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Abstract— Strip steel surface defect (S3D) segmentation is a
crucial method to inspect the surface quality of strip steel in the
producing-and-manufacturing. However, existing S3D semantic
segmentation methods depend on quite a few labeled defective
samples for training, and generalization to novel defect categories
that have not yet been trained is challenging. Additionally,
some defect categories are incredibly sparse in the industrial
production processes. Motivated by the above problems, this
article proposed a simple but effective few-shot segmentation
method named cross position aggregation network (CPANet),
which intends to learn a network that can segment untrained
S3D categories with only a few labeled defective samples. Using
a cross-position proxy (CPP) module, our CPANet can effec-
tively aggregate long-range relationships of discrete defects, and
support auxiliary (SA) can further improve the feature aggre-
gation capability of CPP. Moreover, CPANet introduces a space-
squeeze attention (SSA) module to aggregate multiscale context
information of defect features and suppresses disadvantageous
interference from background information. In addition, a novel
S3D few-shot semantic segmentation (FSS) dataset FSSD-12 is
proposed to evaluate our CPANet. Through extensive comparison
experiments and ablation experiments, we explicitly evaluate that
our CPANet with the ResNet-50 backbone achieves state-of-the-
art performance on dataset FSSD-12. Our dataset and code are
available at (https://github.com/VDT-2048/CPANet).

Index Terms— Cross-position aggregation network (CPANet),
few-shot learning, few-shot semantic segmentation (FSS), strip
steel surface defect (S3D) segmentation.

I. INTRODUCTION

STRIP steel is an essential raw material in industrial
production and manufacturing [1], [2], [3], [4], and

the surface quality of strip steel will directly influence
its production-grade and work performance. Numerous strip
steel surface defects (S3D), such as inclusion, punching, and
scratch, are caused by rolling equipment status fluctuations
and other adverse production factors [5]. Traditional S3D
inspection methods depend on manual implementation, which
inevitably suffers a hefty workload, low detection efficiency,
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and unstable detection performance [6]. Therefore, some
machine learning methods [7], [8] were proposed to achieve
automatic S3D detection in the early days. Traditional machine
learning methods rely on manually constructing defect fea-
tures. However, it is difficult to accurately represent S3D
features with irregular shapes and significant size variations.
Not only do experts additionally design multiple defect tem-
plate groups when novel defects arise, but they also have to
perform complex feature post-processing. Therefore, machine
learning-based methods struggle to detect S3D in the modern
production phases. With the emergence of deep learning,
numerous defect detection models [9], [10], [11] based on
the convolution neural network (CNN) framework have been
applied to extract complicated defect features. These methods
save the cost of hand-designed defect features and consider-
ably improve detection accuracy. At present, the S3D detection
methods principally consist of image classification [12], object
detection [13], and semantic segmentation [14]. Compared
with the previous two paradigms, semantic segmentation-based
methods proceed with dense classification of each pixel in the
defective image [15], which has a powerful ability to predict
defect region on a pixel-wise level.

Although existing CNN-based models for defect semantic
segmentation have achieved better prediction capabilities, the
segmentation performance of these methods drops dramat-
ically when labeled samples are insufficient or the defect
categories are not trained. With advances in production tech-
nology, the rate of defects in strip steel has been tightly
controlled. As a result, it is challenging for researchers to take
sufficient defect data. Moreover, the defect classes appear to
have long-tailed distributions, which results in some defect
classes becoming extremely sparse during production. Unfor-
tunately, traditional CNN-based methods require a sufficient
amount of annotated data to optimize their enormous trainable
model parameters. In addition, these supervised methods work
effectively only for defect classes that participate in the train-
ing phase. In other words, traditional segmentation methods
typically struggle with generalization ability on novel defect
classes with few labeled samples.

To resolve this challenge, the theory of the few-shot seman-
tic segmentation (FSS) is introduced to our work. FSS is a
practical application of meta-learning in segmentation. The
FSS method aims to train a segmentation model using a few
labeled samples, which can quickly apply to a novel defect
category with only a few labeled data [16]. As shown in
Fig. 1(a), the traditional CNN-based encoder-decoder defect
segmentation methods are trained by numerous labeled defec-
tive images and tested on the identical defect category.
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Fig. 1. Comparison of traditional defect segmentation network and few-shot
defect segmentation network. (a) Traditional encoder-decoder structure defect
segmentation method is trained on sufficient labeled defective images and
tested on the identical defect category. (b) Few-shot defect segmentation
method is trained on the multiple defect categories with insufficient labeled
defective images and tested on novel defect category.

In contrast, as shown in Fig. 1(b), the few-shot defect
segmentation methods are trained on known defect classes
containing sufficient labeled samples. However, the prediction
performance is evaluated using different defect categories with
insufficient labeled samples.

However, existing FSS methods struggle to generalize to
segment S3D. General FSS methods mainly apply to the FSS
benchmark, such as PASCAL-2012 [17], COCO-2014 [18],
and FSS-1000 [19]. As far as we understand, only [20], [21]
are proposed to segment surface defects under the FSS
paradigm, which are evaluated on the same dataset, Surface
Defect-4i. In general, the pixel distribution of natural objects
is continuous over a large region. Therefore, traditional FSS
methods, such as CANet [22] and SG-One [23], commonly
use a global average prototype to represent a specific semantic
category with no difficulty. In contrast, S3D typically dis-
tributes to discrete regions within the identical sample. Global
average prototypes inevitably lose some essential local defect
information, making it challenging to represent defect features
comprehensively. Moreover, S3D typically exhibits irregular
shapes, considerable size variation, intra-class variance, inter-
class similarity, low contrast, and ambiguity between nor-
mal and defective. In short, existing FSS methods are more
likely to segment non-industrial surface defects, and their
generalization is insufficient to address the S3D segmentation
task. Motivated by this, a novel few-shot S3D segmentation
method, cross position aggregation network (CPANet), is
proposed. To overcome the traditional global average pro-
totype restriction, we design a cross-position proxy (CPP)
module to aggregate discrete defects and employ a support

auxiliary (SA) module to strengthen the CPP module. In addi-
tion, a space-squeeze attention (SSA) module is used to aggre-
gate the multiscale context information of S3D and suppress
the interference of background information. Finally, to address
the lack of pixel-wise labeled defective samples in existing
works and to evaluate the effectiveness of our method, we
build a novel S3D semantic segmentation dataset, FSSD-12.

The salient contributions of this article can be summarized
as follows.

1) To conquer the existing challenge of S3D inspection,
a novel FSS method, CPANet, is proposed. Our CPANet
can efficiently segment novel S3D with insufficient labeled
samples.

2) A novel CPP module is used to cross-spatial position
to aggregate the long-range correlation among discrete defect
areas.

3) A novel SSA module is used to simultaneously aggregate
the multiscale foreground features and suppress the disadvan-
tageous interference of background information.

4) We construct a novel S3D dataset, FSSD-12, which is
used to tackle the insufficient pixel-wise labeled defective
samples in the existing datasets and evaluate the effectiveness
of our method. Our CPANet is superior to other existing FSS
methods and shows state-of-the-art results on FSSD-12 under
1-shot and 5-shot settings.

In the remainder of the article, Section II discusses recent
related works about S3D detection, FSS, and attention mech-
anism. Section III provides the thoroughly detailed structure
of CPANet. Section IV describes dataset FSSD-12, evaluation
metric, experiment setup, comparison experiments, and abla-
tion experiments. Finally, the conclusion is given in Section V.

II. RELATED WORK

This section reviews recent research results about S3D
detection, FSS, and attention mechanism.

A. S3D Detection
In S3D detection, image classification, object detec-

tion, and semantic segmentation are the primary computer
vision paradigms. Semantic segmentation-based methods with
pixel-level accurate prediction results have recently received
considerable attention. Nand and Neogi [14] conducted
a machine-learning algorithm based on entropy, which
used local entropy, background subtraction, and morphol-
ogy to determine the position of defective pixels. Some
works [24], [25] introduce unsupervised-learning methods to
solve steel surface defect problems. Neven and Goedemé [26]
used the multibranch U-Net network to segment different steel
defects, and their severity is estimated. Zheng et al. [27]
proposed replacing the traditional convolution layer with deep
separable convolution. They employed a multiscale module
to extract the contextual information of S3D to improve the
segmentation performance. In addition, some methods based
on saliency detection [28], [29] are proposed to predict the
saliency of defects. Song et al. [5] constructed the Encoder-
Decoder Residual Network (EDRNet) to predict the saliency
defects of strip steel. Wang et al. [30] released the first publicly
few-shot defect dataset, NEU-DET, to alleviate the disadvan-
tage of insufficient defect samples. Xiao et al. [13] designed
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graph embedding and optimal transport to enhance the perfor-
mance of few-shot classification. Bao et al. [20] constructed a
Triplet-Graph reasoning network (TGRNet) based on few-shot
segmentation to segment surface defects, including metal and
non-metal. They conducted a novel dataset named Surface
Defects-4i, which contains four classes of surface defects
of strip steel. Yu et al. [21] proposed a selective prototype
network with a matrix decomposition attention mechanism
to improve the segmentation performance on the Surface
Defects-4i.

B. Few-Shot Semantic Segmentation

In recent years, FSS has received further attention. After
Shaban et al. [16] first proposed the theory of FSS, numerous
FSS methods based on metric learning emerged. CANet [22]
adopted a dense comparison module to extract features for fea-
ture comparison and proposed an iterative optimization module
to improve the prediction performance. PGNet [31] leveraged
used multiscale graph attention to propagate similarity infor-
mation of nodes between two images. CRNet [32] applied
cross-reference networks to achieve simultaneous prediction
of the support set and query set. PFENet [33] conducted a
feature enrichment module to aggregate contextual information
of different scales to improve the segmentation performance.
SAGNN [34] proposed to treat different scale features as the
node of the graph neural network REF [35] utilized a rich
embedding features method to explore multiple perspectives of
support sets and multiscale decoder modules simultaneously
to improve the segmentation capability. SCL [36] established a
self-guiding mechanism to improve the loss of information due
to masked-global average pooling. CWT [37] performed clas-
sifier weight transformers that effectively reduce the in-class
differences between support and query sets. HSNet [38]
applied multilevel feature correlation and more efficient 4-D
convolution to extract features from intermediate convolutional
layers. DCP [39] designed a divide-and-conquer method that
decomposed the target into multiple prototypes, improving the
characterization ability of prototypes by aggregating similar
properties with the parallel decoder.

C. Attention Mechanism

Attention mechanisms have been widely used in image pro-
cessing. The attention mechanism is divided into the spatial,
channel, and hybrid domains according to the different ways
and locations of attention weights. Concretely, spatial attention
includes Self-Attention [40], Non-local Attention [41], and
Spatial Transformer [42]. Self-Attention establishes global
spatial information and has been widely used in visual process-
ing. Non-local attention captures the long-range relationship
between any pixel and the current pixel. SENet [43] used an
extrusion excitation and attention model, which could dynam-
ically complete the original feature recalibration. SKNet [44]
used a set of dynamic convolutions. Moreover, hybrid domain
attention is a combination of channel attention and spatial
attention. In CBAM [45], maximum global pooling and global
average pooling of channel and spital were used to extract
more useful information from the model. DANet [46] used
self-attention in both the channel and spatial domains to

improve segmentation performance through long-range rela-
tionships. Motivated by recent attention mechanism advances,
non-local attention is used to aggregate cross-position relations
among discrete defect regions, and hybrid domain attention is
used to aggregate the contextual defect features and suppress
detrimental interference from background information.

III. METHOD

A. Problem Setting

FSS can effectively address the bottleneck of tradi-
tional CNN segmentation methods. Following the few-shot
episodic paradigm proposed by Shaban et al. [16], we use
a meta-learning approach setting (1-way k-shot). Our strategy
aims to construct a model to segment unseen S3D categories
with only one or a few labeled defective images. In contrast
to traditional CNN segmentation methods, all S3D classes are
divided into a meta-training set Dtrain and a meta-testing set
Dtest. Note that there is no overlap between the defect cate-
gories Dtrain and Dtest, Dtrain∩Dtest = ∅. To mimic the few-shot
scenario, both Dtrain and Dtest contain multiple episodes. Each
episode consists of a support set S(c) = (I S

i , M(c)S
i )k

i=1 and a
query set Q(c) = (I Q, M(c)Q), where I ∗ is the defect image
and M∗ is the corresponding ground truth (GT). k (k ≥ 1)
denotes the shots of support samples, and c is the identical
defect class.

B. Architecture Overview

To address the existing challenges in S3D detection, a novel
few-shot segmentation method, a cross-position aggregation
network, is proposed to explicitly segment defect regions in
defective samples. As shown in Fig. 2, our method consists of
a shared-parameter backbone network, a CPP module, a SA
module, and an SSA decoder module. Initially, our CPANet
uses the backbone network to extract initial feature maps of the
support and query images. Then, the CPP module aggregates
the long-range relations among discrete defect regions and
constructs a CPP of defect features. After that, the SA module
receives the proxy and generates an auxiliary prediction to
reinforce the CPP module. Simultaneously, the proxy is fed to
the SSA decoder module to obtain query prediction. Finally,
the total loss is calculated by the above predictions and their
corresponding GT.

C. Feature Extractor Encoder

Inspired by predecessors [22], [33], we use the ResNet-50
[47] with dilated convolution as the backbone network to
extract defect features. The above works show that the back-
bone network is pre-trained on ImageNet [48]. ResNet consists
of four blocks (block1-block4), representing different seman-
tic information levels. Different from [16], the middle-level
blocks, block2 and block3, are used to extract the discrimina-
tive S3D features.

At first, the preprocessed support image I S and query
image I Q are fed to the backbone network simultaneously.
Then, the concatenated outputs of the backbone network are
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Fig. 2. In our proposed CPANet, first, a parameter-sharing backbone is used to extract the initial feature of defective images. Second, the support feature
and its corresponding label are fed into the CPP module to obtain the proxy. Third, the proxy is used to predict the support prediction by SA module and
generate the query prediction by SSA module, respectively. After that, using Main Loss and Aux Loss to optimize the trainable parameters of CPANet.

Fig. 3. Detailed illustration of the CPP module.

fused by a 1 × 1 convolution layer. The sequence of feature
extraction is as follows:

FS = F1×1
(
Concat

(
R2

(
I S),R3

(
I S))) (1)

FQ = F1×1
(
Concat

(
R2

(
I Q)

,R3
(
I Q)))

(2)

where F1×1(·) denotes the 1 × 1 convolution operation
activated by ReLU. Concat (·) is a concatenation operation.
R2(·) and R3(·) represents the block2 and block3 of ResNet.
FS and FQ are middle-level features of support and query
images, respectively.

It should be noted that all of the pre-trained parameters
of the backbone network are frozen during the training and
testing phases.

D. Cross-Position Proxy

Unlike natural objects, S3D generally distributes in different
spatial positions in an identical sample, with irregular shapes
and significant size variations. As shown in Fig. 3, a CPP mod-
ule is proposed to capture the long-range defect information
belonging to identical defect categories and generate a proxy
for the following operations.

First, we down-sample the support GT MS by bilinear
interpolation. This operation can effectively reduce the GPU
memory cost. A pixel-wise multiplication is then used to
thoroughly filter out the background information of the support
feature FS . The process is as follows:

MF = FS ⊗ I(MS) (3)

where I(·) denotes the bilinear interpolation operation, and
MF is the masked support foreground feature. ⊗ is a pixel-
wise multiplication.

Second, we employ a non-local attention mechanism con-
struct [41] to establish cross-position correlations for discrete
defect features. Suppose that the size of the masked support
feature MF is c × h × w, where c is channel size, h is the
height of the feature map, and w is the width of the feature
map. MF is fed to three different 1 × 1 convolutions (Conv-α,
Conv-β, and Conv-γ ) simultaneously. After the convolution
operations, MF is uniformly resized to c × (h × w). The
resized results are Mα(from Conv-α), Mβ(from Conv-β), and
Mγ (from Conv-γ ), respectively. Mα is transposed to M⊤

α ∈

R(h×w)×c. A matrix multiplication is used to calculate the
correlation map M1

C ∈ R(h×w)×(h×w) between M⊤
α and Mβ .

Then, using a softmax operation, the correlation map M1
C is

normalized. After that, the normalized result is multiplied with
Mγ to calculate the correlation map M2

C ∈ Rc×(h×w). With a
1 × 1 convolution layer, the correlation map M2

C is resized to
the original size c × h × w. Finally, we construct a residual
connection to fuse the feature information between the cross-
position correlations and MF . The process of cross-position
aggregation is as follows:

MP = MF ⊕
(
S

(
M⊤

α ⊗ Mβ

)
⊗ Mγ

)
(4)

where S(·) represents the softmax layer. ⊗ denotes the matrix
multiplication and ⊕ is the residual element-wise addition.
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Fig. 4. Detailed illustration of the SA decoder.

⊤ is the matrix transposition. In addition, MP ∈ Rc×h×w is
the output of the cross-position inference.

Finally, an adaptive averaging pooling operation is
employed to build the CPP. The process is as follows:

vP = Fpool(MP) (5)

where vP ∈ Rc×1 is the CPP. Fpool(·) represents adaptive
pooling operation.

Algorithm 1 Training and Evaluating CPANet
Input: a training set Dtrain and a testing set Dtest

Output: Trained parameters of CPANet
for each episode training do:

Extract FS and FQ with defect feature extractor using
Eqns. 1-2;

Mask support feature and project to cross-position atten-
tion, calculate cross-position proxy, using Eqns. 3-5;

Get the support prediction
⌢

P
S

with support auxiliary
module, using Eqns. 6;

Get the query prediction
⌢

P
Q

with space-squeeze attention
module, using Eqns. 7;

Compute the query main loss LM AI N , support aux loss
LAU X , and model loss L using Eqns. 8-10;

Compute the gradient and optimize via SGD;
end
for each episode testing do:

Extract FS and FQ with defect feature extractor, using
Eqns. 1-2;

Mask support feature and project to cross-position atten-
tion, calculate cross-position proxy, using Eqns. 3-5;

Get the support prediction
⌢

P
Q

with space-squeeze atten-
tion module, using Eqns. 7;
end

E. Support Auxiliary
To provide a high-quality support CPP, the support GT is

used as an auxiliary supervision, and the effectiveness of the
SA module is explicitly evaluated in ablation experiments.

As shown in Fig. 4, at first, the size of the CPP vP ∈

Rc×1 is expanded to match the support feature Fs. Then,
the expanded proxy PC is cloned and concatenated with the
support feature Fs. After that, the fusion result is fed to the
fully convolutional decoder module to predict SA probability

Fig. 5. Detailed illustration of the SSA module, which consists of
space-squeeze fusion block, HAM block, and fully convolutional decoder
block.

Fig. 6. Instance of S3Dive images (left), corresponding mask GT (right) in
FSSD-12, from (a) to (m), which are abrasion-mask, iron-sheet-ash, liquid,
oxide-scale, oil-spot, water-spot, patch, punching, red-iron sheet, roll-printing,
scratch, and inclusion, respectively.

TABLE I
DETAILS OF DATASET FSSD-12

maps
⌢

P
S
. The process of SA prediction generation is as

follows:
⌢

P
S

= FD(F1×1(Concat([PC , PC , FS]))) (6)

where FD(·) denotes a fully convolutional decoder. F1×1(·)

indicates 1 × 1 convolution layer activated by ReLU.

F. Space-Squeeze Attention

We propose an SSA module to aggregate multiscale fore-
ground features and suppress disadvantageous interference
from background information. As shown in Fig. 5, the module
mainly consists of a space-squeeze fusion block, a hybrid
attention block, and a fully convolutional decoder block.
In particular, we select CBAM [45] as the hybrid attention
block, which contains spatial and channel attention mecha-
nisms. While this module is straightforward, it can effectively
enhance the segmentation performance of our method.

First, the query feature is densely matched with the
expanded CPP by a concatenation operation. Then the matched
feature FSQ ∈ Rh×w×c is fed to the SSA module. To obtain the
multiscale feature information, we use two 1 × 1 convolution
layers stride is 2 × 2 to squeeze the size of FSQ twice in a
row. The size of the two feature maps are (c × h/2 × w/2)
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TABLE II
CLASS MIOU RESULTS ON THREE FOLDS OF FSSD-12

and (c × h/4 × w/4), respectively. Then, the down-sampled
feature maps are resized to c × h × w and concatenated
with FSQ to aggregate the multiscale context information
of defects. Then, we employ a 1 × 1 convolution layer
to reduce the dimension of the concatenated feature. After
that, the multiscale feature is fed to the hybrid attention
block to represent the foreground feature and suppress inter-
ference from the background. Finally, the attention result is
fed to the fully convolutional decoder block to obtain the

query probability map
⌢

P
Q

. Concretely, our fully convolutional
decoder block consists of two 3 × 3 convolution layers and a
1 × 1 convolution layer, all activated by ReLU. The process
is as follows:

⌢

P
Q

= FD
(
Atten

(
FS

(
FSQ

))
⊕ FS

(
FSQ

))
(7)

where FD(·) denotes the fully convolutional decoder block.
FS(·) presents the space-squeeze operation. Atten(·) indicates
the hybrid attention mechanism (HAM). In addition, ⊕ is the
residual element-wise addition.

G. Training Loss

Our model is trained using binary cross entropy (BCE)
loss. The total loss function of our method consists of two
components: model loss LMAIN and auxiliary loss LAUX.
Concretely, LMAIN is computed between the final prediction
mask of the query image and its corresponding GT. Moreover,
the LAUX is proposed to improve the ability of the CPP
module to aggregate rich discrete defect information. LAUX is
calculated between the prediction mask of the SA module and

its corresponding GT. In short, they are defined as follows:

LMAIN = −
1
N

N∑
i=1

M Q
i log

⌢

P
Q

i (8)

LAUX = −
1
N

N∑
i=1

M S
i log

⌢

P
S

i (9)

where M Q
i and M S

i denote the query and support GT.
⌢

P
Q

i and
⌢

P
S

i are the query and support prediction results, respectively.
And the total loss is represented as follows:

L = LMAIN + kLAUX (10)

where k represents a hyperparameter, set to 0.4 in our work,
according to the superiority result in the ablation experiment.

For the sake of simplicity, it is described by Algorithm 1.

IV. EXPERIMENTS

A. Dataset

We construct a novel few-shot segmentation dataset,
FSSD-12, to address the severely insufficient pixel-wise
labeled S3D samples in existing works. As shown in Fig. 6,
there are twelve S3D classes in FSSD-12, including abrasion-
mask, iron-sheet ash, liquid, oxide-scale, oil-spot, water-spot,
patch, punching, red-iron sheet, roll-printing, scratch, and
inclusion.

All raw defective images are integrated from DET
GC-10 [10], X-SDD [11], SD-900 [5], and Surface
Defects-4i [20], which are taken in the production and manu-
facturing stages. Subsequently, we meticulously annotate the
overall defective images with pixel-wise labels. In order to
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Fig. 7. Visualize the comparative experiments results of CPANet with PFENet and TGRNet. From top to bottom, each row represents support images and
corresponding mask GT (yellow), query images and corresponding mask GT masks (blue), and prediction of different methods (red).

apply our method to process strip steel production, we only
crop defective samples from the original photographs and do
not perform other complicated processing. Besides, all defec-
tive images are uniform to 200 × 200 to ensure consistency
and decrease the calculating cost. Furthermore, the number
of samples in each defect class is limited to 50 to avoid a
long-tailed distribution. Following the few-shot dataset setting
in [16], all defect classes are randomly divided into three folds
for cross-evaluation. Note that the classes of defects do not
overlap in the different folds. The details of the fold splitting
are given in Table I.

B. Evaluation Metric
Following prior few-shot segmentation works [30], [33],

[38], Mean Intersection-over-Union (MIoU) is used as the pri-
ority indicator, owing to its objectivity and comprehensiveness.
Given a specific defect class C , MIoU is calculated as follows:

MIoU =
1
C

C∑
c=1

IoUc (11)

where IoUc represents the IoU of defect class c.
Foreground-and-Background IoU (FBIoU) ignores the class

information, and we only presented it for a fair comparison.
FBIoU is calculated as follows:

FBIoU =
1
2

(
IoU f + IoUb

)
(12)

where IoU f and IoUb denote foreground and background IoU
in the target fold, respectively.

C. Experimental Setup

We used Resnet-50 [50] and VGG-16 [49], pre-trained on
ImageNet [48], as the backbone network. Following [22], our

TABLE III
COMPARISON OF METHOD PARAMETERS, GPU LOAD, AND GPU TIME

CPANet used the dilated convolution version of the Resnet-
50 and the original version of the VGG-16. SGD is used as
the optimizer. We set the momentum to 0.9 and the weight
decay to 0.001. Our network was trained on FSSD-12 for
200 epochs with a learning rate of 0.025 and a batch size of 2.
During training, we froze the overall pre-trained weights of
the backbone. Data augmentation was performed with random
mountings from −10◦ to 10◦ and mirroring operation. All
defective images were resized to 200 × 200. Both comparison
and ablation experiments were performed under the PyTorch
1.70 framework with NVIDIA GeForce RTX 3060 (12 G)
GPU and Intel Core-i5 11400F @ 2.60 Ghz CPU, Ubuntu
20.04 system. In addition, our method used an end-to-end
training pattern and cross-entropy loss for backpropagation.

D. Comparison Experiment
1) Quantitative Results: Table II illustrates the segmenta-

tion performance of our CPANet along with other existing
FSS approaches on FSSD-12. Our CPANet, with the backbone
ResNet50, outperforms other advanced FSS methods by a con-
siderable margin in all settings. Our method achieves 6.2%p
(1-shot) and 6.6%p (5-shot) MIoU improvements over the pre-
vious best general few-shot segmentation method PFENet [33]
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TABLE IV
ABLATION STUDY OF 1-SHOT AND 5-SHOT MIOU AND FB-IOU

Fig. 8. Detailed illustration of the Baseline.

on FSSD-12. Besides, CPANet performs 3.8%p (1-shot) and
4.1%p (5-shot) of MIoU improvements over surface defect
few-shot segmentation method TGRNet [20] on FSSD-12.
Moreover, we also compare our CPANet with existing methods
for FB-IoU on FSSD-12. Table III also evaluates our CPANet
with PFENet and TGRNet through parameters, GPU load, and
GPU time.

2) Qualitative Results: As shown in Fig. 7, we visualize
the segmentation results to analyze better and evaluate the
effectiveness of our CPANet. From top to bottom, each row
represents the support image, the corresponding support
GT mask (yellow), the query image, the corresponding query
GT mask (blue), and the segmentation results (red). Our
CPANet can achieve better segmentation performance than
TGRNet and PFENet in most defect classes. However, the
segmentation performance of our work is inferior to TGR-
Net in column 6. This phenomenon may be caused by the
low contrast and ambiguous boundary between the defective
foreground and defect-free background. Besides, our CPANet
is more focused on aggregating discriminative foreground
information from discrete defects. Since few-shot S3D defect
segmentation has been poorly studied, we hope that our
method will catalyze future research to address these issues.

E. Ablation Study

We conduct a series of ablation experiments on FSSD-12
with ResNet-50 backbone network in 1-shot and 5-shot set-
tings. These experiments allow the impact of each component
to be evaluated.

1) Baseline Method Versus CPANet: As shown in Fig. 8,
a baseline method is established to evaluate the effectiveness

of each module proposed in our approach. Instead of using
a CPP module, the baseline method uses a mask global
average pooling to extract foreground information of defects.
Moreover, the SA module is removed, and a fully convolu-
tional decoder replaces the squeeze-space attention decoder
module. Compared to the performance of CPANet, the baseline
network performs 7.6%d (1-shot) and 8.2%d (5-shot). These
results demonstrate the impact of the proposed modules on
segmentation performance.

2) Ablation Experiment of CPP Module and SA Module:
Our CPP module can better capture the detailed information of
defects and aggregate the long-range discrete defect features.
As shown in the second row of Table IV, by leveraging
the CPP module, our method can achieve 2.5%p (1-shot)
and 3.4%p (5-shot) MIoU improvements. In addition, the SA
module can effectively improve the feature aggregation ability
of CPP. As shown in the third row of Table IV, compared
to without SA, our method can achieve 4.8%p (1-shot) and
3.9% (5-shot) MIoU improvements. In general, CPP + SA can
better aggregate long-range defect features at different discrete
positions.

3) Ablation Experiment of SSA Module: The SSA decoder
module can widely aggregate the multiscale context feature of
the defect feature and improve the segmentation performance.
The fourth row of Table IV shows that the segmentation
performance will perform 2.3%d (1-shot) and 3.5%d (5-shot)
MIoU without the SSA decoder module. It has been analyzed
that the HAM can further aggregate the multiscale defect
features and suppress the disadvantageous interference of
background information.

4) Ablation Experiment of Backbone Network: As shown
in Table V, we conduct ablation experiments about ResNet to
evaluate the effect of different backbones on CPANet. Each
middle layer (block2 and block3) feature is extracted for a fair
comparison. Also, for the best performance, a full CPANet
is used. Taking 1-shot as an example, with the ResNet-50
backbone, our CPANet can achieve better segmentation per-
formance. Specifically, it is assumed that the depth of the
backbone is insufficient. In that case, the segmentation per-
formance will decrease, such as 4.4%d (ResNet-18) and
1.4%d (ResNet-34), because these backbone networks are too
shallow to extract the discriminative defect feature. However,
ResNet-101 and ResNet-152 have too many parameters, which
makes them prone to overfitting in the presence of insufficient
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TABLE V
1-SHOT MIOU AND FB-IOU OF ABLATION STUDY FOR BACKBONE

TABLE VI
1-SHOT MIOU AND FB-IOU OF ABLATION STUDY FOR Hyperparameter k

defect samples. In summary, ResNet-50 is used as a backbone
network.

5) Ablation Experiment of Hyperparameter k: Our total
model loss is a linear combination of the two independent
loss functions. Concretely, it consists of LMAIN calculated by
query prediction and LAUX calculated by support prediction.
The hyperparameter k controls the ratio of LMAIN and LAUX
in the total loss, which significantly affects the segmentation
performance of our method.

As the results in Table VI, hyperparameter k is set from
{0, 0.2, 0.4, 0.6, 0.8, 1.0} to conduct ablation experiments.
When k = 0, the SA is inoperative. Taking 1-shot as an
example, it can be found explicitly that our CPANet achieves
the best segmentation performance when k = 0.4.

V. CONCLUSION

In this article, we propose a simple but effective FSS
method, CPANet, to address the existing challenges in S3D
inspection. Our CPANet consists of a CPP module, an SSA
decoder module, and a SA module. In addition, we construct
a novel S3D segmentation dataset, FSSD-12. We performed
extensive comparison experiments and ablation experiments
on FSSD-12 and our CPANet achieves state-of-the-art results.
However, there are some failure cases for our CPANet to
segment complex defects, such as low contrast and ambiguous
defect boundaries. In the future, we plan to introduce multi-
ple sensors to perceive multidimensional defect information,
such as depth information [52] and thermal infrared infor-
mation [53], [54], to alleviate the defective information loss
problem in existing two-dimensional RGB images. We hope
that our work may shed some positive enlightenment on
existing related challenges for future works.
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