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A B S T R A C T   

Recently, Segment Anything Model (SAM) has become popular in computer vision field because of its powerful 
image segmentation ability and high interactivity of various prompts, which opens a new era of large vision 
foundation models. But is SAM really omnipotent? In this letter, we establish a comprehensive bimodal few-shot 
segmentation indoor dataset VT-840-5i, and compare SAM with eight state-of-the-art few-shot segmentation 
(FSS) methods on two benchmark datasets. Qualitative and quantitative experiment results show that although 
SAM is very effective in general object segmentation, it still has room for improvement in some challenging 
scenarios. Therefore, we introduce thermal infrared auxiliary information into the segmentation task and provide 
multiple fusion strategies (MFS) for readers to choose the most suitable approach for the specific task. Finally, we 
discuss several potential research trends about SAM in the future. Our test results are available at: https://github. 
com/VDT-2048/Bi-SAM.   

1. Introduction 

In recent years, the popularity of large pre-trained models, namely 
foundation models (FMs) [1], marks the transformation from artificial 
intelligence (AI) system to artificial general intelligence (AGI) system. 
AGI means that facing different tasks, it does not need to train a specific 
model to adapt, but relies on transfer learning or fine-tuning a model to 
perform various realistic general tasks. This new paradigm has made 
pioneering work in the fields of language and image vision. In the nat-
ural language processing (NLP) community, large language foundation 
models (LLMs) refer to pre-trained language models (PLMs) with billions 
of parameters, such as BERT [2], LLAMA [3], InstrucGPT [4] and GPT-3 
[5]. 

In the last six months, ChatGPT [6], a language model developed by 
OpenAI, has gained more than 100 million active users worldwide. Its 
powerful language understanding ability and reasoning ability have 
been used in various industries. On the other hand, Meta AI Research 
recently released the first large vision foundation model Segment Any-
thing Model (SAM) [7] in history. SAM uses the data engine to train the 
largest segmented dataset named SA-1B so far, so this general perception 
model shows strong zero-shot transferability ability in a series of tasks 
such as edge detection and instance segmentation. As of May 2, SAM’s 

GitHub warehouse had a Star count of 30.9 k. Different from the above- 
mentioned general foundation models, which require huge data, few- 
shot segmentation (FSS) [27] can quickly model and distinguish 
different categories with only a couple of samples. It can segment new 
categories from the background without fine-tuning, thus bridging the 
gap between human intelligence and AGI. This is very helpful for sce-
narios with insufficient data and expensive marking. 

Because of the powerful performance of SAM in many tasks, many 
researchers have tested the effect of SAM in other fields, including 
medical image [8], surface defect detection [9], camouflaged object 
detection [10], image restoration [11] and so on. The above research 
shows that SAM does not perform well on datasets in many specific 
fields. This is reasonable, because SAM’s training set mainly includes 11 
million natural images. And it does not include a vast amount of medical 
images or industrial defect images, which makes SAM challenging in 
these fields. 

Different from the above research, in this letter, we compare the 
performance of SAM and bimodal FSS algorithms in complex and 
changeable natural scenes (e.g., weak illumination, transparent objects, 
exposure, low contrast, continuous branch, clutter and out of focus, 
etc.). The results indicate that it is necessary to continue to study 
bimodal FSS. And SAM still has limitations in natural images. 
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Meanwhile, thermal infrared modality is introduced to make up for the 
shortcomings of visible (RGB) images, which is helpful to further 
improve the robustness of SAM in complex environments and better 
distinguish various objects. Our contributions can be summarized as 
follows: 

(1) To evaluate the applicability of SAM in real-world natural sce-
nario, we created a new bimodal few-shot semantic segmentation 
dataset called VT-840-5i for indoor environment to include 
challenging cases from diverse indoor environments.  

(2) There is still a gap between SAM (RGB) and the SOTA RGB-T FSS. 
We select the optimal fusion strategy to enhance the overall se-
mantic segmentation performance by evaluating the model’s 
performance with multiple fusion suggestions (MFS) in different 
scenarios and considering the characteristics of the task 
comprehensively.  

(3) Our discussion delved into the current limitations, available 
prospects and future research trends of SAM, with the aim of 
providing inspiration to future researchers. 

2. Experiment 

2.1. Datasets 

In order to evaluate the performance of SAM in natural scenarios 
more comprehensively, we conducted experiments on two FSS bench-
mark datasets, indoor and outdoor. 

(1) VT-840-5i: To create a high-quality dataset and make up for the 
vacancy of indoor dataset, we established a comprehensive FSS evalu-
ation benchmark, VT-840-5i. It includes 840 pairs of aligned RGBT 
image pairs, with 390 pairs from VT821 [12], VT1000 [13], and VT5000 
[14], and the remaining 450 pairs from VI-RGBT1500 [15]. The dataset 
comprises 20 object categories, and the image size is standardized at 
640 × 480. The dataset includes four different illumination conditions, 
including bright illumination, uneven illumination, weak illumination 
and dark illumination, to fully demonstrate the superiority of bimodal 
image fusion. Moreover, the dataset includes image clutter and out of 
focus. 

(2) Tokyo Multi-Spectral-4i: For outdoor road scenes, we select the 
Tokyo Multi-Spectral-4i dataset [16], which includes some Tokyo Multi- 
Spectral images and annotations [17]. There are 1126 pairs of RGB-T 
images in the dataset, with 16 different semantic categories, and the 
image size is 200 × 200. It contains two different environments, day and 
night, and the visibility of RGB images in the night environment is very 
low, sometimes with severe glare. 

2.2. Mask selection strategy 

The SAM project supports four different prompt types to produce 
accurate results, including foreground/background points, bounding 
boxes, mask, and text. Moreover, SAM supports three main segmenta-
tion settings: automatic segmentation setting, bounding box setting, and 
click setting. To ensure scalable evaluation and minimize subjective 
human participation, we choose the automatic segmentation setting to 
evaluate SAM: SAM will automatically identify all objects in the image 
and generate multiple binary masks. For images that contain multiple 
objects of the same category, we employ a selection strategy that su-
perimposes or negates the multiple masks generated by SAM for each 
image to produce masks that are closest to the ground truth. 

2.3. Evaluation metrics 

Following the previous work on FSS [20,23], this letter uses mean 
intersection-over-union (mIoU) and foreground and background 
intersection-over-union (FB-IoU) as performance metrics to compare 
SAM with other advanced FSS algorithms. 

2.4. Learning paradigm 

For the FSS algorithms, we refer to OSLSM [18] to cross-validate 
using 4 folds. During testing, we use the same random seed to sample 
500 pairs of images [36]. The final result is the average of four-fold 
metrics. Since SAM only requires testing without retraining the model, 
we directly input the corresponding validation fold data into the frozen 
SAM, as shown in Fig. 1. Note that all models are evaluated on PyTorch 
1.8 using the NVIDIA 3060 GPU. 

2.5. Quantitative evaluation 

To ensure fairness, we compared the best performance version of 
SAM (ViT-H) with eight state-of-the-art FSS methods, including CANet 
[19], PGNet [20], PFENet [21], ASGNet [22], SAGNN [23], HSNet [24], 
ASNet [25], and V-TFSS [16]. The first seven algorithms belong to 
single-modality RGB methods, and the last belongs to a dual-modality 
RGB-T FSS. We used the late-fusion strategy to convert single- 
modality models into dual-modality models.  

(1) Table 1 summarizes the mIoU and FBIoU results of all methods on 
the indoor dataset under 1-shot and 5-shot settings. The results 
show that SAM (RGB) performs outstandingly in indoor semantic 
segmentation tasks, achieving 83.2 % mIoU and 89.9 % FBIoU, 
respectively. Compared with the previous SOTA ASNet, SAM’s 
mIoU and FBIoU increase by 15.4 % and 9.1 % under 1-shot 
setting, and by 10.6 % and 5.7 % under 5-shot setting, respec-
tively. This result can be understood, as SAM is trained on a large- 
scale natural image dataset.  

(2) Table 2 summarizes the mIoU and FBIoU results of all methods on 
the road dataset with 1-shot and 5-shot settings. The results show 
that the segmentation models directly trained on the Tokyo 
Multi-Spectral-4i dataset (HSNet, ASNet) provide higher mIoU 
and FBIoU results than SAM (RGB). The main reason may be that 
SAM’s average training image resolution is as high as 3300 ×
4950, which limits its generalization ability to low-resolution 
images (only 200 × 200) in the road dataset. Moreover, the tar-
gets and backgrounds have high color similarity and low visibility 
in night-time environments, which also presents challenges to 
SAM. Meanwhile, it also shows that it is valuable to continue to 
study bimodal few-shot segmentation. 

2.6. Qualitative evaluation  

(1) Fig. 2(a) shows the qualitative results of indoor scenes. In the first 
four columns, SAM performs well in facing complex indoor illu-
mination changes, including bright illumination, uneven 

Fig. 1. We compare bimodal few-shot segmentation net with SAM.  
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illumination and weak illumination conditions. However, when 
the target is in a completely dark environment, SAM can only 
recognize a small part of it. In the fifth column, SAM can handle 
object occlusion well, but in low-contrast situations, such as when 
the color pattern of chair legs is consistent with that of the white 

floor under strong light (the sixth column), SAM has difficulty 
detecting the target. In addition, transparent objects may refract 
light in unpredictable ways, making it difficult for SAM to 
distinguish between target and background (the seventh col-
umn). At the same time, we speculate that SAM may not handle 

Table 1 
Quantitative comparison results of different methods on VT-840-5i. The best results in each column are marked in red.  

Methods 1-way 1-shot 1-way 5-shot 

fold = 0 fold = 1 fold = 2 fold = 3 mIoU FB-IoU fold = 0 fold = 1 fold = 2 fold = 3 mIoU FB-IoU 

CANet  51.7  61.5  55.4  67.3  59.0  75.3  55.3  65.2  57.8  72.0  62.6  78.0 
PGNet  56.4  67.2  61.9  73.8  64.8  79.5  57.1  67.1  62.5  75.7  65.6  80.1 
PFENet  34.4  39.2  46.9  50.9  42.8  66.0  35.0  39.6  46.8  52.5  43.5  66.5 
ASGNet  33.8  38.8  47.0  50.6  42.6  65.4  35.4  38.3  44.9  51.1  42.4  65.3 
SAGNN  32.2  35.2  41.0  48.4  39.2  62.3  31.6  35.6  41.6  49.1  39.5  62.6 
HSNet  56.6  72.4  62.8  77.4  67.3  80.8  62.1  78.1  68.6  81.6  72.6  84.2 
ASNet  57.1  72.1  63.8  78.0  67.8  80.8  62.2  76.0  68.0  82.3  72.1  83.6 
V-TFSS  56.1  57.4  51.1  70.7  58.8  75.8  58.2  63.7  54.6  71.6  62.0  77.9 
SAM (RGB)  85.3  86.8  83.7  77.1  83.2  89.9  85.3  86.8  83.7  77.1  83.2  89.9 
SAM (T)  50.0  49.3  48.3  53.6  50.3  67.8  50.0  49.3  48.3  53.6  50.3  67.8 
SAM (RGB-T)  65.6  78.3  70.9  75.6  74.6  85.6  65.6  78.3  70.9  75.6  74.6  85.6  

Table 2 
Quantitative Comparison Results of Different Methods on Tokyo Multi-Spectral-4i. The best results in each column are marked in red.  

Methods 1-way 1-shot 1-way 5-shot 

fold = 0 fold = 1 fold = 2 fold = 3 mIoU FB-IoU fold = 0 fold = 1 fold = 2 fold = 3 mIoU FB-IoU 

CANet  27.6  9.4  28.5  33.8  24.8  57.0  32.0  10.6  30.1  35.3  27.0  57.2 
PGNet  24.9  6.1  29.9  39.4  25.2  57.5  31.2  6.0  29.3  43.3  27.4  58.9 
PFENet  32.2  6.3  26.8  33.6  24.7  57.8  34.1  13.9  27.1  41.6  29.2  60.2 
ASGNet  33.5  5.4  30.3  34.7  26.0  59.2  36.4  10.9  31.8  44.8  31.0  62.0 
SAGNN  23.7  5.6  24.4  33.4  21.8  55.2  26.8  4.8  23.5  38.1  23.3  56.4 
HSNet  41.1  17.9  36.6  40.2  34.0  63.1  48.2  23.1  42.2  45.9  39.8  66.2 
ASNet  40.9  17.6  36.6  45.4  35.1  63.8  44.5  24.0  44.7  49.7  40.7  66.4 
V-TFSS  29.3  7.6  27.7  42.5  26.8  58.6  27.0  8.1  29.9  47.9  28.2  59.2 
SAM (RGB)  33.6  35.5  30.7  31.0  32.7  55.0  33.6  35.5  30.7  31.0  32.7  55.0 
SAM (T)  22.1  23.5  22.6  20.7  22.2  41.2  22.1  23.5  22.6  20.7  22.2  41.2 
SAM (RGB-T)  40.9  43.5  38.8  40.6  40.9  62.9  40.9  43.5  38.8  40.6  40.9  62.9  

Fig. 2. Visual comparison of several representative and challenging realistic indoor and road scenes.  
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continuous branch structures well, such as the thorns of a cactus 
ball (the eighth column). Unfortunately, when the RGB image is 
affected by clutter or the image is out of focus and the target 
contour is unclear (the reciprocal two columns), SAM can’t deal 
with it.  

(2) Fig. 2(b) shows some qualitative results of road scenes. As shown 
in the third, fifth, seventh, and ninth columns, SAM can accu-
rately segment targets under good illumination and clear 
boundaries, showing its strong localization ability. Similar to 
indoor scenes, when the target is completely invisible in the dark, 
SAM cannot distinguish between foreground and background 
well (such as in the second, eighth, and last columns). It should be 
noted that due to the extremely bright car lights at night and the 
extreme brightness contrast with the surroundings, resulting in 
exposure, SAM may fail to detect the target or can only detect part 
of it (such as in the fourth, sixth, and last columns). We also found 
that SAM still has great room for improvement in handling small 
objects (Such as the first column and the penultimate column). 

2.7. Bimodal SAM structure 

(1) Motivation. Visible imaging is easily affected by environmental 
or human factors. If we only rely on low-quality RGB images for seg-
mentation, it will lead to segmentation failure. This also explains the 
limitations of SAM mentioned in Section F. In contrast, thermal infrared 
imaging (T) focuses on the thermal radiation emitted by objects, which 
has the characteristics of strong anti-interference and is more suitable 
for low illumination. Therefore, the combination of the two spectra can 
improve the accuracy and robustness of segmentation. 

(2) Specific Operation. From the results in Tables 1 and 2 and Fig. 2, 
we see that SAM predictions relying solely on RGB or T information do 
not consistently perform well on all images. How to adaptively combine 
the advantages of each predictor and surpass each predictor through 
fusion technology is a key challenge. We add an additional SAM (T) 
branch in parallel to the existing SAM (RGB) branch and complete the 
late-fusion of the probability maps of the two predictors. Meanwhile, we 
provide multiple fusion suggestions (MFS) so that readers can choose the 
most suitable method for the task. The overall pipeline is shown in Fig. 3. 
These integration proposals include: 

(1) Element-level fusion: The probability graphs generated by SAM 
(RGB) and SAM (T) are added element by element. This method is simple 
and direct. 

(2) Commonality enhancement fusion: Multiplying the probability 
maps of SAM (RGB) and SAM (T) at pixel level. This method can enhance 
the commonness and is suitable for the two predictors with high accu-
racy in different aspects. 

(3) Average fusion: The probability maps of SAM (RGB) and SAM (T) 
are averaged pixel by pixel. This simple fusion method can balance the 
outputs of the two predictors. 

(4) Residual connection fusion: The probability maps of two are 
connected by residual connection to introduce additional information. 

(3) Comparison Experiments. The experimental results of various 
fusion strategies are shown in Table 3. The results also prove our hy-
pothesis: the same fusion method has different performance in different 

dataset scenarios. This reminds us that when choosing fusion sugges-
tions, we need to consider the characteristics of tasks, the attributes of 
datasets and the performance of models. 

On indoor datasets, we find that compared with SAM (RGB), merging 
the results of SAM (T) branches directly will lead to a certain degree of 
performance degradation. This may be because SAM has achieved very 
accurate results on RGB images, while the overall performance of SAM 
(T) is poor, and direct fusion will produce huge interference. It should be 
noted that the commonality enhancement fusion has achieved subopti-
mal results. 

On outdoor datasets, the reverse commonality enhancement fusion 
has achieved the best results. Compared with SAM (RGB), the mIoU and 
FB-IoU are increased by 8.2 % and 7.9 % respectively, and the gains are 
obtained by 18.7 % and 21.7 % respectively compared with SAM (T). It 
is worth noting that the commonality enhancement fusion has achieved 
good results on both datasets. We speculate that this is because their 
respective predictions contain large noise, and the common high con-
fidence area can be emphasized by multiplying them, thus reducing the 
error of the final prediction. 

3. Discussion and outlook 

Based on the experimental analysis above, we found that there is still 
a performance gap between SAM(RGB) and the SOTA RGB-T FSS. We 
believe that bimodal FSS still has significant research value, and at the 
same time, enchancing SAM is also necessary. Therefore, we will discuss 
the potential future research directions of SAM. 

3.1. Multi-modal SAM 

The current SAM has powerful zero-shot transferability for visible 
light images with clear boundaries and obvious targets. However, its 
performance is limited in challenging scenarios such as low-light con-
ditions, exposure, clutter, and out of focus. Therefore, it is helpful and 
necessary to consider adding other auxiliary modalities such as thermal 
infrared [28–30], depth [31–33], and radar [34,35], etc [37]. 

3.2. Multi-domain SAM 

SAM can usually achieve comparable or better performance than 
fully supervised/transfer learning methods on natural images. However, 
there is still a significant performance gap between SAM and SOTA when 
applied to fields such as medical image segmentation [8], surface defect 
detection [9], and camouflaged object detection [10]. Therefore, fine- 
tuning with a couple of data or adding Adapters [26] to combine spe-
cific domain knowledge. 

3.3. Multi-functional SAM 

SAM can achieve very fine-grained image segmentation, and it can 
be connected with powerful models of other machine vision tasks to 
provide new functions that SAM does not have at present, so as to be 
easily applied to more downstream tasks. Fig. 3. The overall pipeline of multiple fusion suggestions for RGB-T. SAM.  

Table 3 
Quantitative comparison results of proposed module.  

Fusion Method VT-840-5i Tokyo Multi-Spectral-4i 

…. mIoU FB-IoU mIoU FB-IoU 

SAM(RGB)  83.2  89.9  32.7  55.0 
SAM(T)  50.3  67.8  22.2  41.2 
SAM(RGB) + SAM(T)  12.4  48.8  5.8  28.7 
[SAM(RGB) + SAM(T)]/2  39.1  63.0  15.1  33.4 
SAM(RGB)*SAM(T)  74.6  85.6  40.9  62.9 
SAM(RGB)*SAM(T) + SAM(RGB)  13.1  54.6  5.4  41.4  
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4. Conclusion 

In this letter, we compared the performance of SAM with bimodal 
few-shot segmentation algorithms on two different benchmark datasets. 
We conducted a more in-depth analysis of the strengths and weaknesses 
of SAM in various challenging scenarios of natural images, and put 
forward some potential development directions, which provides a 
powerful guidance for the next optimization. We are also the first to 
study the practical effect of bimodal SAM, and we plan to explore a 
universal fusion stage and method to fully realize the value of SAM in the 
future. We hope that our evaluation and findings can present a fresh 
insight. 
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