs easier,
since if are we given two elements g , h : a ⇤A a, then the identity type
g ⇤ h is a proposition, i.e., g can be equal to h in at most one way. Hence
questions relating to uniqueness will never be a problem.

See Section �.� for a brief summary of the early history of groups.
R����� �.�.�. The reader may wonder about the status of the identity
type a ⇤A a0 where a , a0 : A are different elements. One problem is of
course that if p , q : a ⇤A a0, there is no obvious way of composing p
and q to get another element in a ⇤A a0, and another is that a ⇤A a0

does not have a distinguished element, such as refla : a ⇤A a.� Given
f : a ⇤A a0 we can use transport along f to compare a ⇤A a0 with a ⇤A a
(much as affine planes can be compared with the standard plane or a
finite dimensional real vector space is isomorphic to some Euclidean
space), but absent the existence and choice of such an f the identity
types a ⇤A a0 and a ⇤A a are different animals. We will return to this
example when we’ve defined torsors.

re
m:
wh
yp
oi
nt
ed
co
nn
gp
oi
d R����� �.�.�. As a consequence of Lemma �.��.�, the inclusion of the

component A(a) :⌘ Âx:Aka ⇤ xk into A (i.e., the first projection) induces
an equivalence of identity types from (a , !) ⇤A(a) (a , !) to a ⇤A a, and thus
from ⌦(A(a) , (a , !)) to ⌦(A, a). This means that, when considering the
loop type ⌦(A, a), “only the elements x : A with x merely equal to a are
relevant”, and to avoid artificial extra components, we should consider
only connected types A (c.f. Definition �.��.�).

Also, our preference for ⌦(A, a) to be a set indicates that we should
consider only the connected types A that are groupoids.

“a group is the type of loops”

comma

�������� ��

The meaning of the superscript “⇤ 1”
can be explained as follows: We also
define

U 1 :⌘ Groupoid

:⌘ Â
A:U

’
x ,y:A

isSet(x ⇤A y),

to emphasize that groupoids are 1-
types; the type of connected types is
denoted

U >0 :⌘ Â
A:U

kAk ⇥ ’
x ,y:A

kx ⇤a yk.

Similar notations with a subscript “⇤”
indicate pointed types.

Recall also the example of the
negated natural numbers N� from
Section �.�.�: Its elements are �n
for n : N to remind us how to think
about them. And the same applies
to Group: Its elements are ⌦ X for
X : U⇤1⇤ to remind us how to think
about them.

de
f:
pt
-c
on
n-
gr
ou
po
id

D��������� �.�.�. The type of pointed connected groupoids is the type

U ⇤1
⇤ :⌘ Â

A:U
Â
a:A

isSet(a ⇤A a) ⇥ ’
x:A

ka ⇤A xk.

The following exercise reconciles the words of the above definition
with the type.

xc
a:
de
fg
ro
up

E������� �.�.�. Show that A is indeed a groupoid for (A, a , p , q) : U ⇤1
⇤ .

R����� �.�.�. We shall refer to a pointed connected groupoid (A, a , p , q)
simply by the pointed type X :⌘ (A, a). There is no essential ambiguity
in this: Being a connected groupoid is asserted (for a pointed type) by

isSet(a ⇤A a) ⇥ ’
x:A

ka ⇤A xk ,

which is a proposition (Lemma �.��.� and Lemma �.��.�), and so the
witness (p , q) is unique.

We also write ptX :⌘ a for the base point of the pointed type.
We are now ready to define the type of groups:

de
f:
ty
pe
gr
ou
p D��������� �.�.�. A group is given by pointed connected groupoid X ⌘

(A, a) via the loop type ⌦(A, a); the type of groups,

Group :⌘ Copy(U ⇤1
⇤),

is a wrapped copy (cf. Section �.�.�) of the type of pointed connected
groupoids U ⇤1

⇤ . We rename the constructor ⌦ : U ⇤1
⇤ ! Group, so a

group G ⌘ inX : Group will be referred to simply as ⌦ X. We rename
the destructor B : Group !U ⇤1

⇤ , and

B G ⌘ B(⌦ X) :⌘ X ⌘ (A, a)

is referred to as the classifying type of G. The element pG :⌘ ptB G ⌘ a will
be referred to as the base point. Informally, we may also refer to the type
B G÷ ⌘ A itself as the classifying type of G.

de
f:
gr
ou
p-
sy
mm
et
ri
es

D��������� �.�.��. We define the symmetries of a group G ⌘ ⌦ X, to be
the set U G :⌘ ⌦ X. In this way we have defined a map

U : Group ! Set, ⌦ X 7! ⌦ X.

re
m:
au
t R����� �.�.��. We are emphasizing that the essential feature of a group

is the symmetries of the base point. And that is why we defined Group to
be a copy ofU ⇤1

⇤ , and notU ⇤1
⇤ itself: The type most often associated to a

group G is the set U G, so we use a special notation for the classifying type
B G. However, as noted in Section �.�.�, the constructor and destructor
pair forms an equivalence Group ' U ⇤1

⇤ . And U ⇤1
⇤ is a subtype of U ⇤,

so in this sense, once you know that a pointed type X is a connected
groupoid, this pointed type gives a classifying type for a group G :⌘ ⌦ X,
and X carries all the information about the group G.

parenthesize for clarity

What does this mean?
One can see that (A,a) and (A,a,p,q)

are not even of the same type.
Why not just write (A,a,!,!)?

insert “a”?

the subscript + here is too tiny
This word is too easily confused
with the set of automorphisms
of the group G. There must

be a better word. “Motions of G”?

More confusion: symmetries of the
base point or symmetries of
the group, as just above?

�������� ��

�You see immediately the typograph-
ical reason behind this convention:
The italic letters B,G get along nicely,
while the roman B distances itself a
bit from its italic friend G.

re
m:
BG
-c
on
ve
nt
io
n R����� �.�.��. To define a function f : ’G:Group T(G), where T(G) is

a type family indexed by G : Group, it suffices to consider the case
G ⌘ ⌦ X, where X is a pointed connected groupoid. Since X ⌘ B G, we
shall make a convention to always use the variable name BG instead of
X, and similarly, for a variable H : Group, when we use the induction
principle for Group, we use the variable BH : U ⇤1

⇤ , etc. And whenever
we introduce a variable G of type Group, we immediately and silently
use the induction principle to get a variable BG : U ⇤1

⇤ such that G ⌘ ⌦ BG
and BG ⌘ B(⌦ BG) ⌘ B G.�

Also note that identifications G ⇤ H of groups are equivalent to
identifications BG ⇤ BH of pointed types.

It is not infrequent that we want to consider the symmetries ⌦(A, a)
of some element a in some groupoid A:

de
f:
au
to
mo
rp
hi
sm
-g
ro
up

D��������� �.�.��. For a groupoid A with a specified point a, we define
the automorphism group of a : A by

AutA(a) :⌘ ⌦(A(a) , (a , !)),

i.e., AutA(a) is the group with classifying type BAutA(a) ⌘ (A(a) , (a , !)),
the connected component of A containing a, pointed at a.

re
m:
sy
mm
et
ri
es
of
no
nc
on
ne
ct
ed
gr
ou
po
id
s R����� �.�.��. For any G ⌘ ⌦(A, a) : Group, we have an identifica-

tion G ⇤ AutA(a), because we have an identification of pointed types
(A(a) , (a , !)) ⇤ (A, a), since A is connected.

In other words, for any G ⌘ ⌦ BG, we have an identification G ⇤

AutBG÷
(pG), of G with the automorphism group of the base point pG : BG.

�.�.� First examples

se
c:
fi
rs
tg
ro
up
ex
am
pl
es

ex
ci
rc
le
gr
ou
p E������ �.�.��. The circle S1, which we defined in Definition �.�.�, is a

connected groupoid (Lemma �.�.�, Corollary �.�.�) and is pointed at •.
The identity type • ⇤S1 • is equivalent to to the set of integers Z and
composition corresponds to addition. This justifies our definition of the
group of integers as

Z :⌘ AutS1(•).
It is noteworthy that along the way we gave several versions of the circle,
each of which has its own merits, the version in Definition �.�.�

C ⇤ (Â
X:U

Â
f :X⇤X

k(Z, s) ⇤ (X, f)k , (Z, s))

being a very convenient one.

ex
:g
ro
up
s E������ �.�.��. Apart from the circle, there are some important groups

that come almost for free: namely the symmetries in the type of sets.

(�) Recall that the set 1 ⇤ True has the single element which we can call
⇤. Then Aut1(⇤) is a group called the trivial group.

End a sentence with a period, never a colon.

Different fonts? Also, why not just write pt_BG, since
we have that notation already?

Maybe remind the reader that this
is the same as Omega underlined of S^1

�������� ��

(�) If n : N, then the permutation group of n letters is

⌃n :⌘ Autfinn (n),

where finn is the groupoid of sets of cardinality n (c.f. �.��.�). The
classifying type is thus B⌃n :⌘ (finn , n). With our convention of
Remark �.�.�� we can tolerate Autfin(n), AutSet(n) or even AutU (n)
as synonyms for the group ⌃n (where fin and Set are the subtypes of
U of finite sets and sets).

If the reader starts worrying about size issues, that is quite legitimate;
see Remark �.�.��.

(�) More generally, if S is a set, is there a pointed connected groupoid
(A, a) so that a ⇤A a models all the “permutations” S ⇤Set S of S?
Again, the only thing wrong with the groupoid Set of set (apart from
Set being large) is that Set is not connected. The group of permutations
of S is defined to be

⌃S :⌘ AutSet(S),
with classifying type B⌃S :⌘ (Set(S) , S).

re
m:
gr
ou
ps
ar
eb
ig

R����� �.�.��. This is only for those who worry about size issues - a
theme we systematically ignore in our exposition. If we start with a
base universeU0, the groupoid of sets of cardinality n, finn is a ⌃-type
ÂA:U0 kA ⇤ nk overU0 and so without any massage will lie in a bigger
universeU1. In order to accommodate for the finite permutation groups,
the universe “U ” appearing as a subscript for the first ⌃ in the definition
of groups needs to be at least as big asU1. If so, the type Group will not
be inU1, but in some bigger universeU2, so if I choose some group G
and look at its group of automorphisms, this will will be a group only if
the universe is at least as big asU2. Luckily, our convention is that the
universes are nested, and so at any point we’ll just be somewhere big
enough for our purposes, see Section �.�. This is not to say that these
questions are trivial or unimportant; they are nontrivial and important,
but not what this text is about.

ex
:c
yc
li
cg
ro
up
s E������ �.�.��. In Theorem �.�.� we studied the symmetries of the “m-

fold set bundle” of the circle for m a positive integer, and showed that
there were m different such symmetries. Moreover we showed that
these symmetries were the powers f n (for n ⇤ 0, 1, . . . ,m � 1) of one
(non-unique) symmetry f and that f m+k ⇤ f k for any integer k. This
very important phenomenon pops up in many situations, and is called
the cyclic group of order m. In other words, the cyclic group of order
m is the (pointed) component of the type SetBundle(S1) of set bundles
of the circle containing the m-fold set bundle. We analyzed this in
Theorem �.�.� and found that this (pointed) component was equivalent

Set being unconnected is not wrong, either,
in this context.

Set being large is not wrong

add a comma

add a comma

Here you should also assume
that n is in U_0.

Hmm? I wonder about using “the” here,
since there are many covering

spaces of the circle of
degree m. Somehow you have

to say you are interested in
the cyclic one.

