
Squash Those IoT Security Bugs with a
Hardened System Profile

Presentation Outline
Context: Operational Environment 1
Defense-in-Depth 2
Layered Architecture 3
Layered Architecture 4
Example: Potential 0-day Kernel Exploit 5
What Does PaX Do? 6
What Exactly is PaX? 7
PaX In The Mainline Kernel (as of 4.17+) 8
PaX Kernel Options - NOEXEC Features 9
PaX Kernel Options - ASLR Features 10
PaX Kernel Options - Misc Features 11
Manipulating PaX Flags 12
Hardened Toolchain 13
Potential Toolchain Issues and Caveats 14
Hardened Issues and The State of PaX 15
Where Can I Get Some PaX? 16
Some Hardened Resources 17
General References and Specifications 18
License and Thanks! 19

Context: Operational Environment
• Organizational Ethics

• Policies

• Controls

• Monitoring

• Insider Threats

• Education and Training

• Untrusted Networks

• Can you have a "trusted" system?

• Minimal Attack Surface

• Complexity

• Default Deny

• Defense-in-Depth

• Reduce Exposure

• Compartmentalization

• Least Privilege

• Insecure-Bootstrap Principle

• Input Validation

Defense-in-Depth

"The principle of defense-in-depth
is that layered security mechanisms
increase security of the system as a
whole. If an attack causes one
security mechanism to fail, other
mechanisms may still provide the
necessary security to protect the
system."

Layered Architecture
• Authentication

• VLANs

• Firewalls

• Encryption

• Detection

• Hosts

• Certificates

• ACLs / CAPs

• Mandatory / Role-based Access Controls

• Discretionary Access Controls

Layered Architecture
• Authentication

• VLANs

• Firewalls

• Encryption

• Detection

• Hosts

• Certificates / Keys

• Mandatory / Role-based Access Controls (MAC / RBAC)

• Access Control Lists / Linux Capabilities (ACLs / CAPs)

• Discretionary Access Controls (DAC)

• Kernel config / Toolchain

• PaX
• PIE / SSP

Example: Potential 0-day Kernel Exploit
Mishandled Object References in Kernel Keyring - A 0-day local privilege
escalation vulnerability has been identified by the perception point research team.
It has been reported that a vulnerability in the keyring facility possibly leads to a
local privilege escalation.

• CVE 2016-0728

• http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0728

• Original Report

• http://tinyurl.com/2016-0728

Typical Vendor Responses:
• RedHat, MRG 2 and RHEL 7, Suse Enterprise 11 and below

• https://bugzilla.redhat.com/show_bug.cgi?id=1297475

• https://www.suse.com/security/cve/CVE-2016-0728.html

• Gentoo Linux (gentoo-sources, hardened-sources)

• https://bugs.gentoo.org/show_bug.cgi?id=572384

• https://bugs.gentoo.org/show_bug.cgi?id=572604

Hardened response - hardened-sources with default settings (in particular
CONFIG_PAX_REFCOUNT) significantly reduces the effect of this issue to a
local DoS rather than a privilege escalation.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0728
http://tinyurl.com/2016-0728
https://bugzilla.redhat.com/show_bug.cgi?id=1297475
https://www.suse.com/security/cve/CVE-2016-0728.html
https://bugs.gentoo.org/show_bug.cgi?id=572384
https://bugs.gentoo.org/show_bug.cgi?id=572604

What Does PaX Do?
PaX adds security enhancement to the area between the kernel and user land.

• Automatically enforces memory restrictions and address space
randomization on all running processes

• Can relax certain PaX restrictions on a per ELF object basis

• Can also be configured to run in SOFTMODE (permit by default)

• Emulates trampolines (mainly for nested functions in C and some JIT
compilers)

• Prevents the introduction of new executable pages into running processes

• Kernel land enforcement of PAGEEXEC and MPROTECT cannot be disabled
while running

Old PaX used ELF program header markings, whereas new PaX prefers
filesystem extended attributes marking (both are still available in PaX kernel
config).

What Exactly is PaX?
PaX was originally a patch to the Linux kernel that provided additional hardening
in three important ways:

1. Judicious enforcement of non-executable memory

Prevents a common form of attack where executable code is inserted into the
address space of a process by an attacker and then triggered. PaX
preemptively protects against this class of attacks.

2. Address Space Layout Randomization (ASLR)

Randomization of the memory map of a process (makes it harder for an
attacker to find the exploitable code within that space). If application is built
as a Position Independent Executable (PIE), even the base address is
randomized.

3. Miscellaneous hardening on stack- and memory handling

Additional hardening features include erasing the stack frame when returning
from a system call, refusing to dereference user-land pointers in some
contexts, detecting overflows of certain reference counters, correcting
overflows of some integer counters, enforcing the size on copies between
kernel and user land, and providing extra entropy.

PaX In The Mainline Kernel (as of 4.17+)
Various bits of the last "open source" version of the PaX kernel patch have been
making it into the mainline kernel over the last few years (as each specific subset
goes through the normal kernel review process). Many of the core options have
already been merged, and more are currently under review.

In the following slides, the specific PaX options listed show (yes)* where there is a
roughly corresponding mainline feature. Alex Popov has prepared a diagram
(available on github) for a better and more visual representation. The full graphic
is too high a resolution for one slide, so only a screen shot is shown below:

https://github.com/a13xp0p0v/linux-kernel-defence-map

PaX Kernel Options - NOEXEC Features

PAX_NOEXEC This option enables the protection of allocated pages of
memory as non-executable if they are not part of the
text segment of the running process. It is needed for
PAGEEXEC, SEGMEXEC, and KERNEXEC.

PAGEEXEC (yes)* The kernel will protect non-executable pages based on
the paging feature of the CPU. This is sometimes called
"marking pages with the NX bit" in other OSes.

SEGMEXEC This is like PAGEEXEC, but based on the
segmentation feature of the CPU and it is controlled by
the PaX -S and -s flags (only on x86).

EMUTRAMP The kernel will emulate trampolines (snippets of
executable code written on the fly) for processes that
need them, e.g. nested functions in C and some JIT
compilers.

MPROTECT (yes)* The kernel will prevent the introduction of new
executable pages into the running process by various
techniques.

KERNEXEC (yes)* This is the kernel land equivalent of PAGEEXEC and
MPROTECT. It cannot be disabled while the kernel is
running.

PaX Kernel Options - ASLR Features

PAX_ASLR (yes)* The kernel will expand the number of randomized bits
for the various section of the address space. This
option is needed for RANDMMAP, RANDKSTACK, and
RANDUSTACK.

RANDMMAP The kernel will use a randomized base address for
mmap() requests that do not specify one via the
MAP_FIXED variable. It is controlled by the PaX -R and
-r flags.

RANDKSTACK
(yes)*

The kernel will randomize every task's kernel stack on
all system calls. It cannot be disable while the kernel is
running.

RANDUSTACK The kernel will randomize every task's userland stack.
This feature can be controlled on a per ELF binary
basis by the PaX -R and -r flags.

PaX Kernel Options - Misc Features

STACKLEAK (yes)* The kernel will erase its stack before it returns from a
system call. This feature cannot be disabled while the
kernel is running.

UDEREF The kernel will not de-reference userland pointers in
contexts where it expects only kernel pointers. This
feature cannot be disabled while the kernel is running.

REFCOUNT (yes)* The kernel will detect and prevent overflowing various
(but not all) kinds of object reference counters.

USERCOPY (yes)* The kernel will enforce the size of heap objects when
they are copied in either direction between the kernel
and userland.

SIZE_OVERFLOW The kernel recomputes expressions of function
arguments marked by a size_overflow attribute with
double integer precision.

LATENT_ENTROPY
(yes)*

The kernel will use early boot code to generate extra
entropy, which is especially useful on embedded
systems.

Manipulating PaX Flags
There are five PaX protections that can be enforced (in SOFTMODE) or relaxed
(in non-SOFTMODE) on a per ELF object basis: PAGEEXEC, EMULTRAP,
MPROTECT, RANDMMAP and SEGMEXEC.

paxctl - This is the traditional upstream package for setting PaX flags. It is limited
only in that it sets PT_PAX only, not XATTR_PAX. It is provided by emerging
sys-apps/paxctl.

getfattr / setfattr - These are not PaX specific utilities but are general utilities to
set a file's extended attributes. On Gentoo, they are provided by emerging
sys-apps/attr. Can be used to set XATTR_PAX via the user.* namespace.

Warning

setfattr and getfattr know nothing about PaX, so they will not perform any
sanity checking of field contents. You've been warned...

paxctl-ng - paxctl-ng is the new swiss army knife for working with both PT_PAX
and XATTR_PAX markings. It can be built with support for just one or the other or
both types of markings.

Hardened Toolchain
The Gentoo Hardened project introduces a number of changes to the default
behavior of the toolchain (gcc, binutils, glibc/uclibc) intended to improve security. It
supports other initiatives taken by the hardened project; most directly PaX and
Grsecurity, but can also be applied to SELinux and RSBAC.

• Default addition of the Stack Smashing Protector (SSP)

The stack smashing protector arranges the code so that a stack overflow is
very likely to be detected by the application, which then aborts.

• Automatic generation of Position Independent Executables (PIEs)

Allows the application to be loaded at a random address; most effective when
running a PaX kernel with Address Space Layout Randomisation (ASLR).

• Default Mark Read-Only Appropriate Sections (RELRO)

Causes the linker to include an extra header informing the loader which
sections can be marked read-only after the loader has finished with them.

• Default full binding at load-time (BIND_NOW)

Increases the effectiveness of setting RELRO, making attacks that involve
overwriting data in the Global Offset Table (GOT) fail.

Potential Toolchain Issues and Caveats
The SSP implementation in gcc-3.x is not perfect, and SSP implementation in
gcc-4.x/5.x is completely different (switches are also different, but is in general
much better). The standard (non-hardened) toolchain is now enabling SSP
(strong), RELRO, and FORTIFY (default PIE and SSP are in git for gcc 6.0).

Where an application builds libraries without -fPIC, it is necessary to modify the
build process to avoid -fPIE being added by the compiler (or patch to build with
-fPIC).

Some applications have been reported to segfault when built as PIEs (mostly
older versions of gcc).

No issues found so far with switching on RELRO by default. It can make the
executable image a little bit bigger (on average by half a page i.e. 2K bytes) which
may be of interest for targets with extremely limited memory.

Some packages may still have issues with BIND_NOW, and it has to be relaxed
somewhat for them:

• Xorg - some drivers consist of several libraries which are co-dependent,
and the modules frequently have references to modules that they load.

• transcode - relies on lazy binding to be able to load its modules; the
issues are similar to the X issues.

Hardened Issues and The State of PaX
If you're still running hardened-sources or similar:

• PT_PAX flags are still valid (and the default) but are being phased out.

• Current version of binutils/bfd linker have been patched, but that patch
will go away

• The gold linker (required for LTO plugin) does not support PT_PAX

• XT_PAX migrate script should be used as soon as possible (and disable
PT_PAX support).

• Default PT flags will migrate to empty XT flags (since kernel falls back to
default)

• Only binaries with non-default flags will have XT flags marked

• Libs needing less PaX enforcement will need their flags "back-ported" to
the binaries that use it

For running gentoo-sources or mainline:
• The recent mainline kernel (4.17.x and higher) is where you should go for

"PaX" hardening features in Gentoo now. Some patches are still under
review for later kernel releases, but many useful patches have already been
ported to mainline and released.

• A nice graphviz diagram showing the relationships between various kernel
and hardware security features, as well as potential vulnerabilities and exploit
techniques, is available on github.

https://github.com/a13xp0p0v/linux-kernel-defence-map

Where Can I Get Some PaX?
Gentoo's hardened-sources are no longer maintained, as the PaX patches are no
longer publicly available. The remaining (Gentoo) hardening patches for the
kernel are in the gentoo-sources package (and toolchain). Be sure and get the
latest version available:

emerge --ask sys-kernel/gentoo-sources

Gentoo Linux

• Select the desired hardened profile, including a MAC framework (eg,
SELinux, Tomoyo, SMACK, etc) and rebuild your kernel, then your
toolchain. See the Hardened Project SELinux Guide, the RSBAC Guide,
or the Grsecurity Quickstart for more information.

Other Linux

• If only the PaX patches are desired they can be obtained in isolation from
one of the Grsecurity maintainers. Install your favorite kernel sources and
download/apply the PaX patchset and look into your toolchain config.

Those interested in learning more about Grsecurity hardening in general should
read the Grsecurity Quickstart or the grsecurity features page.

https://wiki.gentoo.org/wiki/Project:SELinux
https://wiki.gentoo.org/wiki/Project:RSBAC
https://wiki.gentoo.org/wiki/Hardened/Grsecurity2_Quickstart
http://www.grsecurity.net/~paxguy1/
https://wiki.gentoo.org/wiki/Hardened/Grsecurity2_Quickstart
http://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options

Some Hardened Resources
Gentoo Hardened Project

• https://wiki.gentoo.org/wiki/Hardened/Introduction_to_Hardened_Gentoo

• https://wiki.gentoo.org/wiki/Hardened/PaX_Quickstart

• https://wiki.gentoo.org/wiki/Hardened/Toolchain

• https://wiki.gentoo.org/wiki/Hardened/PaX_Utilities

• https://wiki.gentoo.org/wiki/Hardened/Overview_of_POSIX_capabilities

Gentoo Hardened Subproject Starters
• https://wiki.gentoo.org/wiki/Project:RSBAC

• https://wiki.gentoo.org/wiki/Project:SELinux

• https://wiki.gentoo.org/wiki/Project:Integrity

Other Resources
• https://github.com/a13xp0p0v/linux-kernel-defence-map

• http://pax.grsecurity.net/

• http://en.wikipedia.org/wiki/NX_bit

• http://people.redhat.com/drepper/dsohowto.pdf

https://wiki.gentoo.org/wiki/Hardened/Introduction_to_Hardened_Gentoo
https://wiki.gentoo.org/wiki/Hardened/PaX_Quickstart
https://wiki.gentoo.org/wiki/Hardened/Toolchain
https://wiki.gentoo.org/wiki/Hardened/PaX_Utilities
https://wiki.gentoo.org/wiki/Hardened/Overview_of_POSIX_capabilities
https://wiki.gentoo.org/wiki/Project:RSBAC
https://wiki.gentoo.org/wiki/Project:SELinux
https://wiki.gentoo.org/wiki/Project:Integrity
https://github.com/a13xp0p0v/linux-kernel-defence-map
http://pax.grsecurity.net/
http://en.wikipedia.org/wiki/NX_bit
http://people.redhat.com/drepper/dsohowto.pdf

General References and Specifications
Engineering Principles for Information Technology Security (EP-ITS),

by Gary Stoneburner, Clark Hayden, and Alexis Feringa, NIST Special
Publication (SP) 800-27 (PDF)

Secure Design Principles from "Foundations of Security: What Every
Programmer Needs To Know" by Neil Daswani, Christoph Kern, and
Anita Kesavan (ISBN 1590597842)

High-Assurance Design by Cliff Berg, 2005, Addison-Wesley. Foreword
by Peter G. Neumann. Design principles and patterns for secure and
reliable design.

DoDI 8500.01, "Cybersecurity" Information Assurance (IA) guidance.
http://www.dtic.mil/whs/directives/corres/pdf/850001_2014.pdf

DoDI 8510.01, "Risk Management Framework (RMF) for DoD IT".
http://www.dtic.mil/whs/directives/corres/pdf/851001_2014.pdf

http://www.dtic.mil/whs/directives/corres/pdf/850001_2014.pdf
http://www.dtic.mil/whs/directives/corres/pdf/851001_2014.pdf

License and Thanks!
Author: Stephen L Arnold

FOSS Hat: Gentoo Linux Developer
Contact: answers@vctlabs.com

Revision: 0.3
Date: 2021-01-23, 22:50 PST8PDT

License: CC-Attribution-ShareAlike
Copyright: 2016 VCT Labs, Inc. and 2018 Orchard Systems, Inc.

Gentoo is a trademark of Gentoo Foundation, Inc. Portions Copyright 2001–2018
Gentoo Foundation, Inc.

mailto:answers@vctlabs.com
http://creativecommons.org/licenses/by-sa/3.0/
http://www.vctlabs.com
http://www.orchardsystems.com
https://www.gentoo.org/
https://www.gentoo.org/

	Context: Operational Environment
	Defense-in-Depth
	Layered Architecture
	Layered Architecture
	Example: Potential 0-day Kernel Exploit
	What Does PaX Do?
	What Exactly is PaX?
	PaX In The Mainline Kernel (as of 4.17+)
	PaX Kernel Options - NOEXEC Features
	PaX Kernel Options - ASLR Features
	PaX Kernel Options - Misc Features
	Manipulating PaX Flags
	Hardened Toolchain
	Potential Toolchain Issues and Caveats
	Hardened Issues and The State of PaX
	Where Can I Get Some PaX?
	Some Hardened Resources
	General References and Specifications
	License and Thanks!

