
1. Internal cd-structures

Definition 1. Let f : A → B and let X be a type. We say that f is fiberwise orthogonal
to X if every base change f ′ : A′ → B′ of f is orthogonal to X, i.e., Xf ′

: XB′ → XA′
is an

equivalence.

Proposition 2. The collection of maps that are fiberwise orthogonal to a fixed X has the
following closure properties:

(i) It is closed under base change.
(ii) It is closed under composition and cancellation on one side: Let f : A → B and

g : B → C. If f is fiberwise orthogonal to X, then g is if and only if gf is.
(iii) It is closed under cobase change and sequential transfinite composition.
(iv) It is closed under whatever colimits in the arrow category we can perform, which we

assume includes at least coproducts, pushouts and sequential colimits.
(v) It satisfies descent: Let f : A → B and suppose qi : Bi → B, i : I, is a jointly

surjective family of maps. If each base change q∗i f : Ai → Bi is fiberwise orthogonal
to X, then so is f .

(vi) If f1 : A1 → B is fiberwise orthogonal to X and f2 : A2 → B is any map, then the
fiberwise join f1 ∗B f2 : A1 ∗B A2 → B is fiberwise orthogonal to X.

(vii) If f : A → B is fiberwise orthogonal to X, then so is the inclusion of its image,
i : im f → B.

(Note that they do not satisfy two-out-of-three in general, even though the maps orthogonal to
a fixed X do.)

Proof. Most parts follow from the stability of various constructions (e.g., composition, cobase
change, and colimits in the arrow category) under base change. Only the last few items
require special comment.

For descent, we may first replace the family (qi : Bi → B)i:I by the single surjection
q : B′ → B, where B′ :=

∑
i:I Bi. The base change f ′ : A′ → B′ along q is fiberwise

orthogonal to X, by (iv). Form the join construction on the map f ′ → f (equivalently, form
the join construction on q : B′ → B, together with its base change along f to A). Each map
f ′ ×f f

′, f ′ ∗f f ′, f ′ ×f (f ′ ∗f f ′), . . . encountered in the construction is fiberwise orthogonal
to X because it is either a base change of f ′, or a pushout in the arrow category of previous
maps. There is a sequential colimit diagram f ′ → f ′ ∗f f ′ → f ′ ∗f f ′ ∗f f ′ → · · · → f (because
q is surjective), so f is also fiberwise orthogonal to X.

For the fiberwise join, suppose f1 : A1 → B is fiberwise orthogonal to X, and f2 : A2 → B
is any map. It is enough to prove that f1 ∗B f2 is orthogonal to X, because the construction
of the join is stable under base change. The pullback A1 ×B A2 → A2 of f1 is orthogonal to
X, and therefore so is the inclusion A1 → A1 ∗B A2; then apply two-out-of-three to this map
and f1 : A1 → B.

Finally, let f : A→ B and construct its image factorization through i : im f → B. By the
previous part, the fiberwise joins f ∗B f , f ∗B f ∗B f , . . . are fiberwise orthogonal to X, and
their colimit is i. �

Definition 3. A cd-structure χ is a collection of so-called “distinguished squares”: commuta-
tive squares of types. A cd-structure is called complete if any base change of a distinguished
square is again distinguished. For simplicity, we only consider complete cd-structures
(for now).
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Definition 4. To a commutative square

σ =

 A X

B Y


we associate two maps:

• the gap map g(σ) : P → Y , where P is the pushout B qA X;
• and its image i(σ) : im(g(σ))→ Y .

We write G = G(χ) for { g(σ) | σ ∈ χ }, and imG for { i(σ) | σ ∈ χ },

Proposition 5. The collections G, imG are closed under base change.

Proof. Evident, since we require a cd-structure to be complete. �

Definition 6. We say that a type F satisfies

• excision for χ, if every morphism of G is (fiberwise) orthogonal to F ;
• the sheaf condition for χ, if every morphism of imG is (fiberwise) orthogonal to F .

It doesn’t matter whether we include the word “fiberwise”, by the previous proposition.

Proposition 7. If F satisfies excision for χ, then it satisfies the sheaf condition for χ.

Proof. This follows from closure property (vii) of fiberwise orthogonality. �

Our goal is to establish the converse implication under suitable hypotheses on the cd-
structure χ. Voevodsky’s original paper considers the following condition.

Definition 8. Given a square

σ =

 A X

B Y

 ,

its derived square is

σ∆ :=


A A×X A

B B ×Y B

 .

The cd-structure χ is regular if, for each distinguished square σ (with the notation above):

(i) The map X → Y is a monomorphism.
(ii) The square σ is a pullback.

(iii) The derived square σ∆ is also distinguished.

Remark 9. The squares in a cd-structure come with a particular orientation. More precisely,
the transpose of a distinguished square will usually not also be distinguished. The definition
of a regular cd-structure is not symmetric under transposition. For no particular reason, we
form our derived squares in the “horizontal” direction, even though in the original paper they
were formed in the “vertical” direction. This is merely a different typographical convention.
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In the original setting, it was also implicit that the objects appearing in (at least some
generating family of) distinguished squares are 0-truncated. In this case, Voevodsky proved
that for a regular (and complete) cd-structure, the sheaf condition implies the excision
condition. We first show why this implication cannot hold in general.

Example 10. Let S be any collection of maps which is stable under base change and passage
to the diagonal. The objects with respect to which every map in S is (fiberwise) orthogonal
form a left exact localization of the universe, and every left exact localization arises in this
way.

Now, consider the cd-structure χ(S) consisting of all squares of the form

∅ ∅

B Y
f

in which the map f : B → Y belongs to S. The assumptions on S precisely say that this
cd-structure is complete and regular. The gap map of the above square is just B → Y again,
so a type F satisfies the excision condition if every map f of S is fiberwise orthogonal to F ,
while it satisfies the sheaf condition if im f → Y is fiberwise orthogonal to F for every map
f of S. In general, the latter condition is weaker than the former; the types F satisfying the
sheaf condition make up the topological (or monogenic) part of the left exact localization
associated to S.

This example also shows that there is no special property enjoyed by the localizations that
arise from cd-structures.

Consequently, we cannot prove the implication “sheaf condition =⇒ excision” for a
general regular and complete cd-structure. We need an additional hypothesis.

Definition 11. A cd-structure χ is truncated if the gap map g(σ) of every distinguished
square σ is n-truncated for some n. (Note that n may depend on σ.)

We will prove that for a truncated, regular, complete cd-structure, the sheaf condition
implies excision. We need some preparatory lemmas.

Lemma 12 (Wärn). Let

A X

B P

be a pushout square in which the left map A→ B is a monomorphism. Then:

(i) The right map X → P is also a monomorphism.
(ii) The square is also a pullback.

(iii) The derived square

A A×X A

B B ×P B

is also a pushout square.
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Lemma 13. Let f : P → Y be a map and F a type such that both ∆f : P → P ×Y P and
im f → Y are fiberwise orthogonal to F . Then, f is also fiberwise orthogonal to F .

Proof. We need to recall some more details of the join construction on f . We construct a
sequence of types over Y by setting P1 := P and defining Pn+1 := P ∗Y Pn. This join comes
with a map jn : Pn → Pn+1 of types over Y . We assemble these maps jn into a diagram and
form the colimit P∞ as a type over Y , as shown.

P = P1 P2 · · · P∞

Y Y · · · Y

j1

f1

j2

f2 f∞

The theorem is that the resulting map f∞ : P∞ → Y can be identified with im f → Y .
Now we fix F so that the hypotheses are satisfied. We claim that

(∗) if there is any map h : P → Pn over Y which is fiberwise orthogonal to F , then
jn : Pn → Pn+1 is fiberwise orthogonal to F .

Assuming (∗), we complete the proof as follows. By induction, jn is fiberwise orthogonal
to F , since we may take h to be the composition of all the previous maps jn−1 · · · j1. By
closure under sequential compositions, the map P1 → P∞ is fiberwise orthogonal to F . By
assumption, the map im f → Y , which can be identified with P∞ → Y , is also fiberwise
orthogonal to F . Hence, their composition, which is the original map f : P → Y , is fiberwise
orthogonal to F .

To prove (∗), suppose h : P → Pn is a map over Y which is fiberwise orthogonal to F . We
review the step of the join construction that builds Pn+1 and jn : Pn → Pn+1.

P ×Y Pn

P Pn

Pn+1

Y

p1 p2

f

jn

fn

fn+1

The top square is a pushout, and the outer square is a pullback.
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Form the following diagram:

P

P ×Y P P

P ×Y Pn Pn

P Y

∆f

p2

P×Y h h

p2

p1 fn

f

Note that, as fnh = f , the outer pullback P ×Y P is indeed formed using f : P → Y
twice, and therefore ∆f : P → P ×Y P fits in the diagram. The composition of the three
maps on the left is the identity. The top two maps are fiberwise orthogonal to F : the map
∆f by hypothesis, and the map P ×Y h because it is a base change of h. Therefore, by
cancellation, the projection p1 : P ×Y Pn → P is also fiberwise orthogonal to F . Now, in the
join construction, the map jn is a cobase change of this map p1 : P ×Y Pn → P , so it is also
fiberwise orthogonal to F , as claimed. �

Theorem 14. Fix a truncated, regular, complete cd-structure χ. Then if F satisfies the sheaf
condition, it also satisfies excision.

Proof. Assume that F satisfies the sheaf condition. We need to show that the gap map g(σ)
of any distinguished square is fiberwise orthogonal to F . We can prove this by induction on
the truncation level of g(σ), since by assumption each g(σ) is n-truncated for some n. If g(σ)
is (−2)-truncated, then it is an isomorphism. So, assume that g(σ) is n-truncated and that
the claim holds for any σ such that g(σ) is (n− 1)-truncated.

Write

σ =

 A X

B Y

 ,

P = B qA X, and g = g(σ) : P → Y . As F satisfies the sheaf condition, the image
im g → Y is fiberwise orthogonal to F . By the lemma, then, it is sufficient to prove that
∆g : P → P ×Y P is also fiberwise orthogonal to F . We will verify this by descent. The type
P is covered by its maps from B and X, so P ×Y P is covered by four maps from X ×Y X,
B ×Y X, X ×Y B, B ×Y B respectively. We check that the base change of ∆g along each
map of this cover is fiberwise orthogonal to F . In each case, the new object produced by
base change can also be constructed by forming a pullback over P instead of Y .

• For X ×Y X, we form the pullback square

X ×P X X ×Y X

P P ×Y P
∆g
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But X → Y is a monomorphism by the hypothesis that χ is regular, and X → P is a
monomorphism by part (i) of Wärn’s lemma. Hence, the top map is an isomorphism
(both objects are X).
• For B ×Y X, we form the pullback square

B ×P X B ×Y X

P P ×Y P
∆g

But B ×Y X = A by the hypothesis that χ is regular, and B ×P X = A by part
(ii) of Wärn’s lemma. Hence, the top map is an isomorphism (both objects are A).
(Likewise for X ×Y B.)
• For B ×Y B, we form the pullback square

B ×P B B ×Y B

P P ×Y P
∆g

Part (iii) of Wärn’s lemma says that the top map is the gap map g(σ∆) of the derived
square σ∆, which is again distinguished by the hypothesis that χ is regular. The map
also has truncation level at most n− 1, being a pullback of the diagonal of g. So, by
the induction hypothesis, g(σ∆) is fiberwise orthogonal to F . �
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