Skip to content
No description, website, or topics provided.
Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
Datasets datasets Aug 13, 2018
Neural-Brane_embedding.py Neural-Brane call Jul 31, 2018
ReadMe.md
ReadMe.txt ReadMe file Jul 31, 2018
my_NueralBPR_gpu.py

ReadMe.md

Neural-Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding

Requirements:

Python packages: NumPy (version 1.13.* or above), tensoflow-GPU (tested Version 1.1.0)

Run:

python Neural-Brane_embedding.py ./Datasets/citeseer_graph.txt ./Datasets/citeseer_nodeAtt.txt 75 150

Inputs:

1st input: grpah filename

  • Format: First row specify "#nodes #edges".
  • From the 2nd row, each row specify an edge in space delimited format: "node_id1 node_id2".
  • Node_id need to be integer and node_id starts with 0.

2nd input: attribute filename:

  • Format: "node_id attribute_id1:1 attribute_id5:1 attribute_id7:1 ..."
  • Each row contains atributes for a node.
  • Row only contains positive attribute_ids. attribtue_ids are positive integer starts with 0.

3rd input: Embedding dimensionality. [integer number]

4th input: hidden layer neuron counts (hidden layer dimension) [integer number].

Note: Tensorflow-cpu version will be available soon.

You can’t perform that action at this time.