
Improving Table Structure Recognition with Visual-Alignment Sequential

Coordinate Modeling

Yongshuai Huang*,1 Ning Lu∗,1 Dapeng Chen1

Yibo Li2 Zecheng Xie1 Shenggao Zhu1 Liangcai Gao2 Wei Peng1

1 Huawei Technologies Ltd. 2 Peking University
{huangyongshuai1,luning12,chendapeng8,xiezecheng1,zhushenggao,peng.wei1}@huawei.com

{yiboli,gaoliangcai}@pku.edu.cn

Abstract

Table structure recognition aims to extract the logical

and physical structure of unstructured table images into

a machine-readable format. The latest end-to-end image-

to-text approaches simultaneously predict the two struc-

tures by two decoders, where the prediction of the physi-

cal structure (the bounding boxes of the cells) is based on

the representation of the logical structure. However, the

previous methods struggle with imprecise bounding boxes

as the logical representation lacks local visual informa-

tion. To address this issue, we propose an end-to-end se-

quential modeling framework for table structure recogni-

tion called VAST. It contains a novel coordinate sequence

decoder triggered by the representation of the non-empty

cell from the logical structure decoder. In the coordinate se-

quence decoder, we model the bounding box coordinates as

a language sequence, where the left, top, right and bottom

coordinates are decoded sequentially to leverage the inter-

coordinate dependency. Furthermore, we propose an auxil-

iary visual-alignment loss to enforce the logical representa-

tion of the non-empty cells to contain more local visual de-

tails, which helps produce better cell bounding boxes. Ex-

tensive experiments demonstrate that our proposed method

can achieve state-of-the-art results in both logical and phys-

ical structure recognition. The ablation study also vali-

dates that the proposed coordinate sequence decoder and

the visual-alignment loss are the keys to the success of our

method.

1. Introduction

Tables are an essential medium for expressing structural
or semi-structural information. Table structure recognition,
including recognizing a table’s logical and physical struc-
ture, is crucial for understanding and further editing a vi-

*Equal contribution.

(a) TableFormer (Baseline) (b) VAST (Ours)

Figure 1. Visualization comparison of the bounding box predicted

by TableFormer and VAST. Our results are more accurate, which

is vital for downstream content extraction or table understanding

tasks. The image is cropped from the table with id 7285, which

comes from FinTabNet.

sual table. The logical structure represents the row-column
relation of cells and the spanning information of a cell. The
physical structure contains not only the logical structure but
also the bounding box or content of the cells, focusing on
the exact locations in the image.

Table recognition can be implemented by an end-to-end
encoder-decoder paradigm. Such methods excel at predict-
ing the logical structure but usually produce less accurate
physical structures, i.e., bounding boxes of cells or cell con-
tents. However, the bounding box accuracy is essential to
downstream tasks, such as text information extraction or ta-
ble QA. This work designs the sequential coordinate decod-
ing and enforces more visual information to produce more
accurate bounding boxes.

In the coordinate sequence decoder, the start embedding
of the non-empty cell is the representation from the HTML
sequence decoder. The representation usually contains a
more global context of the table and has fewer local visual
details. Because the local visual appearance is vital for pre-
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dicting accurate coordinates, we align the representation of
non-empty cells from the HTML sequence decoder with the
visual features from the CNN image encoder. In particular,
a visual-alignment loss is designed to maximize the cosine
similarity of the paired visual-HTML representation in the
image. In summary, our contributions are threefold.

• We propose a coordinate sequence decoder to signifi-
cantly improve the table’s physical structure accuracy
upon an end-to-end table recognition system.

• We introduce a visual-alignment loss between the
HTML decoder and coordinate sequence decoder. It
enforces the representation from the HTML decod-
ing module contains more detailed visual information,
which can produce better bounding boxes for the non-
empty cells.

• We develop an end-to-end sequential modeling frame-
work for table structure recognition, the comparison
experiments prove that our method can achieve state-
of-the-art performance and the ablation experiments
show the effectiveness of our method.

2. Related Work

The recent deep learning approaches have shown excel-
lent performance on table structure recognition tasks. These
methods can be divided into three categories: methods
based on splitting and merging, methods based on detection
and classification, and image-to-text generation methods.

Methods based on splitting and merging. These meth-
ods consist of two stages. The first stage detects rows and
columns, then splits the table into multiple basic text blocks
through the intersection of rows and columns; the second
stage merges text blocks to restore the structure.

Several works focus on splitting the rows and columns
better. For example, DeepDeSRT [34] and TableNet [26]
adjusted FCN from the semantic segmentation to segment
rows and columns. DeepTabStR [36] applied deformable
convolution to Faster R-CNN [33], FPN [17], and R-FCN
[4], which has a wider receptive field to capture the table
line this can split accurate table rows and columns. Khan et

al. [12] and Li et al. [15] used a bi-directional gated recur-
rent unit network to identify the pixel-level row and column
separators. Inspired by DETR, TSRFormer [18] formulated
table separation line prediction as a line regression problem
and they proposed a separator regression transformer to pre-
dict separation lines from table images directly.

Several merging methods have been developed to rec-
ognize tables containing cells that span rows or columns.
The SPLURGE method [40] proposed the idea of table
splitting and merging. They designed a merging model to
merge cells span multiple columns or rows. To achieve a

more accurate merged result, [45] fuse both visual and se-
mantic features to produce grid-level features. RobusTab-
Net [24] proposed a spatial CNN-based separation line pre-
diction module to split the table into a grid of cells, and a
Grid CNN-based cell merging module was applied to re-
cover the spanning cells. TRUST [9] introduced an end-
to-end transformer-based query-based splitting module and
vertex-based merging module. The splitting module is used
to extract the features of row/column separators, and the
row/column features are further fed into the vertex-based
merging module to predict the linking relations between ad-
jacent basic cells.

Methods based on detection and classification. The basic
idea of this method is first to detect the cells and then clas-
sify the row and column relationships between the cells. A
graph can be constructed based on the cell and connection
to obtain the table structure.

For the irregular layout table, a good cell detection result
could effectively improve the accuracy of table recognition,
[21, 27, 30, 46] were committed to improving the accuracy
of cell detection. Some other researchers aimed to classify
the cell relationship to construct table structure [3], [29],
[16], [43]. They utilized ground truth or OCR results to
get text blocks. Then they regarded text blocks as vertexes
to construct a graph and used the graph-based network to
classify the relationship between cells.

The most recent approaches put cell detection and cell
relation classification into one network. TableStructNet
[31] and FLAG-NET [20] both utilized Mask R-CNN [11]
network to obtain the region of cells and cell visual fea-
tures. They both utilized the DGCNN architecture in [28]
to model the interaction between geometrically neighbor-
ing detected cells. Hetero-TSR [19] proposed a novel Neu-
ral Collaborative Graph Machines (NCGM) that leverages
modality interaction to boost the multimodal representation
for complex scenarios. Lee et al. [13] formulated tables as
planar graphs, and they first obtained cell vertex confidence
maps and line fields. After that, they reconstruct the table
structure by solving a constrained optimization problem.

Methods based on image-to-text generation. These meth-
ods treat the structure of the table (HTML or latex, etc.) as a
sequence, and adopt the end-to-end image-to-text paradigm
to recognize the table structure.

Deng et al. [6] used the classic IM2MAKEUP frame-
work [5] to recognize the logical structure of the table,
where a CNN was designed to extract visual features, and
an LSTM with an attention mechanism was used to gener-
ate the latex code of the table. Zhong et al. [47] tried to
generate the logical structure and the cell content with an
encoder-dual-decoder (EDD) architecture. In the decoding
stage, they used two attention-based recurrent neural net-
works, one was responsible for decoding the table struc-
ture code, and the other was responsible for decoding the
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<table> <tr> <td>[]</td>

<td colspan=“2”>[]</td> </tr>

<tr> <td></td> <td>[]</td>

<td>[]</td> </tr> … </table>
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Figure 2. Visualization of table HTML markup and cells. Cell !

is a spanning cell that spans two columns, and cell " is an empty

cell with no content. ‘[]’ refers to the content of the cell.

content. TableMaster [44] and TableFormer [25] leveraged
the transformer decoder to improve the decoder of EDD.
In addition, they used the regression decoder to predict the
bounding box instead of the content. Since the lack of
local visual information, the bounding boxes predicted by
these methods were less accurate. In this paper, we treat the
bounding box prediction as a coordinate sequence genera-
tion task, and cooperate with visual alignment loss to pro-
duce more accurate bounding boxes.

3. Task Definition

For a given table image, our goal is to predict its logi-
cal structure and physical structure end-to-end. Specifically,
the logical structure refers to the HTML of the table, and the
physical structure refers to the bounding box coordinates of
all non-empty cells. We use S = [s1, . . . , sT ] to indicate
the tokenized HTML sequence, where T is the length of
sequences and s is a token of predefined HTML tags. We
define B = {b1, . . . ,bN} is the set of sequences of all
non-empty cells, where b = (xleft, ytop, xright, ybottom), is a
sequence of non-empty cell bounding box coordinates and
each coordinate is discretized into an integer. An example
of HTML for a table and content bounding boxes of non-
empty cells is shown in Fig. 2.

4. Methodology

Our framework consists of three modules: a CNN im-
age encoder, an HTML sequence decoder and a coordinate
sequence decoder. Given a table image, we extract the fea-
ture map through the CNN image encoder. The feature map
will be fed into the HTML sequence decoder and the co-
ordinate sequence decoder to produce a HTML sequence
and bounding boxes of the non-empty cells, respectively.
The representation of non-empty cells from the HTML se-
quence decoder will trigger the coordinate sequence de-

coder. To enforce the local visual information of the rep-
resentation, visual-alignment loss is employed during train-
ing. The model architecture is illustrated in Fig. 3.

4.1. CNN Image Encoder

We use a modified ResNet [23] equipped with multi-
aspect global content attention as the CNN image encoder.
The resulted image feature map is C4, which is from the
output of the last convolutional layer of the 4-th stage.
The input of the encoder is a RGB image with a size of
H × W × 3. The output of the encoder is feature map M

with a size H
16

× W
16

× d.

4.2. HTML Sequence Decoder

The logical structure of a table contains information
such as the number of cells, rows, columns, adjacencies,
spanning, etc. In this paper, we use HTML to repre-
sent the logical structure of a table. The ground truth
HTML of table logical structure is tokenized into struc-
tural tokens. As in the work [44], we use merged label
to represent a non-spanning cell to reduce the length of
HTML sequence. Specifically, we use <td></td> and
<td>[]</td> to denote empty cells and non-empty cells,
respectively. For spanning cells, the HTML is tokenized to
<td, colspan=“n” or rowspan=“n”, > and </td>. We use
the first token <td to represent a spanning cell.

As shown in Fig. 3, the HTML sequence decoder is
a transformer with a stack of N = 3 identical layers.
The memory keys and values are the flattened feature map
M added with the positioning encoding. The queries are
shifted structure tokens. The output of the transformer is a
HTML sequence, which is decoded by auto-regression. The
output of the t-th step is a distribution: p(st|M, s1:t−1). In
training, we employ the cross-entropy loss:

Ls=− log p(S∗|M)=−
n∑

t=2

log p(s∗t |s
∗

1:t−1,M), (1)

where S∗ is the ground truth HTML of the target table. The
start token s∗1 or s1 is a fixed token <sos> in both training
and testing phrase.

4.3. Coordinate Sequence Decoder

For coordinate prediction, we cascade coordinate se-
quence decoder after HTML sequence decoder. The de-
coder is triggered by a non-empty cell snci . The left, top,
right and bottom coordinates are decoded one element at
a time. In particular, each of the continuous corner co-
ordinates is uniformly discretized into an integer between
[0, nbins]. In the decoder, we utilize the embedding of the
previously predicted coordinates to predict the latter coordi-
nate, which inject contextual information into the prediction
of the next coordinate. The procedure of the coordinate se-
quence decoder is also illustrated in Fig. 3.
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Table 1. The public datasets for table structure recognition. “PDF” refers to multiple input modalities, such as images, text, etc., which

can be extracted from PDF. “CAR” indicates cell adjacency relationship. “Det” indicates the evaluation of detection. “Cell BBox” and

“Content BBox” refer to the bounding box of cells and content, respectively. “IC19B2H’ and “IC19B2M” stand for “ICDAR2019 TrackB2

historical” and “ICDAR2019 TrackB2 Modern” respectively.

Dataset
#Samples Input

Modality
Cell

Content
Cell

BBox
Content
BBox

Metric
Train Val Test

Logical Structure Recognition
TABLE2LATEX-450K [7] 447K+ 9,322 9,314 Image # $ $ BLEU
TableBank [14] 130K+ 10,000 5000 Image $ $ $ BLEU
PubTabNet [47] 500K+ 9,115 10,000 Image # $ # TEDS
FinTabNet [46] 92K 10,635 10,656 PDF # $ # TEDS

Physical Structure Recognition
UNLV [35] - - 558 Image $ # $ Det
ICDAR2013 [10] - - 156 PDF # $ # CAR
IC19B2H [8] - - 190 Image $ # $ CAR
IC19B2M [8] - - 145 Image $ $ # CAR
SciTSR [2] 12K - 3,000 PDF # $ # CAR
WTW [21] 10K+ - 3,611 Image $ # $ CAR
TUCD [32] - - 4,500 Image $ # $ CAR
PubTables-1M [38] 758K+ 94,959 93,834 PDF # # # GriTS

Table 2. Comparision on the FinTabNet and PubTabnet. “PTN +

FTN” means training on PubTabNet and finetuning on FinTabNet.

FinTabNet

Methods
Training
Dataset

S-TEDS TEDS

Det-Base [46] PTN 41.57 -
GTE [46] PTN + FTN 91.02 -
EDD [47] PTN 90.60 -
TableFormer [25] FTN 96.80 -
VAST FTN 98.63 98.21

PubTabNet

TabStructNet [31] SciTSR 90.10
FLAG-Net [20] SciTSR - 95.10
NCGM [19] SciTSR - 95.40
GTE [46] PTN 93.01 -
RobustTabNet [24] PTN 97.00 -
LGPMA [30] PTN 96.70 94.60
SEM [45] PTN - 93.70
EDD [47] PTN 89.90 88.30
TableMaster [44] PTN 96.04 96.16
TableFromer [25] PTN 96.75 93.60
TSRFormer [18] PTN 97.50 -
TRUST [9] PTN 97.10 96.20
VAST PTN 97.23 96.31

NCGM, FLAG-Net, etc., were tested on a randomly se-
lected samples from the test set and did not release their

Table 3. Comparison of content bounding box detection (Det) re-

sults on PubTabNet.

Methods Dataset AP50 (%)

EDD + BBox [25] PTN 79.2
TableFormer [25] PTN 82.1
VAST PTN 94.8

split. Thus they are not directly comparable. For the fair-
ness of the comparison, we only compare with methods that
report their results on the ICDAR2013 full test dataset. As
shown in Tab. 4, our VAST outperforms all previous meth-
ods with the best F1-score of 96.52% when trained with
FinTabNet and 95.72% when trained with SciTSR.

On IC19B2M, we report the results with the IoU thresh-
olds of 0.5 and 0.6 as the competitive baseline method GTE
[46]. The WAvg.F1 score is the weighted average value of
F1 scores under each threshold. As shown in Tab. 5, VAST
achieves the highest F1-score at the IoU threshold of 0.5 and
0.6, outperforming GTE by 12% and 13.2%, respectively.
Compared with CascadeTabNet, when the IoU threshold is
set to 0.6, VAST surpasses it by 7.9%, even though it used
their own labeled ICDAR2019 dataset for training. Inher-
ently, for the overall average F1 (WAvg.F1), VAST achieves
the best score of 58.6%.

PubTables-1M is the most challenging benchmark
dataset with 93834 samples for evaluation. As shown
in Tab. 6, we report the results on AccCont, GriTSTop,
GriTSCont and GriTSLoc. The scores of VAST in AccTop,
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Table 4. Comparison of cell adjacency relation (CAR) score on

the SciTSR and ICDAR2013 datasets.

SciTSR

Methods
Training
Dataset

P (%) R (%) F1 (%)

GraphTSR [2] SciTSR 95.90 94.80 95.30
TabStructNet [31] SciTSR 92.70 91.30 92.00
LGPMA [30] SciTSR 98.20 99.30 98.80
SEM [45] SciTSR 97.70 96.52 97.11
RobustTabNet [24] SciTSR 99.40 99.10 99.30
FLAG-Net [20] SciTSR 99.70 99.30 99.50
NCGM [19] SciTSR 99.70 99.60 99.60

TSRFormer [18] SciTSR 99.70 99.60 99.60

VAST SciTSR 99.77 99.26 99.51

ICDAR2013

GraphTSR [2] SciTSR 88.50 86.00 87.20
TabStructNet [31] SciTSR 91.50 89.70 90.60
CycleCenterNet [21] WTW 95.50 88.30 91.70
LGPMA [30] SciTSR 93.00 97.70 95.30
GTE [46] FTN 92.72 94.41 93.50
VAST SciTSR 93.84 97.68 95.72
VAST FTN 95.29 97.79 96.52

Table 5. Comparison of cell adjacency relation (CAR) F1-

score (%) on the IC19BM. “IC19 †” refers to the manually an-

notated ICDAR2019 dataset in CascadeTabNet [27].

Methods
Training
Dataset

IoU
WAvg.F1

0.5 0.6

NLPR-PAL [8] - - 36.5 36.5
CascadeTabNet [27] IC19 † - 43.8 43.8
GTE [46] FTN 54.8 38.5 45.9
VAST FTN 66.8 51.7 58.6

Table 6. Comparison of GriTS (%) score on PubTables-1M

Methods AccCont GriTSTop GriTSCont GriTSLoc

FasterRCNN [25] 10.39 86.16 85.38 72.11
DETR [25] 81.38 98.45 98.46 97.81

VAST 90.11 99.22 99.14 94.99

GriTSTop, GriTSCont are 90.11%, 99.22% and 99.14%
respectively, achieving the current state-of-the-art perfor-
mance. The GriTSLoc score of VAST is lower than that
of DETR because DETR uses the bounding box of the con-
tent contained in the cell to adjust the predicted bounding
box of the cell.
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Figure 4. Architecture of Coordinate Sequence Decoder (CSD)

and Regression Decoder (RD). ‘TD’ indicates the representation

of the non-empty cell from HTML Sequence Decoder. To sim-

plify, position encoding is omitted.

Table 7. Ablation studies for structure recognition on FinTabNet

test set and IC19B2M. “RD” and “CSD” indicate regression de-

coder and coordinate sequence decoder, respectively. “VA” refers

to visual alignment loss.

Exp
Modules FinTabNet IC19B2M

RD CSD VA S-TEDS AP WAvg.F1

#1 # 98.22 87.3 42.5
#2 # 98.48 95.6 52.1
#3 # # 98.63 96.2 58.6

5.3. Ablation Study

We conduct a set of ablation experiments to verify the
effectiveness of our proposed modules. We use FinTabNet
for training, and then test on the FinTabNet test set and
IC19B2M. The results are in Tab. 7, where the S-TEDS
scores for logical structure and detection AP (MS COCO
AP at IoU=.50:.05:.95) and WAvg.F1 scores for non-empty
cells are reported.

Effectiveness of coordinate sequence decoder. To val-
idate the effectiveness of the Coordinate Sequence De-
coder (CSD), we follow TableFormer [25] and TableMas-
ter [44] to implement a Regression Decoder (RD) module,
as shown in 4. The difference between the CSD and RD
lies in the output header and loss function: 1) By using
a Softmax activation function, CSD generates the discrete
coordinate sequence (xleft, ytop, xright, ybottom) one element
at a time, which can consume the previously generated co-
ordinate as additional input when generating the next. RD
uses the Sigmoid activation function to output the normal-
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