
 » Blog » VUnit Phases

What You Will Learn

1. The different phases a VUnit testbench traverses during its execu�on.
2. How phases can be used by a process, such as a third part verifica�on component (VC), to prevent a premature simula�on exit without

requiring non-intui�ve coding constructs on the user side.
3. How testbench processes can be made aware of an imminent simula�on exit, allowing them to carry out exit tasks such as verifying the

correctness of the final DUT state or logging interes�ng summary informa�on.

Introduction

During the course of a simula�on, VUnit guides the testbench through a number of dis�nct phases. These phases are determined by the
structure of the test runner process - the main process controlling the execu�on of the testbench. Some phases are completely encapsulated
within a VUnit procedure, such as test_runner_setup and test_runner_cleanup , while others are defined as a code region within the test runner
process. The code example below outlines a test runner process consis�ng of two test cases. The phases involved are named and described
by the phase procedure calls. This procedure, created specifically for this example, provides a visual representa�on of the different phases
and their transi�ons as a VUnit log.

file:///C:/github/vunit/docsbuild20230211/index.html
file:///C:/github/vunit/docsbuild20230211/blog/index.html

test_runner : process
begin
 phase("TEST RUNNER SETUP",
 "The testbench is initialized from the runner_cfg generic. This allows for " &
 "configuration of features such as coloration of log entries. This phase " &
 "call comes before initialization, so it will not be affected by any of the " &
 "settings and the resulting log entry will be without special colors."
);
 test_runner_setup(runner, runner_cfg);

 phase("TEST SUITE SETUP",
 "Code common to the entire test suite (set of test cases) that is executed *once* " &
 "prior to all test cases. For example, if we want to specify what log levels should " &
 "be visible."
);
 show(display_handler, debug);

 while test_suite loop
 phase("TEST CASE SETUP",
 "Code executed before *every* test case. For example, if we use the VUnit " &
 "run_all_in_same_sim attribute to run all test cases in the same simulation, we " &
 "may need to reset the DUT before each test case."
);
 -- vunit: run_all_in_same_sim
 reset <= '1';
 wait for 10 ns;
 reset <= '0';

 if run("Test case 1") then
 phase("TEST CASE",
 "This is where we run our test case 1 code."
);
 wait for 10 ns; -- The test code is just a wait statement in this dummy example

 elsif run("Test case 2") then
 phase("TEST CASE",
 "This is where we run our test case 2 code."
);
 wait for 10 ns; -- The test code is just a wait statement in this dummy example

 end if;

 phase("TEST CASE CLEANUP",
 "Code executed after *every* test case. For example, there may be some DUT status " &

 "flags we want to check before ending the test."
);
 check_equal(error_flag, '0');

 end loop;

 phase("TEST SUITE CLEANUP",
 "Code common to the entire test suite which is executed *once* after all test " &
 "cases have been run. For example, it can be used to check if the desired coverage " &
 "metric has been fully achieved."
);
 check_true(full_coverage);

 phase("TEST RUNNER CLEANUP",
 "Housekeeping performed by VUnit before ending the simulation. For example, " &
 "if VUnit was configure not to end the simulation upon detecting the first error, " &
 "it will fail the simulation during this phase if any errors have been detected."
);
 test_runner_cleanup(runner);
end process;

 0 fs - tb_phases - PHASE - TEST RUNNER SETUP
 The testbench is initialized from the runner_cfg generic. This allows for
 configuration of features such as coloration of log entries. This phase
 call comes before initialization, so it will not be affected by any of the
 settings and the resulting log entry will be without special colors.

 0 fs - tb_phases - PHASE - TEST SUITE SETUP
 Code common to the entire test suite (set of test cases) that is executed
 once prior to all test cases. For example, if we want to specify what log
 levels should be visible.

 0 fs - tb_phases - PHASE - TEST CASE SETUP
 Code executed before *every* test case. For example, if we use the VUnit
 run_all_in_same_sim attribute to run all test cases in the same simulation,
 we may need to reset the DUT before each test case.

10000000 fs - tb_phases - PHASE - TEST CASE
 This is where we run our test case 1 code.

20000000 fs - tb_phases - PHASE - TEST CASE CLEANUP
 Code executed after *every* test case. For example, there may be some DUT
 status flags we want to check before ending the test.

20000000 fs - tb_phases - PHASE - TEST CASE SETUP
 Code executed before *every* test case. For example, if we use the VUnit
 run_all_in_same_sim attribute to run all test cases in the same simulation,
 we may need to reset the DUT before each test case.

30000000 fs - tb_phases - PHASE - TEST CASE
 This is where we run our test case 2 code.

40000000 fs - tb_phases - PHASE - TEST CASE CLEANUP
 Code executed after *every* test case. For example, there may be some DUT
 status flags we want to check before ending the test.

40000000 fs - tb_phases - PHASE - TEST SUITE CLEANUP
 Code common to the entire test suite which is executed *once* after all
 test cases have been run. For example, it can be used to check if the
 desired coverage metric has been fully achieved.

40000000 fs - tb_phases - PHASE - TEST RUNNER CLEANUP
 Housekeeping performed by VUnit before ending the simulation. For example,
 if VUnit was configure not to end the simulation upon detecting the first
 error, it will fail the simulation during this phase if any errors have
 been detected.

To infer as li�le overhead as possible (but not less than that), VUnit permits testbenches without named test cases, resul�ng in the
elimina�on of certain phases. However, test_runner_setup and test_runner_cleanup remain present at all �mes.

test_runner : process
begin
 phase("TEST RUNNER SETUP",
 "The testbench is initialized from the runner_cfg generic. This allows for " &
 "configuration of features such as coloration of log entries. This phase " &
 "call comes before initialization, so it will not be affected by any of the " &
 "settings and the resulting log entry will be without special colors."
);
 test_runner_setup(runner, runner_cfg);

 phase("TEST CASE",
 "This is where we run all the test code."
);
 reset <= '1';
 wait for 10 ns;
 reset <= '0';
 wait for 10 ns; -- The test code is just a wait statement in this dummy example
 check_equal(error_flag, '0');
 check_true(full_coverage);

 phase("TEST RUNNER CLEANUP",
 "Housekeeping performed by VUnit before ending the simulation. For example, " &
 "if VUnit was configure not to end the simulation upon detecting the first error, " &
 "it will fail the simulation during this phase if any errors have been detected."
);
 test_runner_cleanup(runner);
end process;

Of these phases, the test runner cleanup phase is the most useful and the focal point of this blog. To understand how we can use this phase,
we can start by showing the usually hidden trace messages from the runner logger when the test_runner_cleanup func�on is invoked:

 0 fs - tb_phases - PHASE - TEST RUNNER SETUP
 The testbench is initialized from the runner_cfg generic. This allows for
 configuration of features such as coloration of log entries. This phase
 call comes before initialization, so it will not be affected by any of the
 settings and the resulting log entry will be without special colors.

 0 fs - tb_phases - PHASE - TEST CASE
 This is where we run all the test code.

20000000 fs - tb_phases - PHASE - TEST RUNNER CLEANUP
 Housekeeping performed by VUnit before ending the simulation. For example,
 if VUnit was configure not to end the simulation upon detecting the first
 error, it will fail the simulation during this phase if any errors have
 been detected.

20000000 fs - runner - TRACE - Entering test runner cleanup phase.
20000000 fs - runner - TRACE - Passed test runner cleanup phase entry gate.
20000000 fs - runner - TRACE - Passed test runner cleanup phase exit gate.
20000000 fs - runner - TRACE - Entering test runner exit phase.

As we can see VUnit keeps track of the phases internally and there is a concept of a gate when entering and exi�ng a phase. In this example,
VUnit passes through the gates but it’s possible for a user to prevent that by locking a gate. This capability can be used to prevent VUnit from
cleaning up and exi�ng the simula�on un�l all processes are done, resolving the issues that arose with using an event as a barrier in our
previous blog:

1. The phase lock solu�on scales well. test_runner_cleanup is already present in every VUnit testbench and it eliminates the need for crea�ng
a new event for every process to wait on.

2. There is no race condi�on as it doesn’t ma�er in which order processes complete. test_runner_cleanup will wait un�l every process has
removed its lock.

3. With the absence of any addi�onal constructs in the test runner, there is no risk of forge�ng to wait for another process, and any process
can introduce locks without requiring external changes. This is especially important for verifica�on components, as they can start using
locks without the necessity of their users having to update their code.

Phase Gate Locks

To see the phase gate locks in ac�on we’re going to revisit the example provided in the event blog. In that example our dut_checker process
no�fied its comple�on with the dut_checker_done event.

file:///C:/github/vunit/docsbuild20230211/blog/2022_09_20_vunit_events.html

dut_checker : process
begin
 if is_empty(queue) then
 wait until is_active(new_data_set);
 end if;

 for i in 1 to pop(queue) loop
 wait until (rising_edge(clk) and output_tvalid = '1') or log_active(vunit_error, decorate("while waiting on output data"), logger =>
dut_checker_logger);
 check_equal(output_tdata, calculate_expected_output(pop(queue)));
 end loop;

 if is_empty(queue) then
 notify(dut_checker_done);
 end if;
end process;

The test runner process waited for that event before calling test_runner_cleanup .

wait until is_active_msg(dut_checker_done);
test_runner_cleanup(runner);

Before adding the locks, we need to remove the dut_checker_done event, the no�fica�on of that event in the dut_checker , and the wait
statement wai�ng for that event in test_runner . A�erwards, we can update the dut_checker according to the code lis�ng provided below.

dut_checker : process
 constant key : key_t := get_entry_key(test_runner_cleanup);
begin
 if is_empty(queue) then
 wait until is_active(new_data_set);
 end if;
 lock(runner, key, dut_checker_logger);

 for i in 1 to pop(queue) loop
 wait until (rising_edge(clk) and output_tvalid = '1') or log_active(vunit_error, decorate("while waiting on output data"), logger =>
dut_checker_logger);
 check_equal(output_tdata, calculate_expected_output(pop(queue)));
 end loop;

 if is_empty(queue) then
 unlock(runner, key, dut_checker_logger);
 end if;
end process;

The first step is to acquire a unique key for the gate we want to control, in this case the entry gate for the test_runner_cleanup phase. This is
done by calling the get_entry_key func�on with test_runner_cleanup as the parameter. Each gate has many locks and the returned key fits one
of those locks. An alterna�ve design for locking a gate would be to use a keyless system, wherein locks can be added and removed to/from
gates. However, such a design is prone to a class of bugs where a process unlocks a gate more than it locks it. This will lead to locks
previously added by other processes being removed and the protec�on against premature termina�on of the simula�on is lost.

The second step is to determine when to lock the gate. Generally, this is done when the process has a task that requires comple�on before
the end of the simula�on. In this case, this is when the queue is not empty. Locking is done by passing the runner signal, the key, and
op�onally a logger, to the lock procedure. The runner signal in VUnit contains several events, of which runner_phase is used to indicate that
something occurred related to the VUnit phases.

The third step is to decide when to unlock. Unlocking should be done when the process has completed a task, provided there are no more
tasks le� to complete. In this case we unlock if the queue is empty. If we were to unlock before checking the queue, and the test runner
process has already pushed all remaining data sets to the queue, we allow test_runner_cleanup to end the simula�on and data is lost. When
unlocking eventually does take place, runner_phase is ac�vated and triggers test_runner_cleanup to verify that all locks are unlocked such that
it can proceed.

Let’s take a look at what the log looks like a�er implemen�ng these updates.

 0 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
114000000 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
222000000 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
290000000 fs - runner - TRACE - Entering test runner cleanup phase.
290000000 fs - runner - TRACE - Halting on test runner cleanup phase entry gate.
326000000 fs - dut_checker - TRACE - Unlocked test runner cleanup phase entry gate.
326000000 fs - runner - TRACE - Passed test runner cleanup phase entry gate.
326000000 fs - runner - TRACE - Passed test runner cleanup phase exit gate.
326000000 fs - runner - TRACE - Entering test runner exit phase.

First, we can observe that dut_checker is locking the gate three �mes in succession without unlocking it in between. This is perfectly fine as it
keeps a locked gate locked and allows for simpler code. The same goes for an unlocked gate; if it is unlocked mul�ple �mes, it will remain
unlocked. This is another advantage of having unique keys, as a keyless design would not accommodate this behaviour.

We can also see how test_runner_cleanup halts on the entry gate and proceeds immediately a�er the locked gate lock is unlocked.

An alterna�ve design solu�on for the dut_checker is to move the last if statement to the top:

dut_checker : process
 constant key : key_t := get_entry_key(test_runner_cleanup);
begin
 if is_empty(queue) then
 unlock(runner, key, dut_checker_logger);
 end if;
 if is_empty(queue) then
 wait until is_active(new_data_set);
 end if;
 lock(runner, key, dut_checker_logger);

 for i in 1 to pop(queue) loop
 wait until (rising_edge(clk) and output_tvalid = '1') or log_active(vunit_error, decorate("while waiting on output data"), logger =>
dut_checker_logger);
 check_equal(output_tdata, calculate_expected_output(pop(queue)));
 end loop;
end process;

The only difference is that there will be an ini�al unlock because of the ini�ally empty queue but that is, as men�oned before, allowed.

 0 fs - dut_checker - TRACE - Unlocked test runner cleanup phase entry gate.
 0 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
114000000 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
222000000 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
290000000 fs - runner - TRACE - Entering test runner cleanup phase.
290000000 fs - runner - TRACE - Halting on test runner cleanup phase entry gate.
326000000 fs - dut_checker - TRACE - Unlocked test runner cleanup phase entry gate.
326000000 fs - runner - TRACE - Passed test runner cleanup phase entry gate.
326000000 fs - runner - TRACE - Passed test runner cleanup phase exit gate.
326000000 fs - runner - TRACE - Entering test runner exit phase.

It may be temp�ng to combine the two ini�al if statements into one where we first call unlock and then wait for the new_data_set event.
However, this is a bad idea since it exposes us to a poten�al Time-Of-Check To Time-Of-Use bug. When we call unlock , it triggers
runner_phase , which is an opera�on consuming delta cycles. During this �me, a new data set may have been pushed to the queue and the
new_data_set event is ac�vated before we return from the unlock procedure. Consequently, dut_checker will miss the first event and block

on the wait statement un�l the second event arrives some �me a�er the DUT responded to the first data set. However, the first data set is
s�ll at the front of the queue and it will cause a failure when it is used to verify the DUT response to the second data set. This is a bug that
only occurs under unfortunate �ming circumstances and in this example we’ve added a dummy procedure with a finely tuned delay to
showcase the scenario. Even if the risk of encountering this bug is low, or not even possible with the �ming at hand, it would be unwise to
make any assump�ons about the test runner �ming as that can change in the future.

dut_checker : process
 constant key : key_t := get_entry_key(test_runner_cleanup);
begin
 a_procedure_adding_some_delay;
 if is_empty(queue) then
 unlock(runner, key, dut_checker_logger);
 wait until is_active(new_data_set);
 end if;
 lock(runner, key, dut_checker_logger);

 for i in 1 to pop(queue) loop
 wait until (rising_edge(clk) and output_tvalid = '1') or log_active(vunit_error, decorate("while waiting on output data"), logger =>
dut_checker_logger);
 check_equal(output_tdata, calculate_expected_output(pop(queue)));
 end loop;
end process;

https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use

 0 fs - dut_checker - TRACE - Unlocked test runner cleanup phase entry gate.
78000000 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
82000000 fs - check - ERROR - Equality check failed - Got 0000_0000_0110_1011 (107). Expected
0000_0001_0000_0000 (256).

With the two separate if statements, there is s�ll a poten�al issue to consider. What if the test runner process pushes the last data set to the
queue, no�fies the new_data_set event, and then immediately calls test_runner_cleanup ? If the dut_checker just missed that last data set and
unlocks the gate, will it then have enough �me to detect the new data set a�er the unlocking and lock the gate again, before
test_runner_cleanup terminates the simula�on? Fortunately, there is �me for that, as long as the presented design is used.

Keeping both of the if statements at the beginning serves no purpose other than explaining the dangers of misplaced code op�miza�ons. We
recommend keeping the if statement that unlocks the gate at the bo�om, thereby keeping the op�miza�on tempta�on “out of sight”.

At this point, we have designed a testbench where the dut_checker is solely responsible for carrying out its intended task and ensuring it is
fully completed before the simula�on ends (high cohesion). There are no responsibili�es for the test_runner process. We have also ensured
that the dut_checker does not make any assump�ons about the �ming of the test_runner (low coupling).

Phase Transition Events

In the previous chapters, we described how a process can prevent phase transi�ons by locking gates. However, there are also use cases that
require processes to simply be aware of such transi�ons without needing to prevent them. To illustrate, let us take a look at the AXI Stream
standard. This standard provides a set of protocol asser�ons that can be employed to verify if a stream conforms to the protocol. One such
asser�on, AXI4STREAM_ERRM_STREAM_ALL_DONE_EOS , states that

“At the end of simula�on, all streams have had their corresponding TLAST transfer”

An AXI Stream protocol checker will not prevent a simula�on from exi�ng but it must be given the opportunity to check that all streams have
ended when that is about to happen. Let’s see how this is solved in the ARM-provided protocol checker IP:

“The testbench that you are using has a signal called EOS_signal. You must drive EOS_signal HIGH at the end of the simula�on for at least one clock
cycle.”

This is an example of a scenario in which a user must take a non-obvious step to ensure that a verifica�on component works correctly. This is
due to the fact that the ARM IP lacks a testbench structure to rely upon. A VUnit verifica�on component, on the other hand, has a known
structure in the mandatory presence of the test_runner_cleanup procedure. This procedure will trigger the runner_phase event when the
phase changes to test_runner_cleanup , giving the AXI Stream protocol checker the op�on to act. However, remember that runner_phase is

https://developer.arm.com/documentation/dui0534/b

ac�vated on all phase changes and also when there is ac�vity related to phase gate locks. Therefore, before checking stream status, the
protocol checker must verify that the event was caused by an imminent simula�on exit and not some other change. This is done by
confirming that the ac�ve phase is test_runner_cleanup and that the testbench is within the gates of that phase, i.e. it has passed the entry
gate but not yet the exit gate. The principle for the AXI4STREAM_ERRM_STREAM_ALL_DONE_EOS asser�on is outlined below. A�er ensuring that the
simula�on is about to terminate, the process is able to make its final check, provided it is done within a single delta cycle.

end_of_simulation_process : process
begin
 wait until is_active(runner_phase) and (get_phase = test_runner_cleanup) and is_within_gates;
 check_stream_activity;
 wait;
end process;

Incorpora�ng this protocol checker into our example testbench generates the following log:

 0 fs - dut_checker - TRACE - Unlocked test runner cleanup phase entry gate.
 0 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
114000000 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
222000000 fs - dut_checker - TRACE - Locked test runner cleanup phase entry gate.
290000000 fs - runner - TRACE - Entering test runner cleanup phase.
290000000 fs - runner - TRACE - Halting on test runner cleanup phase entry gate.
326000000 fs - dut_checker - TRACE - Unlocked test runner cleanup phase entry gate.
326000000 fs - runner - TRACE - Passed test runner cleanup phase entry gate.
326000000 fs - axis_checker:STREAM_ALL_DONE_EOS - PASS - Equality check passed for number of active streams - Got 0.
326000000 fs - runner - TRACE - Passed test runner cleanup phase exit gate.
326000000 fs - runner - TRACE - Entering test runner exit phase.

As you can see from the pass message, the check is perform just before the simula�on comes to an end.
Final Words

In this blog we’ve shown how phases can be used to handle the final �cks of your simula�on in a robust and reliable way while adhering to
two key concepts of good code design: high cohesion and low coupling.

Do you have your own personal use cases for phases, or perhaps use cases that you think are not supported? Feel free to reach out and share
them with us!

