
 » Blog » VUnit Events

What You Will Learn

1. An improved method for synchronizing various components of your testbench.
2. Techniques to ensure your testbench does not terminate prematurely, before the DUT has been fully verified.
3. Ways to quickly iden�fy where the testbench is stuck on �meout or other errors.
4. A method for genera�ng a system “core dump” for easier debugging when errors are detected.

Introduction

Testbench code o�en requires the use of mul�ple concurrent processes to achieve various objec�ves. These processes may be independent
and run without regard to one another, or they may need to be synchronized to coordinate their ac�vi�es. An example of the first is an
independent process driving a clock and a common example of the la�er is a bus func�onal model (BFM) that waits for another process to
provide the necessary address and data for the next bus transac�on.

VUnit provides an event mechanism to facilitate such synchroniza�on between processes. An event in this context indicates that something
has happened and can be used to no�fy other processes about that happening. The other processes can then wait for the event to become
ac�ve before proceeding with their tasks.

Before proceeding we need to dis�nguish the VUnit event mechanism from similar concepts. For example, VHDL has its own event concept
for signals, which allows processes to wait for a signal event using the wait statement.

wait on new_data_set;

A common misunderstanding is that the wait statement will be ac�vated if the process responsible for driving the new_data_set signal makes
an assignment to it. However, this is not the case. In VHDL, the wait statement will remain blocked unless there is a change in the value of
the signal. Let’s say the core of the data producing process is as follows:

file:///C:/github/vunit/docsbuild20230106/index.html
file:///C:/github/vunit/docsbuild20230106/blog/index.html

for data_set in 1 to 3 loop
 produce_data(data_set);
 new_data_set <= true;
end loop;

The process wai�ng for data looks like this:

listening_to_vhdl_events : process is
 constant logger : logger_t := get_logger("Process waiting on VHDL events");
begin
 wait on new_data_set;
 trace(logger, "Got new data set");
 handle(data);
end process;

If the in�al value of new_data_set is false , the wai�ng process will react to the first assignment, but miss all subsequent events and data. To
fix this issue, we can use the transaction a�ribute on the signal. Every VHDL assignment is considered a transac�on and the process below
should not miss any data.

listening_to_vhdl_transactions : process is
 constant logger : logger_t := get_logger("Process waiting on VHDL transactions");
begin
 wait on new_data_set'transaction;
 trace(logger, "Got new data set");
 handle(data);
end process;

This is confirmed by the simula�on trace log, which shows that the la�er receiving process works as intended, while the first process misses
all but the first event.

1000000 fs - Process waiting on VHDL events - TRACE - Got new data set (tb_traditional.vhd:81)
1000000 fs - Process waiting on VHDL transactions - TRACE - Got new data set (tb_traditional.vhd:93)
2000000 fs - Process waiting on VHDL transactions - TRACE - Got new data set (tb_traditional.vhd:93)
3000000 fs - Process waiting on VHDL transactions - TRACE - Got new data set (tb_traditional.vhd:93)

Another solu�on to this problem is to toggle the event signal rather than se�ng it to true :

for data_set in 1 to 3 loop
 produce_data(data_set);
 new_data_set <= not new_data_set;
end loop;

Although the signal name may now seem a bit misleading, we no longer need the transaction a�ribute for the wait statement to func�on
properly, as shown in this log:

1000000 fs - Process waiting on VHDL events - TRACE - Got new data set (tb_traditional.vhd:81)
1000000 fs - Process waiting on VHDL transactions - TRACE - Got new data set (tb_traditional.vhd:93)
2000000 fs - Process waiting on VHDL events - TRACE - Got new data set (tb_traditional.vhd:81)
2000000 fs - Process waiting on VHDL transactions - TRACE - Got new data set (tb_traditional.vhd:93)
3000000 fs - Process waiting on VHDL events - TRACE - Got new data set (tb_traditional.vhd:81)
3000000 fs - Process waiting on VHDL transactions - TRACE - Got new data set (tb_traditional.vhd:93)

There are also other approaches that can be used, but the main point is that crea�ng events that behave as intended requires an
understanding of the inner workings of VHDL, and such details are be�er hidden behind an abstrac�on to prevent confusion and mistakes. By
establishing an abstrac�on, it is also possible to further extend the event func�onality without adding unnecessary complexity to the user’s
code. These are the main mo�va�ons for the VUnit event types.

This is a similar step to how the design of synchronous processes has evolved over �me. Previously, they were based on the
clk'event and clk = '1' condi�on, but now the more common approach is to use rising_edge(clk) . The la�er hides the details of VHDL

events and is a more powerful solu�on. While the previous solu�on would react to a std_logic clk changing from X to 1 , or even worse
from H to 1 , the la�er correctly does not.

Another synchroniza�on mechanism that is o�en confused with the VUnit style of events is the binary semaphore. The main difference is
that an event occurs at a point in �me, and a process star�ng to wait for an event will block un�l the next event occurs. Binary semaphores,
on the other hand, have a binary state. One of the states, o�en denoted with the integer 1 and represen�ng the availablity of some resource,
allow a process to proceed immediately regardless of whether the state was ac�ve when the process started wai�ng. There is no need for
something to happen, an event, in order for the process to proceed. A semaphore checks its state first and only if the value is 0 there is a
need to wait for the event indica�ng that the state has been set to 1. A�er a process has been allowed to proceed, it will set the semaphore
value to 0 to prevent other processes from claiming the resource.

Events can be used not only to build semaphores, but also to create other, more complex synchroniza�on mechanisms. VUnit message
passing is an example of such a mechanism that is based on events. If you have used it, you may have no�ced the net signal appearing in
many subprogram calls and wondered what it is used for. The answer is that net is an event that indicates that something has happened in
the message passing system. In addi�on to the net event, VUnit provides other events that are useful to users. We will discuss some of
these events in this blog.
Two Types of VUnit Events

VUnit events come in two types: basic_event_t and event_t . basic_event_t events, such as net , are provided by the VUnit framework and
behave similarly to user-defined events of type event_t . The main difference is that basic events are predefined rather than dynamically
created. Predefined events enable us to create a cleaner architecture within VUnit where low-level func�onality can use events without
crea�ng many dependencies on other parts of VUnit. However, from a user-point of view the basic events behave very similar to user-defined
events and provide the same user interface. For that reason we’ll start explaining event_t before presen�ng the basic events.

User-Defined Events

User-defined events can be created from iden��es (see iden�ty package) or directly from a name string. In the la�er case an iden�ty is
created automa�cally for that name unless it already exists.

signal new_data_set : event_t := new_event("new_data_set");
-- The above is equivalent to
-- signal new_data_set : event_t := new_event(get_id("new_data_set"));

 Important

An event is always declared as a signal.

In the following example, we have two processes: the test_runner process and the dut_checker process. test_runner generates s�muli input
for the device under test (DUT) and dut_checker verifies the DUT’s response to that s�muli. The s�muli is created from a number of data set
files and test_runner starts by pushing the total number of samples in each set to a VUnit queue. Next, it no�fies dut_checker via the
new_data_set event. test_runner then pushes the individual sample values to the same queue.

The code below shows the body of the test_runner process but also a test_runner_watchdog . We’ll get back to that later.

file:///C:/github/vunit/docsbuild20230106/id/user_guide.html#id-user-guide

begin
 test_runner_setup(runner, runner_cfg);

 for data_set_idx in 0 to n_data_sets - 1 loop
 data_set := load_data_from_file(data_set_idx);
 n_samples := length(data_set);
 push(queue, n_samples);
 notify(new_data_set);

 for sample_idx in 0 to n_samples - 1 loop
 sample := get(data_set, sample_idx);
 drive_dut(sample);
 push(queue, sample);
 end loop;
 end loop;

 test_runner_cleanup(runner);
end process;

test_runner_watchdog(runner, 500 ns);

If the queue is empty, the dut_checker process waits for the new_data_set event to be ac�vated using the is_active func�on. When the
event arrives, dut_checker pops the number of samples to expect from the queue. It then waits for that number of outputs from the DUT, and
for each output it pops the corresponding input sample from the queue in order to calculate the expected output. The expected value is then
compared to the actual value. The dut_checker process operates in parallel with the test_runner process but is slightly separated in �me due
to the latency of the DUT.

dut_checker : process
begin
 if is_empty(queue) then
 wait until is_active(new_data_set);
 end if;

 for i in 1 to pop(queue) loop
 wait until rising_edge(clk) and output_tvalid = '1';
 check_equal(output_tdata, calculate_expected_output(pop(queue)));
 end loop;
end process;

A�er dut_checker has received and checked the expected number of values it will look for a new data set in the queue and wait if not already
present. In this case there is no need to wait because test_runner is applying the data sets back-to-back and operates ahead of dut_checker

due to the DUT’s latency.

The design described in the previous sec�ons has a major issue that needs to be addressed: when test_runner has driven the last sample of
the last data set, it directly calls the test_runner_cleanup func�on before the DUT has processed and output the result of all s�muli. As a
result, there are DUT outputs that are never verified. One common fix for this problem is to insert a wait statement before the
test_runner_cleanup func�on that adds a few clock cycles of delay, allowing the DUT pipeline to drain of all remaining data. However, this is a

very dangerous solu�on as it relies on the latency of the DUT remaining constant. If the latency of the DUT increases due to updates to the
design, the delay may not be sufficient and the issue will reappear. Addi�onally, if there is a bug that causes the DUT not to produce all
outputs, or perhaps no outputs at all, the delay will expire regardless of how much safety margin is added, resul�ng in a poten�ally faulty test
being marked as passing. A more robust solu�on is needed to ensure that all results are properly verified.

The key here is that we’ve assigned the task of verifying the output to the dut_checker process. Only this process can determine when the
task is fully completed. Therefore, we will create a second event called dut_checker_done . dut_checker will signal this event when it has
verified a data set and can’t find any new input in the queue. It will s�ll go and wait for more input in case it comes later.

dut_checker : process
begin
 if is_empty(queue) then
 wait until is_active(new_data_set);
 end if;

 for i in 1 to pop(queue) loop
 wait until rising_edge(clk) and output_tvalid = '1';
 check_equal(output_tdata, calculate_expected_output(pop(queue)));
 end loop;

 if is_empty(queue) then
 notify(dut_checker_done);
 end if;
end process;

In test_runner we add a safety barrier by wai�ng for this event before calling test_runner_cleanup .

 wait until is_active_msg(dut_checker_done);
 test_runner_cleanup(runner);
end process;

test_runner_watchdog(runner, 500 ns);

In this case we’re using is_active_msg instead of is_active . It has the same func�on but also produces a log message when the input event is
ac�ve.

 0 fs - default - INFO - Identity hierarchy: (tb_event.vhd:134)
 dut_checker
 \---done
326000000 fs - vunit_lib:event_pkg - INFO - Event dut_checker:done activated (tb_event.vhd:151)

Also note that we gave the event a hierarchical name dut_checker:done , i.e. the event done is owned by the dut_checker (pre�y-prin�ng of
the iden�ty hierarchy is done by the get_tree func�on in the iden�ty package).

With the new event we have a more solid strategy for termina�ng the simula�on, so let’s experiment to see what happens if a new bug in the
DUT causes it to stop producing data prematurely:

500000000 fs - runner - ERROR - Test runner timeout after 500000000 fs. (tb_event.vhd:155)

The test_runner_watchdog men�oned previously helps us iden�fy this issue, and in this simple example, it’s rela�vely easy to find the root
cause. However, in more complex situa�ons, it can be challenging to know where to begin debugging because there are many poten�al
points where the testbench may become stuck. VUnit provides a number of basic events that are useful in situa�ons like these.
VUnit-Provided Events

A method to iden�fy blocking wait statements that cause the simula�on to �meout is to use the VUnit-provided runner_timeout event in
combina�on with the log_active func�on. The log_active func�on produces a log message just like is_active_msg but it always returns
false . This means it can be used to iden�fy blocking wait statements without unblocking them. We can use this in the dut_checker wait

statement.

file:///C:/github/vunit/docsbuild20230106/id/user_guide.html#id-user-guide

wait until (rising_edge(clk) and output_tvalid = '1') or log_active(runner_timeout);
check_equal(output_tdata, calculate_expected_output(pop(queue)));

This addi�on will create an extra log entry and the loca�on informa�on pinpoints the exact loca�on of the wait statement.

500000000 fs - vunit_lib:event_pkg - INFO - Event runner:timeout activated (tb_event.vhd:368)
500000000 fs - runner - ERROR - Test runner timeout after 500000000 fs. (tb_event.vhd:378)

If you are using Ac�ve-HDL or Riviera-PRO and compiling your code with VHDL-2019, log loca�on is automa�cally supported. If that is no
op�on, you can use VUnit’s loca�on preprocessor to achieve the same result (see log loca�on). If you are not using either of these op�ons,
the extra entry (or entries if you have mul�ple wait statements) will not be helpful. However, there are other ways to iden�fy the problema�c
wait statement(s):

1. Use a Custom logger

We can create a logger represen�ng dut_checker using either iden��es or a name string like this:

constant dut_checker_logger : logger_t := get_logger("dut_checker");

Next, we hand dut_checker_logger to the log_active func�on.

wait until (rising_edge(clk) and output_tvalid = '1') or log_active(runner_timeout, logger => dut_checker_logger);

This will bring our log message closer to the source (dut_checker) should we not have the exact loca�on.

500000000 fs - dut_checker - INFO - Event runner:timeout activated (tb_event.vhd:392)
500000000 fs - runner - ERROR - Test runner timeout after 500000000 fs. (tb_event.vhd:411)

2. Use a Custom Message

file:///C:/github/vunit/docsbuild20230106/logging/user_guide.html#log-location

In case dut_checker has several wait statements and we want to know which one is stuck, we can add a message to log_active .

wait until (rising_edge(clk) and output_tvalid = '1') or log_active(runner_timeout, "Waiting on output data", logger =>
dut_checker_logger);

The source of the problem is easier to iden�fy but at the expense of losing informa�on about why the log entry was produced (the
runner:�meout event was ac�vated).

500000000 fs - dut_checker - INFO - Waiting on output data (tb_event.vhd:396)
500000000 fs - runner - ERROR - Test runner timeout after 500000000 fs. (tb_event.vhd:411)

3. Use a Decorated Message

We can restore the lost event informa�on by using a decorated message. Decora�on is done with the decorate func�on which combines
the automa�cally generated informa�on with a message provided by the user. This technique may be familiar to those who have used the
result func�on in check subprograms. result implements the same idea and is actually an alias for decorate .

wait until (rising_edge(clk) and output_tvalid = '1') or log_active(runner_timeout, decorate("while waiting on output data"), logger
=> dut_checker_logger);

The resul�ng log is as follows:

500000000 fs - dut_checker - INFO - Event runner:timeout activated while waiting on output data
(tb_event.vhd:400)
500000000 fs - runner - ERROR - Test runner timeout after 500000000 fs. (tb_event.vhd:411)

Using events to iden�fy blocking wait statements is useful not only for �meout errors, but for any type of error. VUnit offers a more generic
vunit_error event that is ac�vated in addi�on to the runner_timeout event and can be ac�vated from other error sources as well, including

errors found by the testbench itself.

wait until (rising_edge(clk) and output_tvalid = '1') or log_active(vunit_error, decorate("while waiting on output data"), logger =>
dut_checker_logger);

Let’s say we have a requirement on the maximum latency for our DUT and we want to check that. To do that we decide to apply the first data
set on the DUT input, wait for the maximum latency, and then read a status register in the DUT containing a field with the number of
processed samples. We expect that field to be the number of samples applied if the latency is within the requirement. This piece of code is
placed a�er the loop applying all samples in a data set.

if data_set_idx = 0 then
 wait for max_latency;
 read_register(status_reg_addr, status);
 check_equal(status(n_samples_field), n_samples, result("for #processed samples"));
end if;

 Tip

Register fields in VHDL can be defined by crea�ng an integer subtype with the range set to the range of bits occupied by the field. In this
case n_samples_field is defined as:

subtype n_samples_field is integer range 8 downto 1;

Running this code reveals that only half of the applied samples have been processed a�er the maximum latency.

174000000 fs - check - ERROR - Equality check failed for #processed samples - Got 0000_0101 (5). Expected
10 (0000_1010). (tb_event.vhd:206)

If we could no�fy vunit_error when we encounter this error, we would expect dut_checker ’s wait statement for output data to create a log
entry since not all data have been produced. That would help confirming the latency issue. To do that we need to divide the check_equal

procedure into two parts: the analysis and the ac�on. The analysis compares the expected and actual number of samples, while the ac�on
logs an error in response to a failing equality as determined by the analysis.

The check_equal procedure has an equivalent func�on that only performs the analysis and returns the result. There is also a log procedure
that takes the result as input and performs the ac�on part. To address the issue we are facing, we want to have an alterna�ve ac�on
procedure that no�fies vunit_error if the result indicates a failing equality and then calls the log procedure. This alterna�ve ac�on
procedure, called notify_if_fail , is already provided and takes the analysis result and an event to no�fy on failure as input.

if data_set_idx = 0 then
 wait for max_latency;
 read_register(status_reg_addr, status);
 wait until rising_edge(clk);
 notify_if_fail(check_equal(status(n_samples_field), n_samples, result("for #processed samples")), vunit_error);
end if;

Running the simula�on again reveals the following log:

178000000 fs - vunit_lib:event_pkg - INFO - Event vunit_lib:vunit_error activated while waiting on "wait until
is_active(new_data_set);"
178000000 fs - check - ERROR - Equality check failed for #processed samples - Got 0000_0101 (5). Expected
10 (0000_1010). (tb_event.vhd:265)

The dut_checker isn’t stuck where we expected it to be. Instead it is wai�ng for the next data set which suggests that all of the expected
output data have been received before the max latency, and we should look for the bug elsewhere. It turns out that the root cause of the
issue is an error in the range defini�on of the n_samples_field . The range is shi�ed one bit which causes the read value to be half of the actual
value. The addi�onal informa�on provided by the wait statements triggered by vunit_error can be very helpful in situa�ons like these, as it
can confirm our ini�al suspicions or direct us towards another possible explana�on.

You may have no�ced that the wait statement triggered in this case wasn’t prepared with a call to the log_active func�on. So, how was the
log entry generated? What we did was to create a VUnit preprocessor to iden�fy wait statements and then modified them to include a call to
log_active . This allowed us to automa�cally generate log entries for wait statements not prepared to generate extra debug informa�on. The

design of such a preprocessor somewhat depends on the project setup but you can use this example as a template for your own project.

file:///C:/github/vunit/docsbuild20230106/py/vunit.html#vunit.ui.preprocessor.Preprocessor

from vunit.ui.preprocessor import Preprocessor

class WaitStatementPreprocessor(Preprocessor):
 """A preprocessor is a class with a run method that transforms code. It is based on the Preprocessor class."""

 def __init__(self, order):
 """The order argument to the constructor controls the order in which preprocessors are applied.
 Lowest number first."""

 # Call constructor of base class
 super().__init__(order)

 # Regular expression finding wait statements on the form
 # wait [on sensitivity_list] [until condition] [for timeout];
 self._wait_re = re.compile(
 r"wait(\s+on\s+(?P<sensitivity_list>.*?))?(\s+until\s+(?P<condition>.*?))?(\s+for\s+(?P<timeout>.*?))?;",
 re.MULTILINE | re.DOTALL | re.IGNORECASE,
)

 def run(self, code, file_name):
 """The run method must take the code string and the file_name as arguments."""

 # Only process testbenches
 if "runner_cfg" not in code:
 return code

 # Find all wait statements and sort them in reverse order of appearance to simplify processing
 wait_statements = list(self._wait_re.finditer(code))
 wait_statements.sort(key=lambda wait_statement: wait_statement.start(), reverse=True)

 for wait_statement in wait_statements:
 modified_wait_statement = "wait"

 # If the wait statement has an explicit sensitivity list (on ...), then vunit_error must be added to that
 sensitivity_list = wait_statement.group("sensitivity_list")
 if sensitivity_list is not None:
 new_sensitivity_list = f"{sensitivity_list}, vunit_error"
 modified_wait_statement += f" on {new_sensitivity_list}"

 # Add log_active to an existing condition clause (until ...) or create one if not present
 original_wait_statement = wait_statement.group(0)
 log_message = f'decorate("while waiting on ""{original_wait_statement}""")'
 condition = wait_statement.group("condition")

 if condition is None:
 new_condition = f"log_active(vunit_error, {log_message})"
 elif "vunit_error" in condition:
 continue # Don't touch a wait statement already triggering on vunit_error
 else:
 new_condition = f"({condition}) or log_active(vunit_error, {log_message})"

 modified_wait_statement += f" until {new_condition}"

 # The time clause (for ...) is not modified
 timeout = wait_statement.group("timeout")
 if timeout is not None:
 modified_wait_statement += f" for {timeout}"

 modified_wait_statement += ";"

 # Replace original wait statement
 code = code[: wait_statement.start()] + modified_wait_statement + code[wait_statement.end() :]

 return code

The preprocessor is added to the project using the add_preprocessor() method. The order number must be higher than that of the loca�on
preprocessor which is 1000 by default. This is to avoid unintended interference between the two.

vu = VUnit.from_argv()
vu.enable_location_preprocessing() # order = 1000 if no other value is provided
vu.add_preprocessor(WaitStatementPreprocessor(order=1001))

 Exercise

Create a preprocessor that wraps check procedures in a notify_if_fail call such that all detected errors triggers the vunit_error event.

In this example, we were fortunate in that the error occurred during a wait statement that was directly related to the issue at hand, making it
easy to locate the bug. However, this is not always the case. To fully understand the issue, it is o�en necessary to examine the internal signal
state. One way to address this is to con�nuously log a large number of signals at every clock edge. However, this approach quickly leads to
unwieldy and difficult-to-manage logs. A more effec�ve solu�on is to

file:///C:/github/vunit/docsbuild20230106/py/vunit.html#vunit.ui.VUnit.add_preprocessor

1. Con�nuously log a smaller, targeted set of interes�ng signals and events that can provide insights into what led up to the error.
2. At the �me of an error, log a much larger set of signals to obtain detailed informa�on about the state of the system.

The larger set of signals is provided by one or several “core dump” processes that are triggered by vunit_error . For example, in our code
example, the DUT has a data processing pipeline and a control block that manage register reads and writes. Both of these blocks have states
that are interes�ng for debugging. A core dump of these states might look like this:

-- pragma translate_off
core_dump : process
 constant logger : logger_t := get_logger("incrementer:core_dump");
begin
 wait until is_active(vunit_error);

 info(logger, "Control state is " & control_state_t'image(control_state));
 info(logger, "Data processing state is " & data_processing_state_t'image(data_processing_state));
end process;
-- pragma translate_on

In this case the core dump process was encapsulated in the RTL code and pragmas were used to exclude it from synthesis. An alterna�ve, if
supported by your simulator, is to add the process to the testbench and then use external names to access the DUT-internal state signals.

The updated log now shows that both blocks are idle when the error occurs. This also confirms that there is no latency issue, as there are no
pending data being processed.

178000000 fs - vunit_lib:event_pkg - INFO - Event vunit_lib:vunit_error activated while waiting on "wait until
is_active(new_data_set);"
178000000 fs - incrementer:core_dump - INFO - Control state is idle (incrementer.vhd:180)
178000000 fs - incrementer:core_dump - INFO - Data processing state is idle (incrementer.vhd:181)
178000000 fs - check - ERROR - Equality check failed for #processed samples - Got 0000_0101 (5). Expected 10
(0000_1010). (tb_event.vhd:265)

Close, but No Cigar

So far VUnit events helped us synchronize processes, perform core dumps and reveal blocking wait statements to aid debugging, and prevent
premature termina�on of a simula�on. However, using events to create a barrier for premature termina�ons is a solu�on with several
problems:

1. It doesn’t scale well. For every process that has to complete we need a new event.

2. There is a race condi�on. If a process completes before the test runner process starts wai�ng for the comple�on event, the test runner
process will block and never call test_runner_cleanup to end the simula�on.

3. If we fail to recognize that there is a comple�on event for a process, or simply forget to add it, we s�ll face the risk of a premature
simula�on termina�on.

A be�er solu�on would be one that allows any process to prevent test_runner_cleanup from ending the simula�on before that process has
completed. There is only one test_runner_cleanup call so it scales well and forge�ng to add it will cause the testbench to fail. The event race
condi�on is also removed since a process comple�ng before the test runner process reaches test_runner_cleanup will have stopped
preven�ng simula�on termina�on.

Fortunately VUnit provides such a solu�on. It’s called VUnit phases and it will be the topic for the next blog.

