
The ABDADA Distributed Minimax Search Algorithm

Jean-Christophe Weill
Institut d'lntelligence Artificielle

Universite de Paris 8- Vincennes a Saint-Denis
24, avenue du Pont Royal

94230 CACHAN
France

ABSTRACT

This paper presents a new method to parallelize the minimax
tree search algorithm. This method is then compared to
the "Young Brother Wait Concept" algorithm in an Othello
program implementation and in a Chess program. Results
of tests done on a 32-node CMS and a 128-node CRAY T3D
computers are given.

1 INTRODUCTION

In the search for power to run our game-playing programs
as fast as possible, the use of parallel computers is a stimu
lating choice. During the past few years, parallel algorithms
have evolved from fixed master-slave relationships, where the
master looked for slaves to complete its task, to more dy
namic master-slave relationships, where unemployed proces
sors look for a master in order to find some task to do. But
those master-slave relationships, which are exemplified by
the work-stealing schedulers of Jamboree[12] and YBWC[7)
still suffer from synchronization overheads.

In this paper, we describe a non-synchronized parallel
algorithm named ABDADA.

After a formal description and pseudo code for the AB
DADA parallel scheme, we present an experimental compar
ison of ABDADA to YBWC.

2 THE ABDADA ALGORITHM

The ABDADA search algorithm is based upon both
YBWC[9, 7] and a,8*[6). From YBWC, it keeps the basic
concept: parallel evaluation of successor positions of a game
position is allowed if and only if the eldest brother (i.e. the
first visited brother) is fully evaluated. The a,B* algorithm,
like the algorithm from Otto and Felten [18], relies on a
shared transposition table. All processors start the search
simultaneously at the root. With the help of the additional
transposition table information (e.g. how many processors

Pcnnission to make digital/hard copies of all or part of this material for
personal or class~~ usc is granted without fcc provided that the copies
a.re not ~de or ~Jstnbuted for profit or commercial advantage, the copy
n;~:ht notJcc, the title of the publication and ita date appear and notice is
g•ven tha.t copyright is by pennission of the ACM, Inc. T~ copy otherwise,
to rc~u~hsh, to post on servers or to redistribute to lists, requires specific
pcnruss10n and/or fcc.
CSC '96, Philadelphia PA USA

0 1996 ACM 0-89791-828-2/96/02 .. $3.50

-131-

are exploring a subtree rooted at a node), it is possible to
control speculative parallelism. a,B* was originally imple
mented using a complex and inefficient control, so we chose
to mix YBWC and a,B*.

The ABDADA 1 algorithm can be described as follows:

1. Let T be a shared transposition table. To the standard
definition of the table[13], we add, for each entry, a new
field nproc which is the number of processors currently
evaluating the node related to the transposition table
entry.

2. All the processors begin the search simultaneously at
the root of the game tree.

3. When a processor enters the evaluation of a position
P, it increments the field tt [P] .nproc in the trans
position table.

4. When a processor leaves a position P (because this po
sition is fully evaluated or has been pruned), it decre
ments tt [P] . nproc.

5. The analysis of a position is done in three phases:

(a) The eldest son is analysed, regardless of the po
sition of the other processors;

(b) the other sons which are not currently analysed
by other processors are analysed;

(c) then the sons which are not completely evaluated
are analysed (i.e. the corresponding entry in the
transposition table has not been evaluated to full
depth). 2

Figure 1 shows the ABDADA algorithm. It can be ob
tained by modifying a sequential a,B using a transposition
table in the following way:

• We add to the usual parameters of the procedure a
Boolean exclusiveP which indicates whether the cor
responding node should be evaluated exclusively, i.e.
the processor is allowed to evaluate the current node
if no other processor is currently evaluating it. This
parameter will be passed to the transposition table re
trieve procedure RetrieveAsk as shown on figure 2.

1 ABDADA is the acronym of the French name "Alpha-Beta Dis
tribue avec Droit d'Anesse" which can be translated into "Distributed
Alpha-Beta Search with Eldest Son Right".

2This point is analogous to the "Helpful Master Concept" (8], if, in
the second phase, the processor has found some node, other processors
are not allowed to work on this node unless there is nothing else to
do. Like in the "Helpful Master Concept" when a master waits for
the completion of its slave children, it becomes their slave.

1 funct abdada(Position,a,,B,depth,exclusiveP) =
2 lli exclusive, iteration, alldone;

jf depth= 0 then exit evaluate(Position); fi
6 Best +- -oo;
e RetrieveAsk(Position, a, ,6, depth, exclusiveP);
a Generate Move when waiting for the answer

10 GenMove(Position);
12 RetrieveAnswer(&a, &,6, &Best);
u The current move is not evaluated if causing
u a cutoff or if we are in exclusive mode and
1a another processor is currently evaluating it.
1a jf (a ;::: .6) v (Best= ON_EVALUATION)
19 then exit Best; fi
21 iteration +- 0;
22 alldone +- false;
24 while (iteration < 2) I\ (a < .6) I\ -,alldone do
2s iteration +- iteration + 1;
26 alldone +- true;
2a M +- FirstMove(Position);
so while (M 'I- 0 I\ a < .B) do
31 exclusive +- (iteration = 1)
32 I\ (NotFirstMove(M));
34 On the first iteration, we want
ss to be the only processor
36 to evaluate young sons.
sa value+- -abdada(Position • M, -.6,
39 -max(a, Best), depth- !,exclusive);
40 jf value = -ON-EVALUATION
41 then alldone +- false;
42 elsif value > Best
43 then Best +- value;
44 jf Best;::: .B
45 then skip endsearch; fi
46 fi
47 M +- NextMove(Position) od;
49 od
60 endsearch:
51 StoreHash(Position, a, ,6, Best);
52 exit Best.

• We have to define a new value ON..EVALUATION which
is different from any value returned by the evaluation
function.

• The Retrievelsk procedure has to return this value
as a score if there are other processors evaluating the
node and exclusiveP is true. Otherwise, if there is
no forward pruning due to the transposition table, the
entry nproc is incremented.

• Using the same method, the storing procedure decre
ments the entry nproc when a processor leaves a node.

• The three phases are implemented using the variable
iteration which can take the value 1 and 2 in the
inner loop (lines 29 to 42). The first time we enter
the inner loop, we reset the exclusive flag only on
the first move while we reset it on every move in the
second iteration. When the exclusive flag is set, a
son which has been pruned because another processor
is currently evaluating it will have a return value of
-ON..EVALUATION. If we find such a son, then we reset
the alldone flag meaning that another iteration will
be necessary to know the value of this son.

With this definition, we can easily see that compared to
a YBWC search, the ABDADA search will attempt to read
the transposition table at most twice as many times, and
write roughly the same number of times.

3 RESULTS FROM EXPERIMENTS

To analyse the behaviour of the parallel scheme, we used the
parallelization of two sequential game programs: a competi
tive Othello program3 and an early version of the Frenchess
chess program.

The Othello program has an unstable evaluation func
tion as the search is extended. Most Othello programmers
know of the odd-even problem which results in an evalu
ation at odd depth being far better than one at an even
depth because whoever just moved has just given mobility
to their opponent. (Othello is a game of zugzwang.) Fur
thermore, the Othello program shows some very unstable
principal variations. This has the uncommon effect that the
01/3 search is better than NegaScout[19, 20] search for this
program.

Figure 1: The ABDADA parallel scheme on the a/3 Search

In contrast, the chess program used a fast incremental
evaluation function based on an Oracle[3] combined with
Piece/Color/Square tables, and produced a fairly stable
evaluation function and also stable principal variations as
sociated with optimised key move ordering techniques.

Whatever the number of processors is, the global number
of entries in the transposition table is kept constant.

3.1 DEFINITIONS

Before giving some results from the experiments we made
on a CM5 Thinking Machine Corporation Computer with 32
SPARC nodes, we need some basic definitions of the mea
sures we used.

3The sequential Othello program named BugJ finished fourth in
the Waterloo Othello tournament in 1994, and finished second of the
Paderborn Othello tournament in 1995.

-132-

proc RetrieveAsk(Position, a, {3, depth, exclusiveP) _
lli entry, answer; end
entry +- T(Position);
answer.a +-a; answer./3 +- {3;
answer.score +- -oo;
if entry = 0 then

fi

H not exists then exit
skip endprobe;

]f entry.height =depth 1\ exclusiveP 1\ entry.nproc > 0
then

fi

Only one processor allowed if exclusivity
is required
answer.score +- ON_EVALUATION;
skip endprobe

!f entry .height ~ depth
then

fi

--if entry .flag = VALID
then answer.score +- entry.score;

answer.alpha +- entry.score;
answer./3 +- entry.score

elsif entry.flag = UBOUND 1\ entry.score < {3
then answer.score +- entry.score;

answer./3 +- entry.score
elsif entry.flag = LBOUND 1\ entry.score > a

then answer.score +- entry.score;
answer.a +- entry.score

fi
]f entry.depth =depth 1\ answer.a < answer./3

then

fi

Increment the number of processors
evaluating this node
entry.nproc +- entry.nproc + 1

This is the first processor to evaluate this node
entry.depth +-depth;
entry.flag +- UNSET;
entry.nproc +- 1;

end probe:
Now send the answer
Send. ttableanswer(answer.a, answer .{3, answer .score);

proc StoreHash(Position, 01, {3, score, depth) ::
var entry; end
entry +- T(Position);
if entry = 0 V entry .height > depth then exit fi
if entry .height = depth

fi

then entry.nproc +- entry.nproc- 1
else entry.nproc +- 0

]f score~ {3 then entry .flag+- LBOUND
elsif score$ a then entry .flag+- UBOUND

else entry .flag+- VALID
fi
entry .score +- score;
entry.depth +-depth;

Figure 2: The transposition table management for the AB
DADA scheme

-133-

These definitions follow those given m a previous
paper[15):

The Communication Overhead (CO) is the overhead
that is caused when the parallel program sends mes
sages back and forth between processors. It also in
cludes the time spent to encode and decode a message.
It is dependent on both hardware and software.

The Search Overhead (SO) is the cost attributable to
the extra nodes searched in the parallel version
compared' to the sequential version. It is defined by
the formula

SO= (Nodes searched for N CPUs) _
1

(Nodes searched for 1 CPU) ·

The Synchronization Overhead (SY) is the cost at
tributed when a processor becomes idle. This can hap
pen when it has no job to do or when it is waiting for
a result (communication) from another processor.

The Time Overhead (TO) is the observable measure of
overhead. It is defined as

TO= (Time using N Cpus) x (T" :' C) -1.
1me usmg 1 pu

and is approximately related to the other overheads by

TO = SO+ CO+ SY.

The Relative Speedup (RS) is defined by

RS = {Time using 1 CPU)
(Time using N CPU s) ·

for the same algorithm, i.e. using only one CPU, we
use the same algorithm as for the parallel version. This
enables us to measure the performance of the paral
lelization scheme.

The Absolute Speedup (AS) is, in contrast, defined by

AS= {Time of the best sequential algorithm)
(Time using N CPUs) ·

This measure is suited for comparing parallel algo
rithms. Some schemes can parallelize poor sequen
tial algorithms well, achieving a good relative speedup.
However, they may be slower on N CPUs than a bet
ter sequential algorithm and a parallel algorithm with
a smaller relative speedup. In our problems, we have
used the recursive o:/3 search for the Othello program
as a "best sequential algorithm" and the recursive Ne
gascout search for the chess program.

The Eff:l.ciency is defined by

EF = {Absolute Speedup).
N

'In the case of the ABDADA search, we count as a node a node that
is not immediately pruned by the speculative search control. In this
case, the search overhead is created by the fact that many processors
are searching the same nodes.

Olhello : Yeung Etottt .. Wait ~cept
40

Ctlesa : Yeung Etotners Wilt Ccrlcept
40

Cheu . Negascaut YBWC

I
I

S5

25

15

10

30

·--11-+-
10 ·•··· . ..,_ ·-7~·-e +··
5--

4 ·-. ..,_

S5 40

S5

30

i 25

20

I
;! 15

10

10 15 20 25 30

..... _
ideal ·-- S5

8 _

7 ·•·· 7 ·•··· . ..,_ . ..,_ ·- 30 ·-4~·-

i
.. ~ ..

3
25

3

20

I
I 15

10

•• 40 10 ,. 20 25 30 35 40
NunDilr of proc0110r1 Nurm. of pi"OCeiiCQ

Olhatlo : Young Etotnera Wilt CcJicapt
80

Ctlea : Yeung Eto1tlers Wait Ccrlcopt Chasa Negaacout YBWC
140

TO- TO- TO-so- 70 so- 120 /w-co ·•- SY ·D·· SY ·a-
SY ..,_

80
co .,.__ co----

100

I
50

I 80
40

~ 80 -----00

20
40 _...

10 20 ~
10 ,. 20 25 40 10 15 20 25 30 •• 40 10 15 20 25 30 35 40

Nurmer of JlfOC8ISCn NunDilr ar procaaora; NunDilr ofproceu.cn

Figure 3: Results with the "Young Brothers Wait Concept" scheme applied to the a{3 algorithm.

The top graphs show the relative speedup versus the number of processors and the bottom graphs show the different overheads.
Chess results represent the average on the 24 Bratko-Kopec{4] positions. One processor using Negascout needs 52045 seconds
to search all these positions at depth 8, the minimum time is achieved by the position 8 in 25 seconds. Position 5 requires
19827 seconds. Othello results represent the average on the first 50 moves of a high level computer Othello tournament game.
At depth 11, on one processor, the Othello program searches all the game in 98205 seconds. Top graphs are curves for depth
9 to 11 for Othello and depth 9 to 8 for chess. Bottom graphs are for depth 11 for Othello and depth 8 for chess.

3.2 YOUNG BROTHERS WAIT CONCEPT
RESULTS

We implemented the YBWC search on the Othello program
and on the chess program. As this scheme was primarily
chosen for the definition of Frenchess/' we tried many pos
sible optimisations to ensure that the results were the best
possible. The results are shown on figure 3.

As it can be seen, for the Othello program, we obtained a
relative speedup of 20.7 for depth 11 trees. For on the chess
program at depth 8 trees, we obtained a speedup of 18.4 us
ing a{3 and 14.3 using Negascout6 (In our chess program, the
sequential Negascout version is 1.5 times faster than the a{3
version). These speedups are relative to the same program
used on a one processor computer (with the same number of
entries in the transposition table), so as YBWC requires a.
non-recursive minimax search,7 these speedups are relative
to a. non-recursive a{3 search (or a non-recursive Negascout

5 Frenchess running ABDADA on a 128 processors Cray T3D
finished fourth at the 8th World Computer-Chess Championship.
The version used for this article includes less search and evaluation
heuristics.

60f course, Negascout's relative speedup is less than Ot/3's since the
relative tree searching inefficiency of 01{3 provides a greater potential
for improvement by a parallel scheme.

7It is difficult to implement YBWC on a recursive search since
when a processor receives an evaluation-answer from one of its slaves,
it must be able to produce a jump in the search depth if this evaluation
produces a pruning of the current master node. So the values Ot and
{3 must at least be kept in arrays indexed by nodes depths (in the
"normal" version of 01/3 search, they are kept on stack) and special
arrangements must be made in order to prevent the disruptive use of
depth that can be caused by this pruning. So YBWC needs a hugely
modified search algorithm compared to ABDADA.

-134-

search when applicable)[7, 23].

For both programs the main overhead is the Search Over
head combined with a relatively reduced Communication
Overhead (by the fact of our optimisations see [23]) and a
greater Synchronization Overhead in the chess program than
in the Othello program.

3.3 ABDADA RESULTS

The ABDADA scheme was performed on the same positions
for both games as YBWC. Figure 4 summarizes the results.

Here the Synchronization Overheads are non-existent
since all processors are busy. The Communication-Overhead
represents the time spent waiting for the transposition table
answers (i.e. the simulation of the shared memory). The
main overhead is the Search-Overhead. We must also note
that this time the reference sequential programs use recur
sive implementations of both 01{3 and Negascout algorithms.
Thus the speedup for Othello using af3 search is an abso
lute speedup like the speedup for Chess using Negascout. It
should also be noted that the ABDADA speedup for small
depths is intrinsically much better than for YBWC.

We also measured the number of messages used to read
and write the transposition table. The ratio between the
number of reads and writes tells us that ABDADA is far
from doubling the number of read messages. For the chess
program, on the Bratko-Kopec positions, 8 YBWC's read-

8 The choice of the Bratko-Kopec positions may be criticised, but

Otlello · ABDAOA Chess ABO ADA Chess Negascoul ABDADA
•o 40 •o

idea -+-- ~·"' -- ideal -+--
35 11 35 8 -+--· 35 8 -+-··

10 -a··· 7 •B·· 7 -II···

·~-
6 n)fo- 6 --30 8 ~-- 30 • ~- 30 5 ~--

~
7+·-

t •
l

• ---
l 25 6 ·•··· 25

3 ·•··· 25
3 ·•···

5 ·+··· • •&·- .i
20 3--- 20 20

I i

~
~

15 ~ 15 • 15

~~;,;~~~;i,~~~;2~;
a: a:

10 10 10

10 15 20 25 30 35 <0 10 15 20 25 30 35 •o .5 10 15 20 25 30 35 •o
tlumber o1 procesSOI"~ Number o1 prcc&SSOI$ Number o1 procas$01"S

Otlello · ABOADA Chess . ABDADA Chess Negascout ABOAOA
1<0 so 120

TO -+-- TO -+-- TO -+--

120 so--- 70 so -+-·· so-+--·
CO ·EI··· CO ·D··· 100 CQ ·B···
SY ~--

60 ,• SY SY --100 /

./ 50 /
/ 80 ~~-~-+

li 80 -· i _,,)1···· ~
__ .,... .. ~-~···

! / ! 40 / 60 .-· • .Jfl'~· • • .-
il 60 il / il _.,. .. -~

-· 30
~--·-+" -· / ... •o ..-/

•o ..- .-··
,«" 20 -· / .. m· .. - ..

20 a-_,..~·:<-~-(!""" 10 IJ--····--------e-------·------a-·------------e 20 IJ-·············41···········-··B··············C

•'
10 15 20 25 30 35 <0 10 15 20 25 30 35 <0 10 15 20 25 30 35 <0

Number of processors Number of processors Number of processors

Figure ·1: Tlw ABDADA sdwme rc""ults

writ-e ra.tio is].;{;,and AHDADA'~ read-write ra.tio IS 1.7.
Thn~ the overhead of the non-opt.imis1:d,~1 ver,;iou given Ill

part 2 iu krm of unmher of rr:ad messages, if' a.bont 211% a$
compared to \'H\-\'C.

4 DISCUSSION

It is difficult to compare th" shown results with th<' re
sults from diff'ereut papers. So we ha.ve to compare: the two
"chen1c:s on absolute speedup.

l!l+---------------------------~~-
.~·--+--------=-=

~
i ll.•.r:~--~~" :..1

Clnwc- !;·

DAII:.AL.o.~ u

~'igu n: fi: Com pa.rison of ahsoluk ~pe·r:d 11 ps for hot.h sc.ht:mc:s
applit,d to Othello for H, 1(;, :!·1, 32 processors

Figure: ;, show~ the: compa.risou of SJwcd 011 the Ot-lwllo
program compare<! t-o the fa.~te,~t s<xpu:ut-ial Othello program
W<-: have, the recursive <.t/~- \Ve can se" that up to depth
t', ABDADA is more d[icietlt- t-han '{B\\'C s<:<trch lmt- this
changr·s in dr-pth~ gn·a.t.t:r than !l.

then.: is no g-uud chvice uud \-V<: dirl it in Lll'dcr \v havC" n.-.sults cutupu
rubk wlt:h lht...•!")t:· fru1n prt_·vic.u:-; pub\}cativu~

~.l_lu t.h(· p~·~udv corlt..· g:i\'('JI in pnrt :! the ddt:st noel~::- is r•.-ud rwicc
nud su un.- nil 11ud~..·s c...Yuluut1:rl iu the: s~.:conrl puss This is 1.he \"(·rsion
'"'c.. W:i(·d iu uur cxp•.;>riincnts ~·or ~;irnpliL·ity of codt:' hut it. is r~nlly enS)'
lu ilupru\·t.:: th•.: ~t.:rtn:h by ~(:ttn:hin).; only th,_~ non-t.:V<\\uatt::rl nocit:~s in
t ht.: t·hird pas~

-135-

On:w: ~

Figure~(): Comparison of ah,..olutc spc:eclnp~ for bot-h s.-lwnws
applie·d t.o chcs~ for 8, 1 (), 2.-1, :!:! prot.:cssors

Figurt: fi givt:~ tlw comparison for the ga.nu: of chr:s;; n~i11g
th<' n:cursin: Nt·ga,..cout. (which is ;HJ 1X; fa.~te'r tha.n the: non
n:cur>-in: onc10

). Hen: w•: can >'r:r: that ABD,\1):\ ~r:arch
significantly outperforms the YH\VC wha.tevc:r the dq>th.

Sonw r:xplanations nw lw advann,d:

• The game t-ree:;; ar<· not of the same: size,, the branching
factor for Ot-ht:llo is 1ll in midgame positions while it
i~ ·10 for dtes~. 'Thu~ Othello game tn:c:~ an~ deqwr:

• Si 11<.:<·' our Othello eva.ln a.tion fu net. ion i~ unst.a.hlc, Ot h
dlo ga11u: t rces arc less ordered than chc~;; trees. T'h is
makes Negasc:ont k~s <·flic:ie11t than nd and YRWC
search becornc:s more df\cient sine<' w1.' show in [2:l]
that Y H\tVC i~ more dficic-nt. in n\lldom trees tha.n in
strougly ord•·,n:d trcr:s.

\Vithont nwr.: data., it j,; difhndt to fiud what the n:al
cxplaHation is. The only ot.hr:r remark \\'P have on our rc:snlts

10 .l.hic; appan:ut.ly sl r<.Hig"l..." ht:"ha\·iour ohs~.:r\'ui iuch:p~:nrl•=Htly by
Hrockington[5] ("an ht.:· ~..·xplaiu(·d hy· th<: fact. t:hnt we use hi11.h kv(-1 lan
gua,!!;cS iu -..vhi•.:h proc.:t_·rlur~.: ~tucks u:;E- un.: uwch ruun: upt.iulis ... ·d thuu
~nrl•.:Xt.:d nrrays u::;•:: S1tn\lar rt.:sutts t.:a.n ht.:: C>b~t:n··.:d for 1.lh: Quid\sur\
alhvritluns {sr.:·t.7 [:l..+). pagt.:· "lllO).

i~ that the ~t!arc:h owrheads are greater with AHDADA than
with YBWC, which i~ easily explai1wd by the fact that in the
YBvVC search then! is sharing of t.¥8 window improvenwnt
during the search. \Vhen a processor finishes the evaluation
of a child of a position P, the! owner of the position may
distribute, if Jlf!eded, the new bound~ on the o;~ window to
his slaves. n ABDADA docs uot sltarc windows, so in the
situation de~scribed in Figure i, Y HWC will examine fewer
nodes than ARDADA. New bouuds are distributed only if
the! eltle,;t move of the po::<it.ion f> i::< not the hest o1w, (i.e.
tlu! tree is not very well orderc!tl).

Position P, window [n, ;3]

Done P; ret. urns v

Figure 1: Situation where YBWC examines fewer node,; than
ARDAilA.

/,r:t '8 .HIIJIJV.~e· that th" childn:n of the po.sitiou 'P an: !winy
et•aluatnl by .HJlllt'' fH·on:s.<or.~ {the ddc.~t .<mt o.f P i.< a/n:ady
t::rplorcd by /10th }'H~VC and A HIJA DA) and tin: prot·es.sor
examining P, n·turn.s 11 t•aluc v that u:il/ m11.se the pruniug
of the po.•ition P {i.e. when I' ~ /~). lu thi.s 8itlln.tiou }'H ~1/C
will cau.st· tht: pnminy {makiug tht:m idle) of the otlwr pro
cc.;wr8 e:unuir1ing othtT t:hildn:n o.fP whcn:a.o A H f) A VA mill
r·ontiuul' tlw c:rtllom.tiou o.f thc8c: r:hildrnL

From the~c resuhs and our experience,, we cau ddiue
when to chomw each of tlu: a.lgoritlnns dqwuding on the'
gn;ll illld t hP meaus:

YBWC:

Advaut.age,.;:

• \Nnrks without. tmnsposition table.

• vVorks with global trau~posit.ion tables.

• vVorks with local tra.n~po~ition table,;.

• ~:fficie·nt fill· deep JHohlem~.

• Can he optimised as function of rnachine
topology[7].

Draw hacks:

• Complex to implement: Evt!n with the ddini
tion giveu in (7], it i~ difficult to ''n,.;un' that
the ba..'<ic ma.~ter-slave rdat.ionship is work
ing propt,rly. The d•~bugging pa.rt nf the
1:<cht"ILC is long. mainly lwcausc of the non
detc-rmini~tic nature of vVork Stt!aling ha,.;nl
Proccs~.(.'i]

• Sine" tlw se:arch algorithm must lw non
n,cursive, it i~ diflicult to impleiLwnt. the same
heuristics a:; in the ~t,qur,ntial programs.

"11 Jr should be..: noted that. this f•..:uture uf the YB\\'C is~ iu IllY uliud,
t ik Ill a in ditfercHc•c with I'VSplit bus~.-! s•,·arches[14, 1 n, 17, 15. :!1, 1 0]
01' .J<.HilbOr('C(ll).

-136-

• Non-dficient for small ~17-e: problems.

ABDADA:

Advautav;Ps:

• b;a;;y and quick to implement: As we can see
on Figure I, the main algorithm is very close
to st~que:nt.ial algorithm:;, so few modilication:,;
an·! m~cessary.

• F:HiciPnt for srna.ll and <!Pep prohlt:ms.
• Failure rr:si;;tant: it is very easy to change the

algorithm to he failure resi><ta.nt. (i.e. to give
an answer even if one or more pron!ssor:s are
dead), you only have to pnt a time-out when
waiting for tran~position table a.nswen; and
then you ha\'C: an algorithm which will rdum
an answer even when only one processor i~

present

Drawbacks:

• Nt:ed;; a. very fast global transpo~1t10n table.
This i~ when: all the implementation effort is
made to en;;ure that transposition tahl1: man
agement is fast enough iiJr this algorithm.

• :\eed" to be reddined in onler to take into
accouut situations such as thosp of figure 7. 12

So Y R\VC is our elwin: if the computer i~ not able to
give u~ w:ry fast nwssage passing (for small messages) such
a.~ a network of worbtat.ions, and A H DADA ii>' our r.hoice
on "harnl nwmory or rt:al fast. small message p;1.~sing com
puten;. On thosr: corupukrs and haviug r:nough time for
i 111 plenwnt.ation, we propo»e to first implement 1\ H DA I);\
to verify its dhciency an.d, if it is uot as efficient as required,
to implcnwnt YHvVC, not ht:ing certain that thi" will ht:
more efficient but to ensure you have not ignored rc.,;~~ema.i.>IP

alternatives to ABDA DA.

5 APPLICATION ON A 128-PE CRAY T30

Aft<!r doiug thi" con1pari,;on, WP had to i111plt·nwnt a IWW

chc,;;: program nan1ed Fn!nches;; ou a 128-I'E (~ K :\ Y '1\l D.
1'his program fiui~lwd equa.l third of a field of 2·1 ilt t.lw Hth
vVorld Computer Che,;~ Cltarnpionship in Helll!; 1\:ong (~lay
25 - \-fay .10 l!J~5J. Since we began to pmt. Fn:uchcs,; to
the CP.i\Y T:JI) iu February, \W had very littl" time hcfmT
tlw vVorld Champiouship, l;l) WI' chose to US!' AHDADA as a
parallt!l schcllH!.

On tlw C.Mfl computer:, ~harcd memory was ;;imulat.cd,
each f.H·occ~~·H· IJ.,ing in clr<trgc of a part of tht' global t rau;;
po><itinn table; we had to rdy on the active message lay•-:r
to gd i'onw VI!I'Y good performance which pure C lvll\-1 D[:!2]
could not giv•: u~ otherwis•~.

This method of shart"l memory simulation has tlw ad
va.ntagc of makiug simulta1wous ac:n:f'"'C" to a ,;;u11c eut.ry

12 Then.: an:: basicnlly twu wuys to solvt.: this.
-- Tu stock iu tho!..· transposition t.uble, nut only the uuruher of lJI"O

<.:t-:~~;or~ hut ulsu which prucc-ssors uri::' ('Urn:ntly evaluntinA u 14in:n
position: ~o that. we can rlistrihuh.: t·hc..' new wiuflows bouncls to
aJI <"UIH...'t=:fiH.:d f..JI"OCI..'SSOI"S

To check, \Vh1.:11 tinishiug the '..:Valunt.ion of a uod(.·, that it~ IJC.U'(·JLt

110rle has not b1.:,~11 pruried (i c. hy louking up \he con·(:~:q)olldinp;
cut.ry in the ll'O.Il~pusition tuhle).

The Iauer rw~'thud is tht_· eusit_·st to ilnph::·ntL·Jil but this ouly part iully
~uh•~.::s th,_. prubkn1 whil(: th1: foruu_·r will n.:4uirr_. lltvn:: fuudtuw_·ntul
tnorliti(:nt.ious c)f tlv.:: s~.:~arch process.

impos~iblc~ (thi;; is important to l~IISIIrl~ that ABDA DA works
correctly, i.e. that the number of processors is corn~ct. for a
given transposition table eutry).

ln an adaptation of Frenche~s for a CRA Y SUN CS fHOO,
we used shared nu~mory with mnt<~x (mutual exclusion) locks
to guarantee the exclusive acces~ to each transposition tahle
entry. Precise mem<urement of the speedup wa.« not possible
on this machine1 ''· but it. looked very much like what we had
seen Oil the CM5 even though siHgle proce~sor spe,-,d wa.<;
arouml four times greater.

On the CRA Y T3D, we used thr, SH MEM library(1] after
we found how to ensure mutual exdu~ion with the help of
the shmem_swap ca11(2].

Singlr~ PE performance on the 'LID was a big disappoint
ment for us: ou a 50 ~fHz SPAH.C 10 (or a single proces~or
oft he C RAY CSii'lllO), the setp!l~ntial algorithm wa:-; visiting
around 20000-25000 positions per sccoud. VVe had similar
heuchmarks on a 150 \1Hz Df;C Alpha station. Rut, on the~
CRt\'{ T:JD, the speed on one PE was only in the iOOO-!JOOO
position~/second range ! Probably, this poor performance
was due to two problems :

1. cache problems : cache too small and cadu: iuvalida
tion,

2. poor optimisations from the compiler.

Nevertheless aud despit.~ tlw fact that we did not have
enough Cl'L time14 to complete all tht' tests to compute the
>'<P•-~elln p, parallel perfornmuo~s were great : to have results
compa.rablr~ to those we ohtaim~d on the CM5, we usr~1l a
search with a simple evaluation, uo •~xtr,nsions except che~ck
extensions, no futility cutt-o!fs and no tlltll move prunittg.

Table 1: Spt:c:dup for a 128-1' E C H A'{ T;ID compan:d to l PE
with 128 tinu:s smaller trauspo,ition table on the Bratko
Kopcc position~.

Dut.: to the short time~, we did the fir~t test without a
constant lllllnher of transposition table cutries : wheu u~ing
l:!ll proce,;sors we had 128 nwrc entries (1M entries per pro
cessor) than wlwu lll'<ing only otw JHOC<~~sor. Ta.ble 1 ~hows
that iu those conditions, at depth 9, we have a.n average
absolute ~pcedup of (i5.!J 011 the 2'1. Hratko-1\opec positiuu~.
During n~al games, where each player has 2 hour~ to play 40
moves, Frenche;;s searches most positions to <kpth 10, 11 or
12 aud even more in simplific:d eudgames. VVc did not have
enough time to cornpnt1~ the position~ on one processor at
depth 10, ~o we compared the relative ~peedup of 128 pro
n:ssors compared to :1:! with a constant trausposition table
in table 2.

Sinn~ the spe<~dnp for ;·l2 JHon-,s~or~ with a. constant tra.Hs
positiou table size is about 28 at dq>th ~ and that the

J:~The only wuy ·woulrl have het..·n to HUlk(· sure that noburly dse us<.:d
the saJile partition ns F'renches~. \-\"e dirl not. try t.o negotiate this U!;;

Wt: kw:·\V \V(' woulrl he IHO\'ing to th~..: T:3D soon unrl tht..· CStl400 WGS

ruttv.:r heavily U5t:d.
'I 1 To cotnplet.e our t~.:st 1 for exrunple con1put..ing- the spct..•dup at. depth

10: we \'VOUid ha\·(· hnd to use the· whuk tuuchine for se\·erul hours just
to nK·usur~~ the pe1fonuuucc.: of Ulll.' processor. Our J.>robkin (t ht: world
Cham.p\onsh\p) b~lug. u. ~hort l(:t'lB pra,.:ti,::al on~:: 1 w~-:. ~pt-:HI. tnut.:hint.:
l imt.· in n n1or€· ust:"ful way.

-137-

Depth lf)

Spfled up 1.0~ 1.13 l.".l3 1.22 1.98

'l'abk 2: Relative Speedup for a 128-P~; CRAY T;H) com
pared to a :12-PE CH.A Y T3D with a con~tant transposition
table si)le.

S]Jel~dnp is increa.<>ing with search depth, we cau <~xpect a.
speedup superior to 75 for 128 PEs for depth 10. This
:o.hows clearly that ABDA DA is very efficient on the program
Fn:nches;; for a 128-PE CHAY T3D.

6 CONCLUSION

We have: described a new parallelism scheme efficient for
minimax search. V\'1~ have shown that n nder some conditions
this JH:W schenw can lw more efficient t.hau Y HVVC.

Doing all those comparisons on the same computers us
ing the ~ame code, we: have slwwn thaJ compa.risons of par
allel a.lgorithm~ arc only valid for the given problem (i.1:.
the nature of the game, the algorithm;~, and t]H~ evaluation
function) on a 1-!;iven computer. There is no possible way
to say, given Ollf~ compa.ri~on, on whatever problem and on
whatever computer an algorithm 1~ universally better thau
all others.

Furthenuore, the analysis doue of the CRA Y 'Ll D, de
spite the lack of Cl'lJ time, showed that A HDA DA is still
very ellicient with 128 proet,ssors.

\Ve would like to coutiuul' this work iu order to give a.
comparil:ioll of A BDA DA aud Y H\VC, using the 1111:asu res
of crdict~l-lmth lnl-ytli and work pc1jormcd[l :!), to have mon~
pn,dictivc power on the hehavion.r of those algorithms. This,
done on two different games, may help us understand better
the parallel ;warches.

Probably ABDADA is only a small step toward the def
initiou of future parallel a.l!!,orithms, hut when de~ignill!!;
them, we should keep in miud tlw power of a global trans
position table.

6.1 ACKNOWLEDGEMENTS

Thanks t.o :VIarc-Fran<;oi~ Haudot for his great help on the
definition ami the intplcmenta.tiou of tlte chcs~ program
Frcrtchn;.~.

Man:-Fratu;ois Haudot., Mark Brockington, vVarren
Smith <ttul Michael Bttro ><honld also he tlta.nked for tlwir
hdp in f!ditiug tlw document.

Thanb also to my thesis n:vi<~wers, Tony !\larsland,
.Jac'lues l'itrat aud ~'iichel Gollllran for all their construc
tive criticism n11 Ch apt.er 4 of my thesis.

The prest".nt work h<L~ been performed in the frarnework
of the fh:udu:.'·' project, part of a joint research elf"ort with
Electricitt': de France (department E DF/ D ER/Tl EM /T\'1 A)
and the Artificial lutclligcBr:c lnstitnt of the university of
Pari~ 8.

REFERENCES

[1] BAHRIUSO, R., ANO KNIES, A. SHAII-:.41 U8t:r-"s Guide
Ht:vi.~iou 1.08. CRAY .Research Inc, April 199·1.

[:!] BAt:llOT, 1\l.-F., WEILL, J.-C., SEHET, .J.-L., AND

CONDHAN, "'1. Frenchc:,;s: A Cnty TJU at. t.he l:ltlt
vVorld Compttter Chess Championship. In 18t Eumpcau

Cray- I.'JD Work.<hop (SP.pt. 19%), ~:cole PolytechniqLLe
Ft:derale de Lausanme and CKA Y Res1:an:h.

[J] HEHLiNI•:n, H., Ac-H> EBELING, C. Pattern knowl1,d~e
and ;;carch: Tlte Sl!PHEM architecture. Artijiciallu
tdligeucc .'J!i,:! (.\Jar. 198!.1), Hil-198.

[•1] HHATI~O, 1., AND l<OPEC, U'. A test for comparison
of htunan and computer perforrnancc. ln Aduaw:c.> io
Computer Ch<'.~.< Ill (l!JS2), M. Clarke, Ed., I'P.rgamon
Press, pp. 31 5(i.

[5] HROCKINGTO:\', i\1. An implementation of tlu: young
brothers wait concept. Internal report, Lniversity of
Alherta, 19!)4.

[6] DAVID, V. AI!Joritlunique pam/le/e wr It:.< arbn:.~ de

dt!ci.•ion et raiwnm:rucut tm temp.• contraiut. Eturlt: d
applicatimz au Minimax. PhD thesis, E\'SA E, :\m·.
1 9!J:l.

[7] F~:LDMANN, R. .'ipie/b(lllll!.mchc mit mas.~iv paralic/en
Sy.~tnnt:r.. PhD thesis, Fachbereidt Mathenmtik / ln-
formatik Universitiit GH Paderborn, 19!;1;!.

[8] FELD!Io1ANl'<', R.., ~10!\/IJo::\, 8., MYSLIWJETZ, !'., AND

VoHNBERGEH., 0. Di;;tribukcl ~ame tree search. In
Pamlld Algorithm.~ fm· Machine hdelligtmn~ afld Vi.<iou
(1!.1~10), V. Kumar, K. L.N., and P. Fopalkrishman, Eds.,
Springer Verlag, pp. 66 101.

[9] l·'t·:LOMA.,N, R., lVlYSLI\'ll.u<:Tz, P., AND Vou.!'iBEB.GEH,

0. A local area network used as as parallel architecture.
Tech. Rep. :n, lJniversity of Paderboru, Sept. 19Sfi.

(10] HYATT, \.:!., SL:TEH, H., AI\D NELSON, H .. A parallel
alpha/beta searching algorithm. Pam/lei Computing 10,
3 (1989), 299-308.

[11] Kusz~1AL:L, B. Syuclmmized MJAfD C'omputinq. PhD
thesis, Department of [lectrical .Euginer~riu~ and Corn
pnt.er Science, Mas;;a.chusett.s Institute of Technology,
May 1!J!J4.

[1 2] J\cSZ.\1AUL, H. The Star Tech rna.."<Sivdy- pamlld chess
pro~ram. ICCA .lounwl 18, 1 (Mar. 1!J!J5), 3 l!J.

[1:1] \1 ARSLA:-\D, T. A review of ~iUIH~-trce pruning. ICC A
./oumal 9, 1 (_1!HlG), :l- UJ.

[11] MARSLAND, T., A!\D CA~1PRELL, M. Paral!L~l search of
strongly orden~d game tree,. Computiu!] Sun•cy.~ 14, ·1
(l 982), 55;~ -561.

[11ij MARSLAND, T., 0LAF'!'SON, i\.1., AND SCHAe:FF'EH, J.
Multiprocessor tree-search experiment.s. In Adnancc~ in
ComputtT (.'lws.~ IV (l!:IS!-i), D. Heal, EJ., Pngamon
Prt~ss, pp. 37--51.

[16] :VlARSLA.'\;0, '1'., A!'iD POPOWICll, F. Parallel game tree
search. IEEE 'lhmsactions on PfJttem Aualysi.~ tmd
Mnchinc lutdligcun: 7, 1 (1 985), 44:!-152.

[17] :\iEWBOHN, M. Unsynchronized iteratively deepening
paralld ;dpha.-beta. search. 1EEf; Trau.~actions 011 Pot
tem A 11alysis nw.l Madtiue lutel/igcun.· 1'.411-fl- I 0, 5
(Sept. 1988), GS7 -6!H.

[18] OTTO, S., AND F'1•:LTEN, E. Chess on a hypercube. In
The Third CoujtTC11CI' 011 Hm1ercubc Cmtcw·n,nt Com
putt:1"8 and .4pplimtiml8 (_1988), vol. 2, pp.];!29-1:141.

-138-

[1!J] PEAH.L, J. Asymptotic properties of minimax trees and
game-searching procedures. A 1·tijicial lutd/igcrux 14
(1980), 11:3 D8.

[:.W] H.EINEFELD, A. An improvement. to the scout tree
search algorithm. JCCA .Joumo/ f>, 4 (198:!), 4 14.

[21] 8Cl-IAEFFI;:H., .l. Dist.ribut.ecl ga.me-t.re•.~ search. Joumal
of Prrml/d (llld IJi.~trifmtPd Gmu1wtiug fi, 2 (nJS9), 90-
114.

[22] TIIINKf:\'(; :V1 ACIIISES Con I'OHATION. CMM {) Hejer
l'llCC Manual \/.1.0. C'ambridg", :\Tws;u:hu;;etts, ~-lay
Hi93.

[2.3] Wi•:II.L, J .-C. J>mgiYIIIIIIIC.< rJ '6du,_·.~ fi,, clu,mr>i-
owwt : flt'<'hitt;(:ldun: loyicidlc, -'Yflthi:.'~'' dt: fom:titms
d 't:1wluation, pamllt'lisme de n:cherclw. PhD thesis,
lJuin:rs.ite tk Paris VTTT, Saint- Dt,uis (Fra.uce), .!au.
1995.

[2·1] \\71ltTII, N. A/go1·ithm.~ and lJatft Stn1ctun·.9. Prcnticr~
Hall lniernational Editions, 1 98t).

