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A B S T R A C T

RGB-T salient object detection (SOD) has been developed rapidly and achieved excellent results in recent years.
However, some problems have not yet been solved. The current RGB-T datasets contain only a tiny amount
of low-illumination data. The RGB-T SOD method trained based on these RGB-T datasets does not detect the
salient objects in extremely low-illumination scenes very well. To improve the detection performance of low-
illumination data, we can spend a lot of labor to label low-illumination data, but we tried a new idea to solve
the problem by making full use of the properties of Thermal (T) images. Therefore, we propose a T-aware
guided early fusion network for cross-illumination salient object detection. Specifically, in the training and
testing stage, we use normal illumination data to train our network and then use low and extremely low-
illumination data to verify the effectiveness of our method. In the early fusion stage, we propose a T-aware
guided module (T-aware) for enhancing salient regions of RGB images at different illumination levels. Secondly,
in the decoding stage, we use T images to guide the cross-modal fusion of RGB and T images. In addition, we
propose a cross-modal fusion localization-remote correction module (CFL-RCM), which is used to deeply screen
and correct redundant information generated by illumination variations. Comparative experiments on the
VDT-2048 dataset validate the superior performance of our method on the cross-illumination RGB-T saliency
detection. We also obtained favorable results on generalizability experiments with VT5000, VT1000, and VT821
datasets.
. Introduction

Salient object detection mimics the human visual attention system
nd is used to detect and segment the most attention-grabbing regions
r objects in an image. As a fundamental topic in the field of computer
ision, salient object detection methods are widely used in the fields
f video salient object detection (Huang et al., 2022b; Shokri et al.,
020; Kompella et al., 2021), object tracking (Liu et al., 2022b; Fiaz
t al., 2019; Meinhardt et al., 2022), image segmentation (Cheng
t al., 2022a; Strudel et al., 2021; Shivakumar et al., 2020) and other
ields (Fu et al., 2022). In the past decade, most research has focused on
GB salient object detection and achieved excellent detection results.
owever, the performance of these RGB saliency detection methods de-
rades when detecting some images with low-illumination or complex
ackgrounds. With the popularity of depth cameras, depth information
s pioneered to be integrated into RGB saliency detection. Because the
ixel value of the depth image represents the distance from the object to
he camera, it provides spatial information for saliency object detection.
he introduction of depth image solves the problem of background
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complexity to a certain extent. In recent years, T-images have been
gradually applied to the field of saliency detection and are developing
rapidly because of their ability to compensate for low-illumination
images.

The existing RGB-T datasets mainly include VT5000 (Tu et al.,
2020a), VT1000 (Tu et al., 2019b), and VT821 (Wang et al., 2018a),
which provide a large amount of RGB-T data and greatly promote the
development of RGB-T SOD. However, these RGB-T datasets contain
only a tiny amount of low-illumination data, and the salient features
of the low-illumination data are still clearly outlined. As shown in
Fig. 1, the low-illumination data of VT5000, VT1000, and VT821
account for only 10%, 5%, and 7%, respectively. The current RGB-T
SOD methods mainly use the VT5000, VT1000, and VT821 to train and
test. Although these RGB-T SOD methods achieve excellent detection
results, the detection performance of these detection methods degrades
drastically when detecting low-illumination data. Therefore, if we want
to improve the performance of RGB-T SOD method to cope with low-
illumination data, the most direct way is to increase the amount of
ttps://doi.org/10.1016/j.engappai.2022.105640
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Fig. 1. The illumination percentages of the existing RGB-T datasets and the datasets we used.
Fig. 2. Current bimodal images pre-processing architectures (a), (b), and our T-aware guided architecture (c).
low-illumination data. It is easy to obtain low-illumination data, but
it is challenging to label it. As shown in Fig. 1, the recently published
VDT-2048 dataset (Song et al., 2022b) contains 21% low-illumination
data and 20% extremely low-illumination data, but these data are still
insufficient to support the training.

The existing RGB-T SOD models can be divided into two categories:
traditional methods and deep learning methods. The traditional meth-
ods are, on the one hand, top-down models, which are task-oriented
models based mainly on specific high-level salience prior features and
various crafted features. On the other hand, the bottom-up model,
which is designed mainly for low-level features, usually uses color,
texture, contrast, and borders. Traditional methods may be reliable
in some specific scenarios. However, due to their lack of high-level
semantic and contextual information, they will become unreliable in
some variable illumination or more complex scenarios. Deep learning
methods mainly deal with information fusion between bimodal, for
example, multi-interaction dual decoding methods (Tu et al., 2021),
unified information fusion methods for multimodal features (Gao et al.,
2022) and cross-guided fusion networks (Wang et al., 2021). Deep
learning methods generally perform unimodal feature extraction and
then perform multimodal fusion during or after extraction to mine the
information between the bimodal. However, the challenge for existing
RGB-T SOD methods is to fully utilize T images in low-illumination
scenes, which is difficult to solve by bimodal mid- and late-stage fusion.
Therefore, our method focuses on constructing a cross-illumination
SOD method using existing datasets to improve the performance of
the SOD task to detect low-illumination data. Our work is similar
to RGB-T and RGB-D SOD, but the existing methods do not address
the following issues: (1) The state-of-the-art (SOTA) SOD methods are
unsuitable for accurately detecting low-illumination data based on the
existing dataset. (2) Existing SOD methods do not take full advantage
of T-images to detect low-illumination data in the fusion strategy. Sec-
ondly, the existing fusion modules cannot adequately screen redundant
information due to cross-illumination SOD.

Motivated by the discussions mentioned above, the main focus of
this paper is to use the properties of T images to reduce the negative im-
pact of low-illumination data on RGB-T SOD tasks. From the algorithm’s
2

perspective, we explored a new method to detect low-illumination data
based on the training of normal illumination data. To this end, we
propose a strategy of training with normal illumination data and testing
with low illumination data to verify the robust compensability of our
method for T images against RGB images in the SOD task. To support
this proposal, we added early fusion and designed more robust fusion
modules in the decoding phase, as discussed in detail below.

The state-of-the-art bimodal SOD methods are simply processed
before the two modal images are fed into the network. As shown
in Fig. 2(a), the early fusion ways of the methods proposed by Fu
et al. (2020) and Huo et al. (2022b) are concatenation or element-wise
summation. As shown in Fig. 2(b), other RGB-T SOD methods (Zhang
et al., 2020; Tu et al., 2021; Gao et al., 2022; Zhou et al., 2022a; Guo
et al., 2021; Zhang et al., 2021c; Huo et al., 2022a; Wang et al., 2021;
Zhou et al., 2022b; Liu et al., 2022c; Chen et al., 2022; Tu et al.,
2022; Liao et al., 2022; Xu et al., 2022; Liang et al., 2022a; Wang
et al., 2022b; He et al., 2022; Zhang et al., 2022a; Ma et al., 2022;
Jiang et al., 2022) do not process RGB and T images before input to
the network. These methods process RGB and T images equally, and
their performance decreases when a single modality is affected. To
solve the problem, we constructed a T-aware guided module. Before
feeding RGB images to the network, as shown in Fig. 2(c), we first
extract a region of possible salient objects from the T images and use
the region to enhance the RGB images. The first row of Fig. 3(a), (b),
and (c) shows the RGB images under different illumination conditions.
The second row shows the RGB images after the early fusion of the
T-aware guided module. We can see that the T-aware guide module
significantly improves the quality of RGB images in low-illumination
situations. Different from Guan et al. (2018, 2019), we perform an early
fusion of the RGB and T images and assign weights to the RGB and T
images.

The illumination levels in the training and testing stages are differ-
ent, which leads to a large amount of redundancy in the cross-modal
fusion features in the testing stage. Therefore, to be suitable for scenes
with changing illumination, our model focuses more on locating salient

objects and screening redundant information in the decoding stage
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Fig. 3. Comparison of RGB images with different illumination levels before and after T-aware guided module.
compared to other methods. Different from other methods (Wang et al.,
2021; Zhai et al., 2021; Wen et al., 2021), we construct a cross-modal
fusion localization-remote correction module, which contains two out-
put features to guide the decoder to generate salient maps. We first use
the middle and high-level fusion features for contextual association to
obtain the remote correction feature of the salient objects. Secondly,
we use the remote correction feature and the high-level fusion features
for deep screening operation to obtain the location information of the
salient object. The decoding module will gradually recover the details
of salient objects based on this location information, and the remote
correction feature will further remove redundant information from the
multi-scale saliency map.

In summary, the main contributions of this work can be summarized
as follows:

(1) We constructed an RGB-T salient object detection model for
cross-illumination with a new idea. It can take full advantage of the
compensation property of T images for low-illumination RGB images.
More importantly, our method can improve the detection performance
on low-illumination data without expanding new low-illumination
datasets.

(2) The proposed T-aware guided mechanism can effectively mine
the shallow information in T images and select favorable information
to complement the low-illumination RGB images.

(3) The proposed cross-modal fusion localization-remote correction
module can effectively utilize mid-level and high-level features. This
architecture not only provides accurate localization information for
the decoder but also provides correction information in the process of
salient maps from coarse to fine.

(4) We divided the VDT-2048 dataset into a training set for normal
illumination and a test set for low and extremely low illumination.
The latest fourteen state-of-the-art methods are compared on the VDT-
2048 dataset, and the proposed method achieves superior performance.
Furthermore, we also obtained favorable results on generalizability
experiments in three RGB-T datasets.

2. Related work

In this section, we briefly review the existing RGB saliency object
detection methods. Secondly, we provide a detailed overview of RGB-D
and RGB-T salient object detection methods and present the motivation
for our work.

2.1. RGB salient object detection

Salient object detection has been developed over decades, and many
results have been achieved. Due to space limitations, the specific results
can be viewed in the article summarized by Liu et al. (2021a). Since
this year, many new methods have been proposed in the field of
RGB-based Salient object detection. Song et al. (2022a) proposed a
cascaded detail and backbone filling method to fill the salient subject by
capturing the edges of the salient object. Wu et al. (2022) constructed
an Extremely-Downsampled Network that used a shallow sampling

technique to learn the global view of the entire images efficiently. Yan
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et al. (2022) used an unsupervised domain adaptive method based on
uncertainty-aware pseudo label learning for Salient object detection,
which adapts between these two domains by self-training of uncertainty
perception and achieves excellent detection results. Liu et al. (2022a)
constructed a pooling network (PoolNet+), which explores the potential
of pooling techniques for salient object detection tasks. Zhang et al.
(2022b) proposed a new progressive dual-attention residual network
(PDRNet), which uses two complementary attention maps to guide
residual learning, thus progressively refining the prediction in a coarse-
to-fine manner. Zhuge et al. (2022) designed a new integrity cognitive
network (ICONet), which defines the concept of integrity at the micro
and macro levels.

2.2. RGB-D and RGB-T salient object detection

(1) RGB-D salient object detection started late compared to RGB
salient object detection. However, it has been developed for several
years and has achieved many results. These results can be found in
the articles on RGB-D saliency detection compiled by Fan et al. (2021)
and Zhou et al. (2021a). In the past two years, many new methods
have emerged in the field of RGB-D salient object detection. Zhai
et al. (2021) proposed a branching backbone strategy (BBSNet) that
regroups multi-layer features into teacher and student features for
detection. In the feature extraction stage, it adds the depth features
to the RGB images for further extraction, which improves the ro-
bustness and generalization of the model. Chen et al. (2021b) used
a three-dimensional convolutional neural network (RD3D) to pre-fuse
RGB and depth modalities by an inflated 3D encoder, and then they
created a 3D decoder enriched with inverse projection paths for de-
coding. Li et al. (2021) designed a Hierarchical Alternate Interaction
Network (HAINet), the method that mitigates interference in the depth
images and highlights salient objects in the RGB images. Ji et al.
(2021) constructed a depth correction fusion strategy (DCF), which
used RGB images to correct low-quality depth images, and designed a
fusion module to fuse the RGB images and fixed depth images. Wen
et al. (2021) proposed a dynamic selection network (DSNet), which
uses a dynamic selection module (DSM) to dynamically mine cross-
modal complementary information between RGB images and depth
images. Zhang et al. (2021a) designed a cross-modal differential in-
teraction network (CDINet), which models the dependency differences
between two modalities based on different levels of feature representa-
tion. Liu et al. (2021b) used a Triplet Transformer Embedding Network
(TriTransNet), which enhances them by learning remote dependencies
across layers. Zhou et al. (2021b) proposed a specificity-preserving
Salient object detection method (SPNet) to improve the performance
of SOD by exploring shared information and morphology-specific at-
tributes such as specificity. Sun et al. (2021) proposed a depth-sensitive
RGB feature modeling solution (DSA2F), which achieves RGB feature
enhancement and background interference reduction by capturing a
depth geometric prior. Wang et al. (2022a) developed a simple yet
effective network (DepthNet) to learn discriminative cross-modal fea-
tures. Cheng et al. (2022b) constructed a depth-induced gap reduction
network (DIGR), which is used to evaluate the depth quality and
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reweight the contribution of unimodal features. Fang et al. (2022)
designed a new group transformer network (GroupTransNet), which
is skillful at learning long-term dependencies of cross-layer features
to promote perfect feature expression. Zhu et al. (2022) developed a
depth-supervised fusion transformer [DFTR], which uses depth infor-
mation as supervision rather than an input. Zeng and Kwong (2022)
proposed a dual Swin-transformer based mutual interactive network
(DTMINet), which applies an attention-based module to enhance the
features of each modality. Feng et al. (2022) designed a dual-stream
depth interleaved encoder network (EDI) to extract RGB and depth in-
formation and realize their mixing simultaneously. The model obtained
excellent running speed during the testing stage.

(2) In recent years, RGB-T salient object detection has developed
rapidly and achieved many results due to the illumination-independent
nature of T images. Here we present several deep learning-based RGB-
T SOD methods, and other methods can be referred to the information
compiled by Zhou et al. (2022b). Tu et al. (2020a) proposed a deep
attention fusion method (ADFNet) to obtain weighted features and
provided an RGB-T dataset. Zhang et al. (2020) proposed a new end-to-
end network (FML) for multimodal salient object detection that takes
advantage of the complementary strengths of RGB and T images. Tu
et al. (2021) designed a multi-interaction double decoding method
(MIDD) to mine and model multiple types of interactions. Gao et al.
(2022) developed a unified information fusion network (MMNet) that
can efficiently handle multimodal features. Zhou et al. (2022a) used
an efficient, consistent feature fusion network (ECFFNet) to utilize the
complementary information of dual-modality fully. Guo et al. (2021)
proposed a two-stage fusion approach (TSFNet) to capture the fea-
tures of RGB and T images fully. Zhang et al. (2021c) proposed a
novel deep feature fusion network (RFF). They exploit the robustness
of T images to illumination and shading. Huo et al. (2022a) built
an efficient context-guided superposition refinement network (CSR-
Net), which focuses on efficiency while taking into account detection
performance. Wang et al. (2021) investigated a cross-guided fusion
network (CGFNet) that profoundly explores the characteristics of the
respective modalities through the interaction of each module. Zhou
et al. (2022b) proposed an adversarial learning-assisted and perceptual
importance fusion network (APNet) that can be used for salient object
detection throughout the day. Zhou et applied for all-day salient ob-
ject detection. Liu et al. (2022c) constructed a method to drive edge
perception (SwinNet), which uses the powerful feature representation
capability of Swin Transformer to guide cross-modal fusion with edge
features. Chen et al. (2022) designed a cross-guided modal difference
reduction network (CGMDRNet). They obtained consistent fusion by
reducing the difference between RGB images and T images. Tu et al.
(2022) proposed a new deep correlation network (DCNet) explores the
correlation between RGB images and T images, which solves the prob-
lem that RGB and T images need to be aligned. Huo et al. (2022b) used
a real-time One-Stream and Guided Refinement Network (OSRNet),
which avoids the cumbersome dual-stream decoding structure by early
fusion. Liao et al. (2022) constructed a cross-collaborative fusion coding
network (CCFENet), which suppressed negative information between
modalities by facilitating the interaction between encoders. Xu et al.
(2022) proposed a strategy to process different cues in RGB and T
images via the CNN feature and resultant salient map fusion. Liang
et al. (2022a) proposed an end-to-end framework (MIA_DPD) which
has excellent generality in RGB-D and RGB-T detection tasks. Wang
et al. (2022b) designed a unidirectional RGB-T salient object detection
network with intertwined driving of encoding and fusion, which makes
the network more concise and effective. He et al. (2022) proposed an
Enhancement and Aggregation–Feedback Network (EAF-Net) for SOD
to achieve effective complementation between modalities and prevent
interference from noises. Zhang et al. (2022a) designed a novel RGB-T
SOD model that alleviates meaningless cross-modal fusion by lever-
aging a modality-aware and scale-aware feature fusion module. Ma

et al. (2022) developed a novel Modal Complementary Fusion Network
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(MCFNet) to alleviate the contamination effect of low-quality images
from both global and local perspectives. Jiang et al. (2022) proposed
a novel mirror complementary Transformer network (MCNet) for RGB-
T SOD to effectively extract hierarchical features of RGB and thermal
images. Cong et al. (2022) used a network named TNet to solve
the RGB-T SOD task and introduced a global illumination estimation
module to predict the global illuminance score of the image so as to
regulate the role played by the two modalities. Bi et al. (2022) used a
parallel symmetric network for mining the complementary information
of RGB images and T images. Liang et al. (2022b) proposed a method
that can be used for RGB-T and RGB-D saliency detection tasks by
exploring bimodal information.

2.3. Motivation

After the above discussion and the analysis of Table 1, most SOD
methods focus on the complementarity between multimodal informa-
tion and work to develop fusion solutions with more generalization and
robustness. Therefore, they still have some limitations when applied
to low-illumination SOD tasks. (1) The performance of SOTA methods
trained on RGB-T datasets degrades sharply when detecting extremely
low-illumination data. (2) In terms of fusion strategies, they mainly
focus on the development of mid and late-stage fusion. However,
early fusion is more effective in processing low-illumination data.
(3) The SOTA methods do not develop effective fusion modules for
cross-illumination strategies in the decoding phase. Although T-images
provide important information for SOD, T-images are more suitable for
low-illumination detection scenes.

Considering the above problems and based on the existing dataset
conditions, we proposed a T images-aware guided early fusion network
for cross-illumination RGB-T salient object detection.

3. Methodology

In this section, we first describe the overall architecture of our
method in detail. Second, we describe the T-aware guided mechanism
in particular, then we introduce the cross-modal fusion localization-
remote correction module. Finally, we provide the implementation
details of the method.

3.1. Architecture overview

In this paper, the overall architecture of our proposed method is
shown in Fig. 4. It differs from the classical encoder–decoder structure.
In the early fusion stage, we added a T-aware guided module for
guiding RGB images in low-illumination scenes. Secondly, the encoder
is a symmetric two-stream backbone network by VGG16. It is used
to extract multi-layer features of RGB and T images. Notably, we
discard the last pooling layer and the fully connected layer and keep
only five convolutional blocks. They are down sampled 1, 2, 4, 8,
and 16 times, and the number of channels is 64, 128, 256, 512, and
512, respectively. In the decoding stage, we designed a cross-modal
fusion localization-remote correction module for effective salient object
detection.

Precisely, we randomly adjust the brightness and contrast of the
RGB images under normal illumination when the data are loaded.
Then, these RGB images (R) are first re-assigned weights by the T-
aware guided module before being input into the model. The T images
(T) are directly input to the network. For the selection of the back-
bone network, we use a two-stream encoder VGG16 for the feature
extraction network, and the extracted features for each layer are
{𝑓 35264

𝑅𝐺𝐵 , 𝑓 176128
𝑅𝐺𝐵 , 𝑓 88256

𝑅𝐺𝐵 , 𝑓 44512
𝑅𝐺𝐵 , 𝑓 22512

𝑅𝐺𝐵 } ∈ 𝑅𝑖, 𝑖 ∈ [1, 2, 3, 4, 5] and

{𝑓 35264
𝑇 , 𝑓 176128

𝑇 , 𝑓 88256
𝑇 , 𝑓 44512

𝑇 , 𝑓 22512
𝑇 } ∈ 𝑇𝑖, 𝑖 ∈ [1, 2, 3, 4, 5]. After that, we

build a practical decoding framework. It mainly consists of a cross-
modal fusion localization-remote correction module and a decoder. The
cross-modal fusion localization-remote correction module can remove
the redundant information in the decoder due to cross-illumination.
After processing by these modules, our method can accurately detect

low and extremely low-illumination data.



H. Wang, K. Song, L. Huang et al. Engineering Applications of Artificial Intelligence 118 (2023) 105640

3

t
o
d
d
m
t
w
t
r

Table 1
Discussion of the relevant methods used in the comparison experiments.

NO. Year Method Type Pub. Training set Backbone Discussions

1 2020 JL-DCF (Fu et al., 2020) RGB-D CVPR NJU2K (1.5K),
NLPR (0.7K)

ResNet-101
VGG-16

Encoded using only one backbone through early fusion.

2 2020 D3Net (Fan et al., 2021) RGB-D TNNLS NJU2K (1.485K),
NLPR (0.7K)

VGG-16 Trained three branch networks to output excellent detection results
in the testing phase.

3 2020 BBSNet (Zhai et al., 2021) RGB-D ECCV NJU2K (1.4K),
NLPR (0.65K)

ResNet-50
VGG-16
VGG-19

Extracted top-level teacher features to guide the fusion of
bottom-level student features.

4 2021 RD3D (Chen et al., 2021b) RGB-D AAAI NJU2K (1.485K),
NLPR (0.7K)

3D ResNet-50 Designed the encoder–decoder of 3D convolutional blocks for SOD
tasks.

5 2021 HAINet (Li et al., 2021) RGB-D TIP NJU2K (1.4K),
NLPR (0.65K)

VGG-16

Proposed different strategies to mine cross-modal complementary
information between RGB images and depth images.

6 2021 DSNet (Wen et al., 2021) RGB-D TIP NJU2K (1.485K),
NLPR (0.7K)

ResNet-50

7 2021 CDINet (Zhang et al., 2021a) RGB-D ACMM NJU2K (1.485K),
NLPR (0.7K)

VGG-16

8 2021 DCF (Ji et al., 2021) RGB-D CVPR NJU2K (1.485K),
NLPR (0.7K)

ResNet-50
VGG-16

Corrected low quality depth to reduce interference with the model.

9 2022 SPNet (Zhou et al., 2021b) RGB-D CVPR NJU2K (1.485K),
NLPR (0.7K)

ResNet-50 Explored contextual information to improve saliency detection
results.

10 2022 ADFNet (Tu et al., 2020a) RGB-T TMM VT5000 (2.5K) VGG-16 Provided a deep fusion method and large-scale RGBT dataset.

11 2021 MIDD (Tu et al., 2021) RGB-T TIP VT5000 (2.5K) VGG-16 Developed an excellent fusion strategy to cross-fuse RGB features
and T features in the decoding stage.12 2021 CGFNet (Wang et al., 2021) RGB-T TCSVT VT5000 (2.5K) VGG-16
Fig. 4. The overall structure of the proposed method.
.2. T-aware guided mechanism

(1) T-aware guided module. RGB images are rich in texture informa-
ion, which plays a crucial role in recovering the details of remarkable
bjects during the decoding stage. However, in natural scenes, a sud-
en reduction or disappearance of illumination will cause a dramatic
egradation in the imaging quality of RGB images. This will prevent the
odel from accurately extracting RGB images information. To address

he drastic impact of cross-illumination on the detection performance,
e tried to compensate RGB information by using T information. For

his reason, we design a T-aware guided module to obtain the possible
egions of salient objects in T images. This region is used to perform
5

an initial screening of information in the RGB images. It will reduce
the sensitivity of the encoder and decoder to the cross-illumination of
the RGB images. Specifically, the imaging quality of T images depends
mainly on the thermal factor, so it has excellent stability in coping with
the environment with changing illumination. Based on the property,
we apply a piece of T-aware information to RGB for guiding before
the RGB images enter the encoding network. This module reduces
the effect of low-illumination images on the features extracted by the
backbone network. In addition, considering that the imaging quality
of T images is affected by temperature, we add a confidence level of
T-aware information. As shown in Fig. 5, we first input the T images

to a lightweight T-aware module consisting of base convolution, and
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Fig. 5. T-information-aware guidance module (T-aware).
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upervise the training of the T images with the ground truth. We do not
verly pursue detection accuracy during the training process, aiming to
btain T-aware information with robustness. Here we use the smooth
oss for supervision to ensure its robustness. Second, to obtain the
onfidence level of T-aware information, we first binarize this T-aware
nformation. Then we calculate the MAE of the predicted outcome and
round truth. We then ranked each T-awareness infographic according
o its MAE from smallest to largest. We take the top 30% as the high-
uality T-aware information map and the bottom 30% as the inferior
-aware information map. We send the T images of these T-aware

nformation maps to the classification network ResNet-18 for training.
t is worth noting that we use label smoothing loss for supervision to
revent the classification network from being overconfident and avoid
xtreme training results.

Before the RGB images enter the network training, the RGB infor-
ation does not rely entirely on the potentially unreliable T-aware

nformation. Instead, we assign the T-aware information and its con-
idence level to the original RGB images. The specific formulas are as
ollows:

𝐺𝐵 = 𝑊𝑇 × (𝑅𝐺𝐵 × 𝑆𝑇 ) + (1 −𝑊𝑇 ) × 𝑅𝐺𝐵, (1)

here 𝑊𝑇 represents the confidence level of T-aware information and
𝑇 represents the T-aware information.

(2) Cross-Modal T Guided Fusion Module. This is a vital issue
n the multimodal salient object detection task to mine the comple-
entarity between cross-modal information. Considering that we are
etecting salient targets under cross-illumination conditions, as shown
n Fig. 6, we design a cross-modal T guided fusion module. Different
rom CBAM (Woo et al., 2018), the module takes advantage of the
roperty that T images are not affected by illumination changes to
xplore the relevant information in RGB and T images. Meanwhile,
onsidering the contribution of RGB information, the module not only
ully integrates T information and RGB information but also highlights
alient object at the spatial level.

As shown in Fig. 6, 𝑅𝑖 and 𝑇𝑖 respectively represent the output of
GB and T images in the 𝑖th (𝑖 = 1...5) convolutional block. Separately,
ach set of cross-modal features 𝑅𝑖 and 𝑇𝑖 are fed into CTGFM for cross-

modal processing. Specifically, as shown in Fig. 6, for each CTGFM,
we first let 𝑅𝑖 pass the global average pooling, and then let 𝑇𝑖 pass
he global maximum pooling. Then let these two pooled features be
onnected and processed through a convolution block. Finally, the
eatures output from the convolution block are mapped to 0–1. The
pecific formulas are as follows:

𝛷𝑖 = 𝑆(𝐶𝑜𝑛𝑣(𝐶𝑎𝑡(𝐴𝑣𝑔(𝑅𝑖),𝑀𝑎𝑥(𝑇𝑖)))), (2)

𝑖 = [1, 2, 3, 4, 5]

6

here 𝛷𝑖 represents the weight on the spatial level of the T information
aster guide, S represents the sigmoid, Avg represents the global

verage pooling, and Max represents the global maximum pooling.
n this way, after a processing method that is guided mainly by T
mages and retains the prominent parts of RGB images, it can provide a
iece of guiding information for further mining useful features between
odalities subsequently. Further, 𝛷𝑖 performs element multiplication

and addition operations with 𝑅𝑖 and 𝑇𝑖, respectively. Then each feature
goes through the global average pooling layer and then multiplies the
elements with 𝑅𝑖 and 𝑇𝑖 separately, and finally adds them together and
outputs 𝐹𝑢𝑠𝑖:

𝐹𝑢𝑠𝑖 = 𝑆(𝐴𝑣𝑔(𝑅𝑖 +𝛷𝑖 × 𝑅𝑖) × (𝑅𝑖 +𝛷𝑖 × 𝑅𝑖))
+𝑆(𝐴𝑣𝑔(𝑇𝑖 +𝛷𝑖 × 𝑇𝑖) × (𝑇𝑖 +𝛷𝑖 × 𝑇𝑖))

(3)

TGFM not only fully extracts the deep-level features of both modalities
ut also reduces the interference of low-illumination RGB images on
ross-modal feature extraction. T information is used as the primary
uide and RGB information is used as the secondary guide in feature
usion, which improves the robustness of the whole model. It is note-
orthy that 𝐹𝑢𝑠𝑖 is unchanged from 𝑅𝑖 and 𝑇𝑖 before entering CTGFM

n terms of channel number and spatial scale.

.3. Cross-modal fusion localization-remote correction module

High-level features contain rich semantic information, and the ef-
ective extraction of these high-level semantic information plays an
ssential role in the accurately locating of salient objects. The mid-level
eatures include both semantic and detail information, and this part
f detail information also plays a vital role in the portrayal of salient
bjects. To make full use of the middle and high-level information of
GB and T images, we try to build a module containing both location

nformation and remote correction information. We propose an efficient
ross-modal fusion localization-remote correction module (CFL-RCM).
ifferent from the fusion approach of Zhai et al. (2021), the module
e designed not only provides information on the exact position of the

alient object but also corrects the output of the latter three decoders.
pecifically, the first part is the remote correction module, as shown
n Fig. 7, the input of this module is the feature map 𝐹𝑢𝑠𝑖, i = [3,4,5].

We use a global context module GCM (Zhai et al., 2021), which has the
advantages of being both effective and efficient. After 𝐹𝑢𝑠𝑖 is processed
by this module, we get G_Fus𝑖, i = [3,4,5] with contextual information,
and all of G_Fus𝑖 is unified into 64 channels. Then we refine G_Fus𝑖 from
the bottom-up level by level. The difference from Zhai et al. (2021) is
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Fig. 6. Cross-modal T-information guided fusion module (CTGFM).
Fig. 7. Cross-modal fusion localization-remote correction module (CFL-RCM).
hat we add CBR for each element multiplication and concatenation
peration, as follows:

1 = 𝐶𝑎𝑡(𝐶𝐵𝑅(𝐹𝑢𝑝(𝐶𝐵𝑅(𝐺_𝐹𝑢𝑠5)) × 𝐺_𝐹𝑢𝑠4), 𝐶𝐵𝑅(𝐺_𝐹𝑢𝑠5)) (4)

2 = 𝐶𝑎𝑡(𝐶𝐵𝑅(𝐺_𝐹𝑢𝑠3 × 𝐹𝑢𝑝(𝐶𝐵𝑅(𝐺_𝐹𝑢𝑠4)

× 𝐹𝑢𝑝(𝐶𝐵𝑅(𝐺_𝐹𝑢𝑠5)))), 𝐶𝐵𝑅(𝛹1)) (5)

here the CBR represents the 3*3 Conv2d+BN+ReLU, 𝐹𝑢𝑝 represents
he up sampling, 𝛹1 represents the refined features of G_Fus5 and
_Fus4, and 𝛹2 represents the refined remote correction feature of
_Fus3 and 𝛹1. The size of 𝛹2 is 88*88 and the number of channels

s 64.
The second part is the cross-modal fusion localization module, as

hown in Fig. 7, this part uses the integrated high-level feature G_Fus5
and the remotely corrected feature 𝛹2 to perform the cross-modal
fusion. In this way, we obtain the accurate localization information of
the salient objects. Since the scale of 𝛹2 is 88*88, we have to down
sample it twice, and fuse it with a 3*3 convolutional block G_Fus5. The
specific formulas are as follows:

𝛱1 = 𝐶𝑜𝑛𝑣2𝑑(𝐴𝑣𝑔(𝐶𝑜𝑛𝑣2𝑑(𝐴𝑣𝑔(𝛹2)))) (6)

𝛱2 = 𝐶𝑜𝑛𝑣2𝑑(𝐺_𝐹𝑢𝑠5) (7)

Z = 𝐶𝑎𝑡(𝑆(𝐴𝑣𝑔(𝛱2)) ×𝛱1, 𝑆(𝐴𝑣𝑔(𝛱1)) ×𝛱2) (8)

𝐺𝑙𝑜𝑏𝑒𝑙5 = 𝐶𝑜𝑛𝑣2𝑑(Z) × 𝑆(𝐶𝑜𝑛𝑣2𝑑(𝐶𝑎𝑡(𝐴𝑣𝑔(Z),𝑀𝑎𝑥(Z)))) (9)

where 𝛱1 and 𝛱2 represent the inputs of cross-modal fusion localiza-
tion module, where Z represents the fusion feature of G_Fus5 and 𝛹2,

where 𝐺𝑙𝑜𝑏𝑎𝑙5 represents a feature of size 22*22 and channel number

7

1. 𝐺𝑙𝑜𝑏𝑎𝑙5 is used as the first global feature of the decoder to guide the
refinement of salient object.

The following global information is based on the per-layer decoder
output. This global information can guide each layer to fuse feature
{𝐹𝑢𝑠4, 𝐹 𝑢𝑠3, 𝐹 𝑢𝑠2, 𝐹 𝑢𝑠1} to enrich the detailed information of salient
objects. In this process, detailed information is continuously added,
which contains primarily favorable information and part of redundant
information. As the depth of the decoding block DRM (Zhang et al.,
2021b) output 𝐺𝑙𝑜𝑏𝑎𝑙𝑖 increases from level to level, the redundant
information will also continue to accumulate. The situation will lead to
the deviation of the predicted results from the actual results. Therefore,
to solve this problem, we use 𝛹2 to remotely correct 𝐺𝑙𝑜𝑏𝑎𝑙𝑖, i =
[0,1,2] step by step. This operation can highlight the salient features
intersected by 𝐺𝑙𝑜𝑏𝑎𝑙𝑖 and 𝛹2, and weaken the parts separated by
𝐺𝑙𝑜𝑏𝑎𝑙𝑖 and 𝛹2. In our model, we mainly correct the global features
input by the last three decoding modules. In this way the fine-tuning
process is able to proceed in the expected direction.

3.4. Decoder and loss

In the step-by-step decoding stage, we handle it using {𝐹𝑢𝑠5, 𝐹 𝑢𝑠4,
𝐹 𝑢𝑠3, 𝐹 𝑢𝑠2, 𝐹 𝑢𝑠1}, 𝐺𝑙𝑜𝑏𝑎𝑙5 and 𝛹2. The specific formulas are as follows:

𝐺𝑙𝑜𝑏𝑎𝑙𝑖 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐹𝑢𝑠𝑖+1, 𝐺𝑙𝑜𝑏𝑎𝑙𝑖+1 + 𝛼 × 𝛹2 + 𝛽 × 𝐹𝑢𝑝2(𝛹2)
+𝜆 × 𝐹𝑢𝑝4(𝛹2)),
𝑖 ∈ [0, 1, 2, 3, 4]

(10)

where {𝐺𝑙𝑜𝑏𝑎𝑙4, 𝐺𝑙𝑜𝑏𝑎𝑙3, 𝐺𝑙𝑜𝑏𝑎𝑙2, 𝐺𝑙𝑜𝑏𝑎𝑙1, 𝐺𝑙𝑜𝑏𝑎𝑙0} represents the out-
put of each decoder layer, where 𝐺𝑙𝑜𝑏𝑎𝑙0 is our final prediction map;
𝐹𝑢𝑝2 and 𝐹𝑢𝑝4 represents the 2-fold and 4-fold up sampling, respectively.
𝛼, 𝛽 and 𝜆 take the value of 0 in the normal case, when i = 2, 𝛼 = 1,
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Fig. 8. Visualization results for normal illumination, low illumination and extremely low illumination.
when i = 1, 𝛽 = 1, when i = 0, 𝜆 = 1. Different from Fan et al. (2021),
we add to the global features {𝐺𝑙𝑜𝑏𝑎𝑙3, 𝐺𝑙𝑜𝑏𝑎𝑙2, 𝐺𝑙𝑜𝑏𝑎𝑙1} of the last three
ecoding modules for corrective processing. This can further filter out
he redundant information generated during the decoding process.

In addition, we perform supervised training on {𝐺𝑙𝑜𝑏𝑎𝑙4, 𝐺𝑙𝑜𝑏𝑎𝑙3,
𝑙𝑜𝑏𝑎𝑙2, 𝐺𝑙𝑜𝑏𝑎𝑙1, 𝐺𝑙𝑜𝑏𝑎𝑙0}, 𝐺𝑙𝑜𝑏𝑎𝑙5 and 𝛹2. Because the five decoders
re decoded step by step, and the feature map size is from small to
arge. Therefore, the feature map size is first expanded to 352*352 by
ilinear interpolation before supervised training. Then, we obtained the
uxiliary prediction map {𝐺4, 𝐺3, 𝐺2, 𝐺1} ∈ 𝐼1×352×352 and the final pre-

diction map 𝐺0 ∈ 𝐼1×352×352 for the 2D convolutional output. It is worth
oting that 𝛹2 and 𝐺𝑙𝑜𝑏𝑎𝑙5 are also up-sampled and 2D convolved to
utput the auxiliary prediction map {𝐺5, 𝛹2

∗} ∈ 𝐼1×352×352. Here we
utilize cross-entropy loss and IOU loss to supervise them. The specific
formulas are as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑙𝑜𝑠𝑠1 = 𝜂 × (𝐶𝐸(𝐺𝑇 ,𝐺1)) + 𝛾 × (𝐶𝐸(𝐺𝑇 ,𝐺1)) +
∑

𝑔1

(𝐶𝐸(𝐺𝑇 , 𝑔1)),

𝑙𝑜𝑠𝑠2 = 𝜅 × (𝐶𝐸(𝐺𝑇 ,𝐺5)) + 𝜆 × (𝐶𝐸(𝐺𝑇 ,𝛹2
∗))

+
∑

𝑔2

(𝐶𝐸(𝐺𝑇 , 𝑔2) + 𝐼𝑂𝑈 (𝐺𝑇 , 𝑔2)),

𝑔1 ∈ [𝐺2, 𝐺3, 𝐺4, 𝐺5, 𝛹2
∗], 𝑔2 ∈ [𝐺0, 𝐺1, 𝐺2, 𝐺3, 𝐺4]

(11)

where CE and IOU represent cross entropy loss and IOU loss, re-
spectively. GT represents the ground truth of the image. Where 𝑙𝑜𝑠𝑠1
and 𝑙𝑜𝑠𝑠2 represent two different supervision strategies. Before the 45
epochs, we used the strategy of 𝑙𝑜𝑠𝑠1 to supervise. We apply different
weights to the features at different levels. Here 𝜂 and 𝛾 are set to
1.5 and 1.25, respectively. During the initial training, the middle and
high-level information is inaccurate and the size of the middle and high-
level feature maps is small. When performing bilinear interpolation up
sampling, the error will be continuously amplified. These errors take
up most of the weight of the overall loss and reduce the accuracy of
the final prediction map. After 45 epochs, we use the strategy of 𝑙𝑜𝑠𝑠2
to supervise. Because after the model is trained by the supervision of
𝑙𝑜𝑠𝑠1, each auxiliary prediction map tends to be stable. At this time, we
add IOU loss to supervise, which can improve the accuracy of the final
prediction map. Different from Wang et al. (2021), we apply higher
weights to the auxiliary prediction images 𝐺5 and 𝛹2

∗ of middle and
high-level features for supervision. Here 𝜅 and 𝜆 are set to 1.5 and
2, respectively, to fine-tune the final results. In addition, the auxiliary
prediction maps 𝐺5 and 𝛹2

∗ contain limited detailed information, so
we do not use IOU loss supervision.

4. Experiments

In this section, we elaborated on the implementation details and
dataset, and then described the evaluation metrics. Next, we quanti-
8

tatively and qualitatively compared the proposed method with state-
of-the-art RGB-T salient object detection methods to demonstrate the
advantages of the proposed method for cross-illumination salient ob-
ject detection. After that, we did generalizability experiments on the
commonly used RGB-T dataset. In addition, we performed an ablation
study to validate the role of each module in our model. Finally, we
discussed some failure cases.

4.1. Experimental setup

(1) Implementation Details: Our method is based on the PyTorch
framework, the device system we used is Ubuntu 18.04, and all ex-
periments were conducted on an NVIDIA RTX2070super. Our method
is trained for 65 epochs, with batch size set to 4, optimizer using
SGD, initial weight decay set to 5e–4, momentum set to 0.9, and the
learning rate is set to 0.001, and at 35 epochs, the learning rate decays
to 1/10 of the original. The dataset and code are available at: https:
//github.com/VDT-2048/TAGFNet.

(2) Datasets: The existing VT5000, VT1000, and VT821 datasets con-
tain only a tiny amount of low-illumination data, which is insufficient
for detecting extremely low-illumination scenes. Therefore, we use the
latest publicly available datasets VDT-2048 to validate the performance
of our method. As shown in Fig. 8, we divided the VDT2048 dataset into
three categories: normal illumination, low-illumination, and extremely
low-illumination. Among them, normal illumination means that the
RGB images are well illuminated, and significant objects are clearly
visible. Low-illumination means that the RGB images have most dark
parts, and the salient objects are only partially missing. Extremely
low-illumination means that the RGB images are almost dark and the
outlines of the salient objects are almost entirely lost. According to
this classification standard, as shown in Fig. 9, we divided the data
set into 1210 sets of normal images as the training set and 838 sets
of low-illumination and extremely low-illumination images as the test
set. Among them, there are 438 sets of low-illumination and 400 sets
of extremely low-illumination images.

(3) Evaluation Metrics: The significance evaluation metrics can ob-
jectively describe the performance of the method and can be fairly
compared with other RGB-T and RGB-D SOD methods. At present,
existing SOD methods are not trained and tested using the VDT-2048
datasets. Therefore, to ensure the fairness of the comparison method,
we do not use their pre-trained models for testing, we use their publicly
available source code for training and testing. Specifically, all com-
parison experiments were conducted using a training set containing
1210 images and a test set of 838 images. The parameter settings of
the comparison experiment are consistent with the original paper. We
use six metrics to evaluate these methods, and the evaluation metrics
include: MAE (Perazzi et al., 2012), maximum F-measure, average F-
measure (Achanta et al., 2009), weighted F-measure (Margolin et al.,

2014), S-measure (Fan et al., 2017), E- measure (Fan et al., 2018).

https://github.com/VDT-2048/TAGFNetM
https://github.com/VDT-2048/TAGFNetM
https://github.com/VDT-2048/TAGFNetM
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Table 2
Quantitative comparison results of different model methods, red represents the best, blue represents the second best.
Fig. 9. Distribution of normal illumination, low illumination and extremely low
llumination in the VDT-2048 dataset.

.2. Comparison with the SOTA RGB-T methods

As shown in Table 2, we validate the robustness and generality of
ur proposed method in dealing with cross-illumination by compar-
ng twelve state-of-the-art RGB-T and RGB-D methods. Among these
ethods, SPNet (Zhou et al., 2021b), TriTransNet (Liu et al., 2021b),
DINet (Zhang et al., 2021a), DSNet (Wen et al., 2021), DCF (Ji
t al., 2021), HAINet (Li et al., 2021), RD3D (Chen et al., 2021b),
3Net (Fan et al., 2021), BBSNet (Zhai et al., 2021), and JL-DCF (Fu
t al., 2020) are RGB-D saliency detection methods. The rest are RGB-T
alient object detection methods, including SwinNet (Liu et al., 2022c),
GFNet (Wang et al., 2021), MIDD (Tu et al., 2021), ADFNet (Tu et al.,
020a). All of these methods are based on deep learning methods. It
s worth noting that SwinNet (Liu et al., 2022c) and TriTransNet (Liu
t al., 2021b) are SOTA backbone-based methods.

Quantitative metrics show that our proposed method achieves the
ost effective performance in coping with cross-illumination data. And

t is also well demonstrated that our algorithm has greater adaptability
han other algorithms. In the 838-group low-illumination test set of
DT-2048, our method has a 2.02% improvement in max_F, 3.72%

mprovement in average F-measure, 2.98% improvement in weighted
-measure, and 1.98% improvement in S-measure compared with other
9

VGG16, ResNet-50, and ResNet-101 based methods. In addition, Tri-
TransNet (Liu et al., 2021b) and SwinNet (Liu et al., 2022c) used Trans-
former and Swin-Transformer as the backbone, which have stronger
feature extraction capability. We also achieved the best performance
compared with Tri-TransNet and SwinNet.

As shown in Fig. 10 PR curves, our method covers all the compared
methods. And our method achieves a pretty competitive lead under
different thresholds of F-measure. As shown in Fig. 11. we provide
a visualization of the results for comparison. It is evident that our
proposed method can still guarantee the accurate detection of salient
objects under some extreme conditions. The method can still detect
salient objects and retain good edge information when dealing with
challenging scenes, such as RGB images with extremely dark illumina-
tion, RGB images with a lot of noise, T images with thermal crossover, T
images with thermal reflection, and T images with unclear boundaries.

4.3. Comparison with RGB-T methods in cross-illumination

Fig. 12, it shows the visualization results of our method and other
methods in the process of illumination variation. Among them, rows
1 to 4 are the results under normal illumination in the VT5000 test
set. We can see that our method and the other methods can detect
significant objects usually. Rows 5 to 8 are the results under low-
illumination in the VDT2048 test set. We can see that most models can
still detect the salient objects, but the details are not well recovered. For
example, CGFNet (Liao et al., 2022), HAINet (Li et al., 2021), MIDD (Tu
et al., 2021), and SwinNet (Liu et al., 2022c) in the fifth row are easily
affected by the shadows of the salient objects in the RGB images. Rows
9 to 12 show the results at extremely low-illumination in the VDT2048
test set. We can see that ADFNet (Tu et al., 2020a), DCF (Ji et al.,
2021), and HAINet (Li et al., 2021) can no longer detect salient objects
properly. The other methods are also affected by illumination, and the
detection results are also degraded to different degrees.

4.4. Comparison with RGB-T methods on RGB-T datasets

To further verify that our method can adapt not only to low-
illumination detection scenarios but also to normal illumination de-
tection scenarios, we trained and tested on the commonly used RGB-T
datasets. We strictly follow the mainstream RGB-T salient object detec-
tion methods for the training setup. To fully validate the effectiveness
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a

Fig. 10. Quantitative comparison results between our proposed method and the SOTA methods on the VDT-2048 dataset. The first line is Precision (vertical axis) Recall (horizontal
xis) curves, and the second line shows the F-measure scores of the deep learning-based methods under different thresholds.
Fig. 11. Visual comparison between our method and the SOTA methods.
of our method, we tested it on three commonly used test sets, including
VT821, VT1000, and VT5000.

We compared 16 the SOTA RGB-D and RGB-T salient object detec-
tion methods. JL-DCF (Fu et al., 2020), HAINet (Li et al., 2021), DCF (Ji
et al., 2021) and DPANet (Chen et al., 2021a) are RGB-D saliency
detection methods based on deep learning. MTMR (Wang et al., 2018b),
M3S-NIR (Tu et al., 2019a), CGL (Tu et al., 2020b), LTCR (Huang
et al., 2020) and MGFL (Huang et al., 2022a) are RGB-T salient object
detection methods based on traditional methods, and ADFNet (Tu
et al., 2020a), MIDD (Tu et al., 2021), MMNet (Gao et al., 2022),
ECFFNet (Zhou et al., 2022a), TSFNet (Guo et al., 2021), CSRNet (Huo
et al., 2022a), CGFNet (Wang et al., 2021) and APNet (Zhou et al.,
2022b) are RGB-T salient detection methods based on deep learning
methods. The specific metrics are shown in Table 3. Notably, we also
plotted the corresponding RP curves and F-measure curves, as shown in
Fig. 13. In summary, the results show that our method can still achieve
10
favorable results when applied to RGB-T datasets with more normal
illumination images.

4.5. Complexity analysis

Table 4 shows the difference between our method and the other
methods in terms of model complexity. From train time perspective,
we train on the same device with batch size set to 1 and epochs set
to 30, and we can observe that our method spends less time. From
the runtime perspective, our method exceeds the other methods on
four datasets, where Runtime (FPS) refers to the number of images
per second processed by the model during the testing stage. Different
from the method proposed by Wang et al. (2021), all the methods
we compared were run on the same device. Secondly, the proposed
method is less complex than other methods in terms of model size,
model parameters, and Flops.
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Fig. 12. Visual comparison of the proposed method with the SOTA methods at different illumination levels.
4.6. Ablation study

In this section, we mainly investigate the contribution of our pro-
posed main module. All the ablation experiments were trained and
tested based on VDT-2048, and we used six metrics for evaluation. The
details are shown in Table 5.

(1) Contribution of CTGFM: As shown in the second row of Table 5,
we remove the CTGFM. While we use only Element-wise summation
instead for the RGB and T feature images extracted by the backbone
network at all levels. The rest of the network structure remains un-
changed during training and testing. Compared with the indicators in
the first row of Table 5, we can see that after removing the CTGFM,
each indicator has a different degree of decrease. The main purpose of
this module is to improve the stability of the model, which can still
maintain excellent detection results when dealing with some extremely
low illumination data.

(2) Contribution of T-aware guided module: In the third row of

Table 5, we remove the T-aware guided module based on (1). This part

11
is to guide the RGB images using T information. After removing this
T-aware guided module, there is no need to add alternative modules.
The rest of the network structure remains unchanged during training
and testing. Comparing with the metrics in the second row of Table 5,
we can see that each metric decreases by about 1% after removing
the T-aware guided module. As shown in the experiments, the module
and CTGFM are used to solve the problems of information discrepancy
arising from cross-illumination. These problems are brought about by
the uneven distribution of illumination between the training and test
set data.

(3) Contribution of CFL-RCM: We remove the CFL-RCM module
based on (1) and (2), while we use Conv2d for the replacement, and
the rest of the network structure remains unchanged. Comparing with
the data in the third row of Table 5, we can see that there is a different
degree of decrease in each index after removing the CFL-RCM module
and a reduction of 1.61% in the S-measure. The experiments show

that the contribution of the cross-modal fusion localization-remote



H. Wang, K. Song, L. Huang et al. Engineering Applications of Artificial Intelligence 118 (2023) 105640
Table 3
Quantitative comparison results of different model methods on the RGB-T datasets, red represents the best, blue represents the second best,
green represents the third best.
Fig. 13. Quantitative comparison results between our proposed method and the SOTA methods on three datasets. The first line is Precision (vertical axis) Recall (horizontal axis)
curves, and the second line shows the F-measure scores of the deep learning-based methods under different thresholds.
correction module to the model is evident. Our model can be further
improved in performance by using the efficient CFL-RCM.

4.7. Failure cases and future work

In this paper, we rethink the role of T images in RGB-T salient object
detection and address the problem in RGB-T tasks from a new perspec-
tive. On the one hand, we introduce a T-aware guided module to guide
the RGB images. On the other hand, we designed cross-modal fusion
12
localization-remote correction modules for generating salient objects
from coarse to fine and correcting redundant information generated
in this process. Although our method shows excellent competitiveness
in cross-illumination, it is still inadequate in some difficult scenes, as
shown in Fig. 14. For example, in the first to third columns, if the
color of the T images is similar to the background color, our detection
results will be somewhat degraded. If the RGB images are dark, at
that moment, neither the RGB images nor the T images can provide
enough information about the salient objects. In the fourth and fifth
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Table 4
Comparison of model complexity of deep learning methods running on the same device.
Table 5
Comparison of the different contribution metrics of the main modules.
Fig. 14. Failure cases of proposed method.
W

columns, our method easily misdetection and missed detection due to
the anomalous temperature points and some elongated structures of the
T images.

For these problems, we can use some stronger feature extractors
and early fusion inference mechanisms in the future. In addition,
the existing public datasets for the RGB-T SOD task (such as VT821,
VT1000, and VT5000 datasets) do not adequately consider the actual
value of T images, which are mostly daytime data and contain only a
small amount of low-illumination data. The recently proposed dataset
of VDT-2048 contains most of the low-illumination data, but the scenes
are limited, so it is still necessary to build a subsequent RGB-T dataset
containing more low-illumination data.

5. Conclusion

In this paper, our proposed method can take full advantage of the
compensation effect of T images on RGB images and achieve accurate
detection of cross-illumination data. Considering that the existing RGB-
T datasets only have a small amount of low-illumination data and the
low-illumination data is difficult to label, in besides, other SOTA salient
object detection methods do not solve this problem well. It is worth
noting that to solve this problem, we do not spend a lot of labor to label
low-illumination data. First of all, we developed a strategy which is to
train the model using only normal illumination data and then go to test
the low-illumination and extremely low-illumination data. Secondly,
 V

13
we propose a T-aware guided mechanism that takes full advantage of
the T images to complement the low-illumination RGB images. This
mechanism is applied to cross-illumination saliency detection to reduce
the impact of illumination variations. It is mainly achieved by high-
lighting the salient regions and suppressing the background in the RGB
images. In this way, our model focuses more on the information of the
salient areas of the RGB images. In addition, we designed a cross-modal
fusion localization-remote correction module. The cross-modal fusion
localization can accurately locate the salient objects in the case of
large differences in illumination between the training and test sets. The
remote correction can adequately screen out favorable information and
remove redundant information in response to illumination variations.
The analysis of comparative and ablation experiments verifies that our
method achieves the best performance. In addition, our method also
achieves favorable results on the RGB-T datasets.

CRediT authorship contribution statement

Han Wang: Conceptualization, Methodology, Visualization, Exper-
iment, Investigation, Writing – original draft, Writing – review & edit-
ing. Kechen Song: Conceptualization, Validation, Writing – review &
editing, Project administration, Funding acquisition. Liming Huang:
Formal analysis, Experiment, Writing – review & editing. Hongwei
en: Validation, Writing – review & editing, Supervision. Yunhui Yan:

alidation, Writing – review & editing.



H. Wang, K. Song, L. Huang et al. Engineering Applications of Artificial Intelligence 118 (2023) 105640
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China (51805078), the Fundamental Research Funds for
the Central Universities (N2103011), the Central Guidance on Local
Science and Technology Development Fund (2022JH6/100100023),
and the 111 Project (B16009).

References

Achanta, R., Hemami, S., Estrada, F., Susstrunk, S., 2009. Frequency-tuned salient
region detection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.. pp.
1597–1604.

Bi, H., Wu, R., Liu, Z., et al., 2022. PSNet: Parallel symmetric network for RGB-T salient
object detection. Eng. Appl. Artif. Intell. 511, 410–425.

Chen, Z., Cong, R., Xu, Q., Huang, Q., 2021a. DPANet: Depth potentiality-aware gated
attention network for RGB-D salient object detection. IEEE Trans. Image Process.
30, 7012–7024.

Chen, Q., Liu, Z., Zhang, Y., et al., 2021b. RGB-D salient object detection via 3D
convolutional neural networks. AAAI 1063–1071.

Chen, G., Shao, F., Chai, X., et al., 2022. CGMDRNet: Cross-guided modality difference
reduction network for RGB-T salient object detection. IEEE Trans. Circuits Syst.
Video Technol..

Cheng, J., Tian, S., Yu, L., Liu, S., Wang, C., et al., 2022a. DDU-net: A dual dense
U-structure network for medical image segmentation. Eng. Appl. Artif. Intell. 126,
109297.

Cheng, X., Zheng, X., Pei, J., Tang, H., et al., 2022b. Depth-induced gap-reducing
network for RGB-D salient object detection: an interaction, guidance and refinement
approach. IEEE Trans. Multimedia.

Cong, R., Zhang, K., Zhang, C., et al., 2022. Does thermal really always matter for
RGB-T salient object detection? IEEE Trans. Multimed..

Fan, D.-P., Cheng, M.-M., Liu, Y., Li, T., Borji, A., 2017. Structure-measure: A new way
to evaluate foreground maps. In: Proc. IEEE Int. Conf. Comput. Vis. (ICCV). pp.
4548–4557.

Fan, D.-P., Gong, C., Cao, Y., Ren, B., Cheng, M.-M., Borji, A., 2018. Enhanced-
alignment measure for binary foreground map evaluation. In: Proc. 27th Int. Joint
Conf. Artif. Intell.. pp. 1–7.

Fan, D.-P., Lin, Z., Zhang, Z., Zhu, M., Cheng, M.-M., 2021. Rethinking RGB-d salient
object detection: Models, data sets, and large-scale benchmarks. IEEE Trans. Neural
Netw. Learn. Syst. 32 (5), 2075–2089.

Fang, X., Zhu, J., Shao, X., wang, H., 2022. GroupTransNet: Group transformer network
for RGB-D salient object detection. arXiv preprint arXiv:2203.10785.

Feng, G., Meng, J., Zhang, L., Lu, H., 2022. Encoder deep interleaved network with
multi-scale aggregation for RGB-D salient object detection. Pattern Recognit. 128,
108666.

Fiaz, M., et al., 2019. Handcrafted and deep trackers: Recent visual object tracking
approaches and trends. ACM Comput. Surv. 52 (2), 1–44.

Fu, K., Fan, D.-P., Ji, G.-P., Zhao, Q., 2020. JL-DCF: Joint learning and densely-
cooperative fusion framework for RGB-d salient object detection. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA.
pp. 3049–3059.

Fu, K., Jiang, Y., Ji, G.P., et al., 2022. Light field salient object detection: A review
and benchmark. Comput. Visual Media 8, 509–534.

Gao, W., Liao, G., Ma, S., Li, G., Liang, Y., Lin, W., 2022. Unified information fusion
network for multi-modal RGB-D and RGB-T salient object detection. IEEE Trans.
Circuits Syst. Video Technol. 32 (4), 2091–2106.

Guan, D., Cao, Y., Yang, J., et al., 2018. Exploiting fusion architectures for multispectral
pedestrian detection and segmentation. Appl. Opt. 57, 108–116.

Guan, D., Cao, Y., Yang, J., et al., 2019. Fusion of multispectral data through
illumination-aware deep neural networks for pedestrian detection. Inf. Fusion 50,
148–157.

Guo, Q., Zhou, W., Lei, J., Yu, L., 2021. TSFNet: Two-stage fusion network for RGB-T
salient object detection. IEEE Signal Process. Lett. 28, 1655–1659.

He, H., Wang, J., Li, X., et al., 2022. EAF-net: an enhancement and aggregation–
feedback network for RGB-T salient object detection. Mach. Vis. Appl. 33,
1–15.
14
Huang, L., Song, K., Gong, A., Liu, C., Yan, Y., 2020. RGB-T saliency detection via
low-rank tensor learning and unified collaborative ranking. IEEE Signal Process.
Lett. 27, 1585–1589.

Huang, L., Song, K., Wang, J., Niu, M., Yan, Y., 2022a. Multi-graph fusion and learning
for RGBT image saliency detection. IEEE Trans. Circuits Syst. Video Technol. 32
(3), 1366–1377.

Huang, K., Tian, C., Su, J., et al., 2022b. Transformer-based cross reference network
for video salient object detection. Eng. Appl. Artif. Intell. 160, 122–127.

Huo, F., Zhu, X., Zhang, L., Liu, Q., Shu, Y., 2022a. Efficient context-guided stacked
refinement network for RGB-t salient object detection. IEEE Trans. Circuits Syst.
Video Technol. 32 (5), 3111–3124.

Huo, F., Zhu, X., Zhang, Q., Liu, Z., Yu, W., 2022b. Real-time one-stream semantic-
guided refinement network for RGB-thermal salient object detection. IEEE Trans.
Instrum. Meas..

Ji, W., Li, J., Yu, S., et al., 2021. Calibrated RGB-d salient object detection. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 9471–9481.

Jiang, X., Zhu, L., Hou, Y., et al., 2022. Mirror complementary transformer network
for RGB-thermal salient object detection. arXiv preprint arXiv:2207.03558.

Kompella, A., et al., 2021. A semi-supervised recurrent neural network for video salient
object detection. Neural Comput. Appl. 33 (6), 2065–2083.

Li, G., Liu, Z., Chen, M., Bai, Z., Lin, W., Ling, H., 2021. Hierarchical alternate
interaction network for RGB-D salient object detection. IEEE Trans. Image Process.
30, 3528–3542.

Liang, Y., Qin, G., Sun, M., Qin, J., Yan, J., Zhang, Z., 2022a. Multi-modal interactive
attention and dual progressive decoding network for RGB-D/T salient object
detection. Neurocomputing 490, 132–145.

Liang, Y., Qin, G., Sun, M., Qin, J., Yan, J., et al., 2022b. Multi-modal interactive
attention and dual progressive decoding network for RGB-D/T salient object
detection. Eng. Appl. Artif. Intell. 490, 132–145.

Liao, G., Gao, W., Li, G., Wang, J., Kwong, S., 2022. Cross-collaborative fusion-encoder
network for robust RGB-thermal salient object detection. IEEE Trans. Circuits Syst.
Video Technol..

Liu, J.-J., Hou, Q., Liu, Z.-A., Cheng, M.-M., 2022a. PoolNet+: Exploring the potential
of pooling for salient object detection. IEEE Trans. Pattern Anal. Mach. Intell..

Liu, J.-J., Liu, Z.-A., Peng, P., Cheng, M.-M., 2021a. Rethinking the U-shape structure
for salient object detection. IEEE Trans. Image Process. 30, 9030–9042.

Liu, Y., Pan, C., Bie, M., Li, J., 2022b. An efficient real-time target tracking algorithm
using adaptive feature fusion. Eng. Appl. Artif. Intell. 85, 103505.

Liu, Z., Tan, Y., He, Q., Xiao, Y., 2022c. SwinNet: Swin transformer drives edge-aware
RGB-D and RGB-T salient object detection. IEEE Trans. Circuits Syst. Video Technol.
32 (7), 4486–4497.

Liu, Z., Wang, Y., Tu, Z., Xiao, Y., et al., 2021b. TriTransNet: RGB-D salient object
detection with a triplet transformer embedding network. In: Proceedings of the
29th ACM International Conference on Multimedia. pp. 4481–4490.

Ma, S., Song, K., Dong, H., et al., 2022. Modal complementary fusion network for
RGB-T salient object detection. Appl. Intell. 1–18.

Margolin, R., Zelnik-Manor, L., Tal, A., 2014. How to evaluate foreground maps. In:
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.. pp. 248–255.

Meinhardt, T., et al., 2022. Trackformer: Multi-object tracking with transformers.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8844–8854.

Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A., 2012. Saliency filters: Contrast
based filtering for salient region detection. In: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit.. pp. 733–740.

Shivakumar, et al., 2020. Pst900: Rgb-thermal calibration, dataset and segmentation
network. In: IEEE International Conference on Robotics and Automation. ICRA, pp.
9441–9447.

Shokri, M., et al., 2020. Salient object detection in video using deep non-local neural
networks. J. Vis. Commun. Image Represent. 68, 102769.

Song, Y., Tang, H., et al., 2022a. Disentangle saliency detection into cascaded detail
modeling and body filling. ACM Trans. Multimedia Comput..

Song, K., Wang, J., et al., 2022b. A novel visible-depth-thermal image dataset of salient
object detection for robotic visual perception. IEEE/ASME Trans. Mechatronics.

Strudel, R., et al., 2021. Segmenter: Transformer for semantic segmentation. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
7262–7272.

Sun, P., Zhang, W., Wang, H., et al., 2021. Deep RGB-d saliency detection with
depth-sensitive attention and automatic multi-modal fusion. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1407–1417.

Tu, Z., Li, Z., Li, C., Lang, Y., Tang, J., 2021. Multi-interactive dual-decoder for
RGB-thermal salient object detection. IEEE Trans. Image Process. 30, 5678–5691.

Tu, Z., Li, Z., Li, C., Tang, J., 2022. Weakly alignment-free RGBT salient object detection
with deep correlation network. IEEE Trans. Image Process. 31, 3752–3764.

Tu, Z., Ma, Y., Li, Z., Li, C., Xu, J., Liu, Y., 2020a. Rgbt salient object detection: A
large-scale dataset and benchmark. arXiv preprint arXiv:2007.03262.

Tu, Z., Xia, T., Li, C., Lu, Y., Tang, J., 2019a. M3S-NIR: Multi-modal multi-scale noise-
insensitive ranking for RGB-T saliency detection. In: Proc. IEEE Conference on
Multimedia Information Processing and Retrieval. pp. 141–146.

Tu, Z., Xia, T., Li, C., Wang, X., Ma, Y., Tang, J., 2019b. RGB-t image saliency detection
via collaborative graph learning. IEEE Trans. Multimedia 22 (1), 160–173.

http://refhub.elsevier.com/S0952-1976(22)00630-3/sb1
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb1
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb1
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb1
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb1
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb2
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb2
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb2
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb3
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb3
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb3
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb3
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb3
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb4
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb4
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb4
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb5
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb5
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb5
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb5
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb5
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb6
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb6
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb6
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb6
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb6
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb7
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb7
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb7
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb7
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb7
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb8
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb8
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb8
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb9
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb9
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb9
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb9
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb9
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb10
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb10
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb10
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb10
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb10
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb11
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb11
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb11
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb11
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb11
http://arxiv.org/abs/2203.10785
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb13
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb13
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb13
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb13
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb13
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb14
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb14
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb14
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb15
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb15
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb15
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb15
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb15
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb15
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb15
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb16
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb16
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb16
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb17
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb17
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb17
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb17
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb17
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb18
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb18
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb18
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb19
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb19
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb19
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb19
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb19
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb20
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb20
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb20
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb21
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb21
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb21
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb21
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb21
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb22
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb22
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb22
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb22
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb22
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb23
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb23
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb23
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb23
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb23
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb24
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb24
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb24
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb25
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb25
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb25
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb25
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb25
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb26
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb26
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb26
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb26
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb26
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb27
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb27
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb27
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb27
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb27
http://arxiv.org/abs/2207.03558
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb29
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb29
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb29
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb30
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb30
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb30
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb30
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb30
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb31
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb31
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb31
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb31
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb31
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb33
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb33
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb33
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb33
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb33
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb34
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb34
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb34
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb36
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb36
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb36
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb38
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb38
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb38
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb38
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb38
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb40
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb40
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb40
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb41
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb41
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb41
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb41
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb41
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb42
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb42
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb42
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb42
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb42
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb43
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb43
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb43
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb43
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb43
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb44
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb44
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb44
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb45
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb45
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb45
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb46
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb46
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb46
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb47
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb47
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb47
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb47
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb47
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb48
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb48
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb48
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb48
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb48
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb49
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb49
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb49
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb50
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb50
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb50
http://arxiv.org/abs/2007.03262
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb53
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb53
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb53


H. Wang, K. Song, L. Huang et al. Engineering Applications of Artificial Intelligence 118 (2023) 105640
Tu, Z., Xia, T., Li, C., Wang, X., Ma, Y., Tang, J., 2020b. RGB-T image saliency detection
via collaborative graph learning. IEEE Trans. Multimedia 22 (1), 160–173.

Wang, G., Li, C., Ma, Y., Zheng, A., Tang, J., Luo, B., 2018a. Rgb-t saliency detection
benchmark: Dataset, baselines, analysis and a novel approach. In: Proc. Chin. Conf.
Image Graph. Technol.. pp. 359–369.

Wang, G., Li, C., Ma, Y., Zheng, A., Tang, J., Luo, B., 2018b. RGB-T saliency
detection benchmark: Dataset, baselines, analysis and a novel approach. In: Chinese
Conference on Image and Graphics Technologies. pp. 359–369.

Wang, F., Pan, J., Xu, S., Tang, J., 2022a. Learning discriminative cross-modality
features for RGB-d saliency detection. IEEE Trans. Image Process. 31, 1285–1297.

Wang, J., Song, K., Bao, Y., Huang, L., Yan, Y., 2021. CGFNet: Cross-guided fusion
network for RGB-T salient object detection. IEEE Trans. Circuits Syst. Video
Technol. 32 (5), 2949–2961.

Wang, J., Song, K., Bao, Y., et al., 2022b. Unidirectional RGB-T salient object detection
with intertwined driving of encoding and fusion. Eng. Appl. Artif. Intell. 114,
105162.

Wen, H., Yan, C., et al., 2021. Dynamic selective network for RGB-D salient object
detection. IEEE Trans. Image Process. 30, 9179–9192.

Woo, S., Park, J., Lee, J.Y., Kweon, I.S., 2018. Cbam: Convolutional block attention
module. In: Proc. Eur. Conf. Comput. Vis.. pp. 3–19.

Wu, Y., Liu, Y., Zhang, L., et al., 2022. EDN: Salient object detection via
extremely-downsampled network. IEEE Trans. Image Process. 31, 3125–3136.

Xu, C., Li, Q., Zhou, Q.M., Zhou, Q., et al., 2022. RGB-T salient object detection via
CNN feature and result saliency map fusion. Appl. Intell. 1–20.

Yan, P., Wu, Z., Liu, M., et al., 2022. Unsupervised domain adaptive salient object
detection through uncertainty-aware pseudo-label learning. arXiv preprint arXiv:
2202.13170.

Zeng, C., Kwong, S., 2022. Dual swin-transformer based mutual interactive network for
RGB-D salient object detection. arXiv preprint arXiv:2203.03105.

Zhai, Y., Fan, D., Yang, J., et al., 2021. Bifurcated backbone strategy for rgb-d salient
object detection. IEEE Trans. Image Process. 30, 8728–8742.
15
Zhang, C., Cong, R., Lin, Q., et al., 2021a. Cross-modality discrepant interaction network
for RGB-D salient object detection. In: Proceedings of the 29th ACM International
Conference on Multimedia. pp. 2094–2102.

Zhang, Q., Huang, N., Yao, L., Zhang, D., Shan, C., Han, J., 2020. Rgb- t salient
object detection via fusing multi-level cnn features. IEEE Trans. Image Process.
29, 3321–3335.

Zhang, Z., Lin, Z., Xu, J., Jin, W.-D., Lu, S.-P., Fan, D.-P., 2021b. Bilateral attention
network for RGB-D salient object detection. IEEE Trans. Image Process. 30,
1949–1961.

Zhang, Q., Xi, R., Xiao, T., et al., 2022a. Enabling modality interactions for RGB-T
salient object detection. Comput. Vis. Image Underst. 222, 103514.

Zhang, Q., Xiao, T., Huang, N., Zhang, D., Han, J., 2021c. Revisiting feature fusion for
RGB-t salient object detection. IEEE Trans. Circuits Syst. Video Technol. 31 (5),
1804–1818.

Zhang, L., Zhang, Q., Zhao, R., 2022b. Progressive dual-attention residual network for
salient object detection. IEEE Trans. Circuits Syst. Video Technol..

Zhou, T., Fan, D.P., Cheng, M.M., et al., 2021a. RGB-d salient object detection: A
survey. Comput. Visual Media 7, 37–69.

Zhou, T., Fu, H., Chen, G., et al., 2021b. Specificity-preserving rgb-d saliency detection.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
4681–4691.

Zhou, W., Guo, Q., Lei, J., Yu, L., Hwang, J.-N., 2022a. ECFFNet: Effective and
consistent feature fusion network for RGB-T salient object detection. IEEE Trans.
Circuits Syst. Video Technol. 32 (3), 1224–1235.

Zhou, W., Zhu, Y., Lei, J., Wan, J., Yu, L., 2022b. Apnet adversarial learning assistance
and perceived importance fusion network for all-day RGB-t salient object detection.
IEEE Trans. Emerg. Top. Comput. Intell. 6 (4), 957–968.

Zhu, H., Sun, X., Li, Y., Ma, K., Zhou, S., Zheng, Y., 2022. DFTR: Depth-supervised
fusion transformer for salient object detection. arXiv preprint arXiv:2203.06429.

Zhuge, M., Fan, D.-P., Liu, N., Zhang, D., Xu, D., Shao, L., 2022. Salient object detection
via integrity learning. IEEE Trans. Pattern Anal. Mach. Intell..

http://refhub.elsevier.com/S0952-1976(22)00630-3/sb54
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb54
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb54
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb55
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb55
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb55
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb55
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb55
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb56
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb56
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb56
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb56
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb56
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb57
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb57
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb57
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb60
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb60
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb60
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb61
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb61
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb61
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb62
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb62
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb62
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb63
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb63
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb63
http://arxiv.org/abs/2202.13170
http://arxiv.org/abs/2202.13170
http://arxiv.org/abs/2202.13170
http://arxiv.org/abs/2203.03105
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb66
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb66
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb66
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb67
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb67
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb67
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb67
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb67
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb68
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb68
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb68
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb68
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb68
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb69
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb69
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb69
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb69
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb69
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb70
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb70
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb70
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb71
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb71
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb71
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb71
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb71
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb72
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb72
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb72
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb73
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb73
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb73
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb74
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb74
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb74
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb74
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb74
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb75
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb75
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb75
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb75
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb75
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb76
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb76
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb76
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb76
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb76
http://arxiv.org/abs/2203.06429
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb78
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb78
http://refhub.elsevier.com/S0952-1976(22)00630-3/sb78

	Thermal images-aware guided early fusion network for cross-illumination RGB-T salient object detection
	Introduction
	Related work
	RGB Salient Object Detection
	RGB-D and RGB-T Salient Object Detection
	Motivation

	Methodology
	Architecture Overview
	T-aware guided Mechanism
	Cross-modal Fusion Localization-Remote Correction Module
	Decoder and Loss

	Experiments
	Experimental Setup
	Comparison with the SOTA RGB-T Methods
	Comparison with RGB-T methods in cross-illumination
	Comparison with RGB-T Methods on RGB-T datasets
	Complexity Analysis
	Ablation Study
	Failure cases and future work

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


