The ABDADA Distributed Minimax Search Algorithm

Jean-Christophe Weill
Institut d’Intelligence Artificielle
Université de Paris 8 — Vincennes a Saint-Denis
24, avenue du Pont Royal
94230 CACHAN

France

ABSTRACT

This paper presents a new method to parallelize the minimax
tree search algorithm. This method is then compared to
the “Young Brother Wait Concept” algorithm in an Othello
program implementation and in a Chess program. Results
of tests done on a 32-node CM5 and a 128-node CRAY T3D
computers are given.

1 INTRODUCTION

In the search for power to run our game-playing programs
as fast as possible, the use of parallel computers is a stimu-
lating choice. During the past few years, parallel algorithms
have evolved from fixed master-slave relationships, where the
master looked for slaves to complete its task, to more dy-
namic master-slave relationships, where unemployed proces-
sors look for a master in order to find some task to do. But
those master-slave relationships, which are exemplified by
the work-stealing schedulers of Jamboree[12] and YBWC[7}
still suffer from synchronization overheads.

In this paper, we describe a non-synchronized parallel
algorithm named ABDADA.

After a formal description and pseudo code for the AB-
DADA parallel scheme, we present an experimental compar-
ison of ABDADA to YBWC.

2 THE ABDADA ALGORITHM

The ABDADA search algorithm is based upon both
YBWC[9, 7] and af*[6]. From YBWC, it keeps the basic
concept: parallel evaluation of successor positions of a game
position is allowed if and only if the eldest brother (i.e. the
first visited brother) is fully evaluated. The af* algorithm,
like the algorithm from Otto and Felten [18], relies on a
shared transposition table. All processors start the search
simultaneously at the root. With the help of the additional
transposition table information (e.g. how many processors

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is

given that copyright is by permission of the ACM, Inc. To copy otherwise,

to re[{ulzlish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

CSC 96, Philadelphia PA USA
© 1996 ACM 0-89791-828-2/96/02..$3.50

-131-

are exploring a subtree rooted at a node), it is possible to
control speculative parallelism. af* was originally imple-
mented using a complex and inefficient control, so we chose

to mix YBWC and of*.
The ABDADA! algorithm can be described as follows:

1. Let T be a shared transposition table. To the standard
definition of the table[13], we add, for each entry, a new
field nproc which is the number of processors currently
evaluating the node related to the transposition table
entry.

2. All the processors begin the search simultaneously at
the root of the game tree.

3. When a processor enters the evaluation of a position
P, it increments the field tt[P].nproc in the trans-
position table.

4. When a processor leaves a position P (because this po-
sition is fully evaluated or has been pruned), it decre-
ments tt[P].nproc.

5. The analysis of a position is done in three phases:

(a) The eldest son is analysed, regardless of the po-
sition of the other processors;

(b) the other sons which are not currently analysed
by other processors are analysed;

(c) then the sons which are not completely evaluated
are analysed (i.e. the corresponding entry in the
transposition table has not been evaluated to full
depth).?

Figure 1 shows the ABDADA algorithm. It can be ob-
tained by modifying a sequential af using a transposition
table in the following way:

¢ We add to the usual parameters of the procedure a
Boolean exclusiveP which indicates whether the cor-
responding node should be evaluated ezclusively, i.e.
the processor is allowed to evaluate the current node
if no other processor is currently evaluating it. This
parameter will be passed to the transposition table re-
trieve procedure RetrieveAsk as shown on figure 2.

1ABDADA is the acronym of the French name “Alpha-Béta Dis-
tribué avec Droit d’Anesse” which can be translated into “Distributed
Alpha-Beta Search with Eldest Son Right”.

2This point is analogous to the “Helpful Master Concept”[8], if, in
the second phase, the processor has found some node, other processors
are not allowed to work on this node unless there is nothing else to
do. Like in the “Helpful Master Concept” when a master waits for
the completion of its slave children, it becomes their slave.

1 funct abdada(Position, o, 3, depth, exclusiveP) =

2 var exclusive, iteration, alldone;

4 if depth = O then exit evaluate(Position); fi

5 Best — —oo;

e RetrieveAsk(Position, , 8, depth, exclusiveP);
s Generate Move when waiting for the answer

10 GenMove(Position);

12 RetrieveAnswer(&a, &3, &Best);

14 The current move is not evaluated if causing
18 a cutoff or if we are in exclusive mode and

16 another processor is currently evaluating it.
18 if (o > B) v (Best = ON_EVALUATION)

19 then exit Best; fi

n iteration «— 0;

22 alldone — false;

2 while (iteration < 2) A (a <) A -alldone do
25 iteration « iteration + 1;

26 alldone « true;

38 M « FirstMove(Position);

30 while (M #0 A o < 8) do

s1 exclusive — (iteration = 1)

32 A (NotFirstMove(M));

34 On the first iteration, we want

as to be the only processor

36 to evaluate young sons.

38 value — —abdada(Position ¢ M, -3,
39 — max(«, Best), depth — 1, exclusive);
40 if value = ~ON_EVALUATION

a1 then alldone — false;

42 elsif value > Best

a3 then Best «— value;

44 if Best > 8

s then skip endsearch; fi
46 fi

a7 M — NextMove(Position) od;

49 od

50 endsearch:

51 StoreHash(Position, o, 3, Best);

53 exit Best.

Figure 1: The ABDADA parallel scheme on the af Search

o We have to define a new value ON_EVALUATION which
is different from any value returned by the evaluation
function.

e The Retrievelsk procedure has to return this value
as a score if there are other processors evaluating the
node and exclusiveP is true. Otherwise, if there is
no forward pruning due to the transposition table, the
entry nproc is incremented.

o Using the same method, the storing procedure decre-
ments the entry nproc when a processor leaves a node.

o The three phases are implemented using the variable
iteration which can take the value 1 and 2 in the
inner loop (lines 29 to 42). The first time we enter
the inner loop, we reset the exclusive flag only on
the first move while we reset it on every move in the
second iteration. When the exclusive flag is set, a
son which has been pruned because another processor
is currently evaluating it will have a return value of
-ON_EVALUATION. If we find such a son, then we reset
the alldone flag meaning that another iteration wil
be necessary to know the value of this son.

With this definition, we can easily see that compared to
a YBWC search, the ABDADA search will attempt to read
the transposition table at most twice as many times, and
write roughly the same number of times.

3 RESULTS FROM EXPERIMENTS

To analyse the behaviour of the parallel scheme, we used the
parallelization of two sequential game programs: a competi-
tive Othello program® and an early version of the Frenchess
chess program.

The Othello program has an unstable evaluation func-
tion as the search is extended. Most Othello programmers
know of the odd-even problem which results in an evalu-
ation at odd depth being far better than one at an even
depth because whoever just moved has just given mobility
to their opponent. (Othello is a game of zugzwang.) Fur-
thermore, the Othello program shows some very unstable
principal variations. This has the uncommon effect that the
af} search is better than NegaScout[19, 20] search for this
program.

In contrast, the chess program used a fast incremental
evaluation function based on an Oracle[3] combined with
Piece/Color/Square tables, and produced a fairly stable
evaluation function and also stable principal variations as-
sociated with optimised key move ordering techniques.

Whatever the number of processors is, the global number
of entries in the transposition table is kept constant.

3.1 DEFINITIONS

Before giving some results from the experiments we made
on a CM5 Thinking Machine Corporation Computer with 32
SPARC nodes, we need some basic definitions of the mea-
sures we used.

3The sequential Othello program named Bugs finished fourth in
the Waterloo Othello tournament in 1994, and finished second of the
Paderborn Othello tournament in 1995.

-132-

proc RetrieveAsk(Position, , 3, depth, exclusiveP) =

var entry,answer; end
entry « T (Position);
answer.a — «; answer. «— G;
answer.score — —oo;
if entry = 0 then
If not exists then exit
skip endprobe;
fi
if entry.height = depth A exclusiveP A entry.nproc > 0
then
Only one processor allowed if exclusivity
is required
answer.score — ON_EVALUATION;
skip endprobe
fi
if entry.height > depth
then
if entry.flag = VALID
then answer.score « entry.score;
answer.alpha +— entry.score;
answer.3 «— entry.score
elsif entry.flag = UBOUND A entry.score < 8
then answer.score + entry.score;
answer.3 — entry.score
elsif entry.flag = LBOUND A entry.score > o
then answer.score «— entry.score;
answer.c — entry.score
fi
if entry.depth = depth A answer.« < answer.3
then
Increment the number of processors
evaluating this node
entry.nproc « entry.nproc + 1
fi
else
This is the first processor to evaluate this node
entry.depth «— depth;
entry.flag — UNSET;
entry.nproc — 1;
fi
endprobe:
Now send the answer
Send.ttableanswer(answer.a, answer.3, answer.score);

proc StoreHash(Position, o, 3, score, depth) =

var entry; end
entry — T{(Position);
if entry = 0 Vv entry.height > depth then exit fi
if entry.height = depth
then entry.nproc «+ entry.nproc — 1
else entry.nproc — 0
fi
if score > 3 then entry.flag — LBOUND
elsif score < o then entry.flag +— UBOUND
else entry.flag — VALID
fi
entry.score « score;
entry.depth — depth;

Figure 2: The transposition table management for the AB-
DADA scheme

-133-

These definitions follow those given in a previous
paper[15]:

The Communication Overhead (CO) is the overhead
that is caused when the parallel program sends mes-
sages back and forth between processors. It also in-
cludes the time spent to encode and decode a message.
It is dependent on both hardware and software.

The Search Overhead (SO) is the cost attributable to
the extra nodes searched in the parallel version
compared* to the sequential version. It is defined by
the formula

(Nodes searched for N CPUs)

50 = (Nodes searched for 1 CPU)

The Synchronization Overhead (SY) is the cost at-
tributed when a processor becomes idle. This can hap-
pen when it has no job to do or when it is waiting for
a result {communication) from another processor.

The Time Overhead (TO) is the observable measure of
overhead. It is defined as

N

TO = (Time using N Cpus) x (Time using T Cpu) -1.

and is approximately related to the other overheads by

TO=S50+CO+5Y.

The Relative Speedup (RS) is defined by

_ (Time using 1 CPU)

RS = (Time using N CPUs)’

for the same algorithm, i.e. using only one CPU, we
use the same algorithm as for the parallel version. This
enables us to measure the performance of the paral-
lelization scheme.

The Absolute Speedup (AS) is, in contrast, defined by

_ (Time of the best sequential algorithm)

AS (Time using N CPUs)

This measure is suited for comparing parallel algo-
rithms. Some schemes can parallelize poor sequen-
tial algorithms well, achieving a good relative speedup.
However, they may be slower on N CPUs than a bet-
ter sequential algorithm and a parallel algorithm with
a smaller relative speedup. In our problems, we have
used the recursive af search for the Othello program
as a "best sequential algorithm” and the recursive Ne-
gascout search for the chess program.

The Efficiency is defined by

(Absolute Speedup)

EF = N

4In the case of the ABDADA search, we count as a node a node that
is not immediately pruned by the speculative search control. In this
case, the search overhead is created by the fact that many processors
are searching the same nodes.

Othello : Young Brothera Wait Cancept
T T T T T

Chess : Young Brothers Wart Cancept
r T r

Chess . Negascout YBWC
T T T T

40 r T 40 T v T 40 T T
ideal ~e— idea) idea) ~e—
sk 1 = 35k [} ash 8 -
10 @ ? 7 @
9 e [8 —
0t 8 -- 30| 5 %0 | 5 -
z"' a ; g-.-
- -
s 5 +— 1 231 s} -
4 8-
| 17 P
E 15 4 E 15 E 15
e L o 10}
5} E s) sk
. " 2 N
5 85 40 5 10 15 20 3 ko B 40 5
Number of processors
Chees : Young Brothors Wait Concept
60 s T 80 T T T Y T T T 140 v
Tso-o— ;80—
b 3 =
50 %cv> u- o SY -0-- 120
- -—
©«r 100
2
wh
s}
§ § =
ko0 3 40 F
; P ~]
30 - E
20p E « /,/
20 b h °T - - 1
10} E i
o wol J 20F I g 1
ol . ol b e
5 40 5 % 40 5 10 30 35 40

Figure 3: Results with the “Young Brothers Wait Concept” scheme applied to the af algorithm.

The top graphs show the relative speedup versus the number of processors and the bottom graphs show the different overheads.
Chess results represent the average on the 24 Bratko-Kopec[4] positions. One processor using Negascout needs 52045 seconds
to search all these positions at depth 8, the minimum lime is achieved by the position 8 in 25 seconds. Position 5 requires
13827 seconds. Othello results represent the average on the first 50 moves of a high level computer Othello tournament game.
At depth 11, on one processor, the Othello program searches all the game in 88205 seconds. Top graphs are curves for depth
8 to 11 for Othello and depth 3 to 8 for chess. Bottom graphs are for depth 11 for Othello and depth 8 for chess.

3.2 YOUNG BROTHERS WAIT CONCEPT
RESULTS

We implemented the YBWC search on the Othello program
and on the chess program. As this scheme was primarily
chosen for the definition of Frenchess,® we tried many pos-
sible optimisations to ensure that the results were the best
possible. The results are shown on figure 3.

As it can be seen, for the Othello program, we obtained a
relative speedup of 20.7 for depth 11 trees. For on the chess
program at depth 8 trees, we obtained a speedup of 18.4 us-
ing B and 14.3 using Negascout® (In our chess program, the
sequential Negascout version is 1.5 times faster than the af
version). These speedups are relative to the same program
used on a one processor computer (with the same number of
entries in the transposition table), so as YBWC requires a
non-recursive minimax search,” these speedups are relative
to a non-recursive af search (or a non-recursive Negascout

5Frenchess running ABDADA on a 128 processors Cray T3D
finished fourth at the 8th World Computer-Chess Championship.
The version used for this article includes less search and evaluation
heuristics.

60f course, Negascout’s relative speedup is less than afl’s since the
relative tree searching inefficiency of aff provides a greater potential
for improvement by a parallel scheme.

1t is difficult to implement YBWC on a recursive search since
when a processor receives an evaluation-answer from one of its slaves,
it must be able to produce a jump in the search depth if this evaluation
produces a pruning of the current master node. So the values o and
B must at least be kept in arrays indexed by nodes depths (in the
"normal” version of aff search, they are kept on stack) and special
arrangements must be made in order to prevent the disruptive use of
depth that can be caused by this pruning. So YBWC needs a hugely
modified search algorithm compared to ABDADA.

=134~

search when applicable){7, 23].

For both programs the main overhead is the Search Over-
head combined with a relatively reduced Communication
Overhead (by the fact of our optimisations see [23]) and a
greater Synchronization Overhead in the chess program than
in the Othello program.

3.3 ABDADA RESULTS

The ABDADA scheme was performed on the same positions
for both games as YBWC. Figure 4 summarizes the results.

Here the Synchronization Overheads are non-existent
since all processors are busy. The Communication-Overhead
represents the time spent waiting for the transposition table
answers (i.e. the simulation of the shared memory). The
main overhead is the Search-Overhead. We must also note
that this time the reference sequential programs use recur-
sive implementations of both af and Negascout algorithms.
Thus the speedup for Othello using a8 search is an abso-
lute speedup like the speedup for Chess using Negascout. It
should also be noted that the ABDADA speedup for small
depths is intrinsically much better than for YBWC.

We also measured the number of messages used to read
and write the transposition table. The ratio between the
number of reads and writes tells us that ABDADA is far
from doubling the number of read messages. For the chess
program, on the Bratko-Kopec positions, 8 YBWC’s read-

8The choice of the Bratko-Kopec positions may be criticised, but

Othello " ABDAD! Chess ABDADA Chess Negascout ABDADA
40 T— T T ¥ 40 T ¥ T v T Y 40 T T T T T
ided —— idodl +—
35| 11+ 351 a5 | 8 -
10 & 7 |-
9 - 6 -
L 2 a4 04 20} 5 - o
7 - A -
o a a
g o5f et T BEFY 8 3 L 3o
2 S i
g 20 | 3L @ 20 4 20 | 1
2 2
K] g %
E 15 | E 2 15 | K4 15 1 -
0 b 10 104 9
5 E st st 1
L N " A PR L . L "
5 35 49 5 10 15 20 25 30 35 40 5 B 40
Number of processors
‘Othalio - ABDAD Chess . ABDAD Chess . Negascout ABDADA
140 T T T T T T 80 T T T T T ¥ T 120 T T T T T T T
120 E
100 |
§ el 5
t : ~
& %r 8
wt 1
20 F 7
o .
5 10 15 20 25 30 35 40 5 10 3¢ 35 40 5 10 20 25 30 3B 40

Number of procassors

Figure 4:

write ratio is 1.35 and ABDADA’s rcad-write ratio is 1.7.
‘Thus the overhead of the nou—npl-imi.uu:(l,':' version given in
part 2 in term of number of read messages, is about 25 % as
compared to YBWC,

4 DISCUSSION

It is difficult to compare the shown results with the re-
sults from different papers. So we have to compare the two
schemes on absolute speedup.

Cevn:
Oawaza »
]
B

Barcan 1

[N R

Figure 5;: Comparison of absolute speedups for both schemes
applied to Othello for 8, 16, 24, 32 proce

Figure 5 shows the comparis
program compared to the fastest sequential Othello program
we have, the recursive o3, We can sec that up to depth
&, ABDADA s more efficient than YBWC search but this
changes in depths greater than 9.

m of speed on the Othello

there is no good choice and we did it in order 1o have results compa-
rabde with those from previous publications

i the pseudo code given in part 2 the eldest node s read vwice
and so are all nodes evaluated in the seeond pass This is the version
we used in our experiments for simplicity of code but iu is really casy
to mprove the search by searching only the non-cvaluated nodes
the third pass

=135~

15 20 25
Number of processors.

15
Number of processors

The ABDADA scheme results

1n
H D

£, -

2

H 19 |

K .

3 B

2,
’ EI‘E[‘ADA L
' Bvewc 32
N Elnmca 32

Figure 6: Comparison ol absolute speednps for both sehemes
applied to chess for 8, 16, 24, 32 processers

Figure G gives the comparison for the game of chess using
the recursive Negascout (which is 30% faster than the non-
recursive ()Il(?jo:). Here we can see that ABDADA scarch
significantly outperforms the YBWC whatever the depth.

Some explanations can be advanced:

¢ T'he game trees are not of the same size, the branching
factor for Othello is 10 in midgame positions while it
5 40 for chess. Thus Othello game trees are deeper:

e Since our Othello evaluation function is unstable, Oth-
ello game trees are less ordered than chess trees. This
makes Negascout less cfficient than af and YBWC
scarch becomes more efficient since we show in [23]
that YBWC is morte cllicient in random trees than in
strongly ordered trees.

Withont more data, it is difficult to find what the real
explanation is. The only other remark we have on our resnlts

" his apparently strange hehaviour observed independently by
Brockington{3] can be explained by the fact that we use high level lun-
guages in which procedure stacks use are much more optimised than
induxed arrays use Similar results can be observed for the Quicksor
algorithms {sec [24]. page 100).

is that the search overheads are greater with ABDADA than
with YBWC, which is casily explained by the fact that in the
YBWC search there is sharing of o3 window improvement
during the search. When a processor linishes the evaluation
of a c¢hild of a position P, the owner of the position may
distribute, if neceded, the new bounds on the a3 window to
his slaves. ' ABDADA does not share windows, so in the
sitnation described in Figure 7, YBWC will ¢xamine fewer
nodes than ABDADA. New bounds are distributed only if
the eldest move of the position 2 is not the best one, (i.c.
the tree is not very well ordered).

Position I, window = [a, 7]

Done P rceturns v

Figure 7: Situation where Y BWC examines fewer nodes than
ABDADA.

Let’s supposce that the children of the position P are being
evaluated by sowe processors (the cldest son of P is already
caplored by both YBW(and ABDADA) end the processor
examining Py returns a value ¢ that will cause the pruning
of the position P (i.c. when v > 3). In this situation YBWC
will cause the pruning (inaking them idle) of the other pro-
cessors examining other children of P whercas ABDADA will
contiveue the erploration of thesce children.

From these results and our experience, we can define
when to choose each of the algorithms depending on the
goal and the means:

YBWC:

Advantages:

o Works without transposition table.
o Works with global transposition tables.
o Works with local transposition tables.
e Efficient for deep problems.
¢ Can bec optimised as function of machine
topology[7].
Drawbacks:

¢ Complex to implement: Even with the defini-
tion given in [7], it is difficult to ensure that
the basie master-slave relationship is work-
ing properly. The debugging part of the
scheme is long. mainly becanse of the non-
deterministic nature of Work Stealing bascd
Process.[5]

e Since the scarch algorithim must be non-
recursive, it is diflicult to implement the same
hewristics as in the sequential programs.

111t should be noted that this feature of the YBWC is, in iy mind,
the: main difference with PVSplit based searches[14, 16, 17, 15. 21, 10}
or Jamborec{11].

-136-

¢ Non-cflicient for small size problems.
ABDADA:
Advantages:

¢ Basy and quick to implement: As we can sce
on Figure I, the main algorithm is very close
to sequential algorithms, so few modifications
are necessary.

e Efficient for small and deep problems.

o Failure resistant: it is very easy to change the
algorithm to be failure resistant (i.c. to give
an answer cven if one or more processors are
dead), you only have to put a time-out when
waiting for transposition table answers and
then you have an algorithm which will return
an answer even when only one processor i
present !

Drawbacks:

o Needs a very [last global transposition table.
This is where all the implementation effort is
made to ensure that transposition table man-
agement is fast enongh for this algorithm.

e Nceds to be redefined in order to take into

acconnt situations such as those of fignre 7.2

So YBWCO is our choice if the computer is not able to
give ux very fast message passing (for small mcssages) such
as a network of workstations, and ABDADA is our choice
on shared memory or real fast small message passing com-
puters. On those compnters and having enongh time for
implementation, we propose to first implement ABDADA
to verify its efficicncy and, if it is not as efficient as required,
to mmplement YBWC, not being certain that this will be
more efficient but to ensure yon have not ignored reasonable

alternatives to ABDADA.

5 APPLICATION ON A 128-PE CRAY T3D

After doing this comparison, we had to implement a new
chess program named Frenchess on a 128 PE CRAY 13D,
This program finished equal third of a field of 24 at the 8th
World Compnter Chess Championship in Hong Kong (May
25 - May 306 1995). Since we began to port Frenchess to
the CRAY T3D in Febroary, we had very little time before
the World Championship, so we chose to nse ABDADA as a
parallel scheme.

On the CM5 computer, shared memory was simulated,
each processor being in charge of a part of the global trans-
position table; we had to rely on the active message layer
to get some very good performance which pure CMMD{22]
conld not give us otherwise,

This method of shared memory simulation has the ad-
vantage of making simultaneous accesses to a same entry

D . .

L2 P'here are basically two ways Lo solve this.

— ‘Tu stock in the transposition table, not only the number of pro-
cessors but alsu which processors are currently evaluating a given
position, so that we can distribute the new windows bounds to
all concerned processors
1o check, when finishing the evaluation of a node, that its parent
node has not been pruned (i e by looking up the corresponding
entry in the transposition table).

The latter method is the easiest to implenient but this only partially

solves the problem while the former will require more tundamental

moedifications of the search process.

tmpossible (this is important to ensure that ABDA DA works
correctly, 1.e. that the number of processors is correct for a
given transposition table entry).

In an adaptation of Frenchess for a CRAY SUN CS 6400,
we used shared memory with mutex (mutual exclusion) locks
to guarantee the exclusive access to cach transposition table
entry. Precise measurement of the speedup was not possible
on this machine'? but it looked very much like what we had
scen on the CM5 even though single processor speed was
around four times greater.

On the CRAY 'I'3D, we used the SHMEM library[1] after
we found how to ensure mutual exclusion with the help of
the shmer_swap call{2].

Single PE performance on the T3 was a big disappoint-
ment for us : on a 50 MHz SPARC 10 (or a single processor
of the CRAY C86400), the sequential algorithm was visiting
around 20000-25000 positions per sccond. We had similar
benchmarks on a 150 MHz DEC Alpha station. But, on the
CRAY T3D, the speed on one PE was only in the 7000-9000
positions/second range ! Probably, this poor performance
was dne to two problcems :

1. cache problems : cache too small and cache invalida-
tion,

2. poor optimisations from the compiler.

Nevertheless and despite the fact that we did not have
cnough CPU time' to complete all the tests to compute the
speednp, parallel performances were great : to have results
comparable to those we obtained on the CM5, we used a
search with a simple evaluation, no extensions except check
extensions, no futility cutt-offs and no null move pruniag,.

Depth 3
Speedup | 1.36 | 3.07

=N

G 7 8
12.9 | 233 | 41.2 | 65.9

<

o
NI
[l

Table 1: Speedup for a 128-PE CRAY T3D compared to 1PE
with 128 times smaller transposition table on the Bratko-
Kopee positions.

Due to the short time, we did the first test without a
constant number of transposition table entries : when using
128 processors we had 128 more cntries (1M entries per pro-
cessor) than when nsing only one processor. Table 1 shows
that in those conditions, at depth 9, we have an average
absolute specdup of 65.9 on the 24 Bratko-Kopec positions.
During real games, where each player has 2 hours to play 40
moves, Frenchess scarches most positions to depth 10, 11 or
12 and even more in simplified endgames. We did not have
cnough time to compute the positions on one processor at
depth 10, so we compared the relative speedup of 128 pro-
cessors compared to 32 with a constant transposition table
in table 2.

Since the speedap for 32 processors with a constant trans-
position table size is about 28 at depth 9 and that the

1 The only way would have been Lo make sure that nobody clse used
the same partition as Frenchess. We did not try to negotiate this as
we knew we would be moving to the T3D soon and the CS6400 was
rather heavily used.

Mg complete our test, for example computing the speedup at depth
10, we would have had to use the whole machine for several hours just
to measure the performance of one processor. Qur problem (the world
Championship) beiny w short terin practical one, we spent machine
time in a more usetul way.

-137-

[[Depth T 3T 4 | s T 6] T 8 | s | 1n]
[Speedup | 105} 133 723 | 122 | 14w | 198 | 262 | 368 |}

Table 2: Relative Speedup for a 128-PE CRAY T3D com-
pared to a 32-PE CRAY T3D with a constant transposition
table size.

speedup is increasing with scarch depth, we can expect a
speedap supcrior to 75 for 128 PEs for depth 10, This
shows clearly that ABDADA is very ellicient on the program
Frenchess for a 128-PE CRAY T3D.

6 CONCLUSION

We have described a new parallelism scheme efficient for
minimax search. We have shown that under some conditions
this new scheme can be more efficient than YBWC.

Doing all those comparisons on the same computers us-
ing the same code, we have shown that comparisons of par-
allel algorithms arc only valid for the given problem (i.c.
the nature of the game, the algorithms, and the evaluation
function) on a given computer. There is no possible way
to say, given ope comparison, on whatever problem and on
whatever computer an algorithm is universally better than
all others.

Furthermore, the analysis doune of the CRAY T3, de-
spite the lack of CPU time, showed that ABDADA is still
very efficient with 128 processors.

We would like to continne this work in order to give a
comparison of ABDADA and YBWC, using the measnres
of critical-path length and work performed[12], to have more
predictive power on the behavionr of those algorithms. This,
done on two different games, may help us nnderstand better
the parallel scarches.

Probably ABDADA is only a small step toward the def-
inition of future parallel algorithms, but when designing
them, we should keep in mind the power of a global trans-
position table.

6.1 ACKNOWLEDGEMENTS

Thaunks to Marc-Frangois Baudot for his great help on the
definition and the implementation of the chess program
Frenchess.

Marc-Frangois Baudot, Mark Brockington, Warren
Smith and Michacl Buro should also be thanked [or their
help in editing the document.

Thanks also to my thesis reviewers, Tony Marsland,
Jacques Pitrat and Michel Gondran for all their construe-
tive criticism on Chapter 4 of my thesis

The present work has been performed in the framework
of the Frenchess project, part of a joint research effort with
Electricité de France (department EDF/DER/TIEM/TMA)
and the Artificial Intelligence Institnt of the university of
Paris 8.

REFERENCES

(1

[13]

BarRIuso, R., AND KNies, A. SHMEM User's Guide
Revision 1.08. CRAY Research Inc, April 1994.

Bavvor, M.-¥.,, W, J.-C., Sgrer, J.-L., AND
GONDRAN, M. Frenchess: A Cray 133D at the 8th
World Computer Chess Championship. In 1st Furopcan
Cray- 13D Workshop (Sept. 1995), Fcole Polytechnique
Fédérale de Tausanne and CRAY Rescarch.

BerLINER, H., anpd EBeLiNG, C. Patteru knowledge
and scarch: The SUPREM architecture. Artificial {nu-
telligence 38, 2 { Mar. 1989), 161-198.

BRATKO, |., AND KoPECG, D A test for comparison
of human and computer performance. In Advances in
Computer Chess [T (1982), M. Clarke, Ed., Pergamon
Press, pp. 31 56.

BROCKINGTON, M. An implementation of the young
brothers wait concept. Internal report, University of
Alberta, 1994.

Davin, V.
décision et raisonnemcnt en tanps contraint. Etude et
application au Minimar. PhD thesis, ENSAE, Nov.
1993.

FrLDMANN, R. Spiclbanmsuche mit massiv parallcicn
Systemen. PhD thesis, Fachbereich Mathematik / In-
formatik Universitat GH Paderborn, 1993.
FELDMANN, R., MonikxN, B., Mysuiwierz, P., AND
VORNBERGER, O. Distributed game tree search. In
Pavallel Algorithms for Machine Iutelligence and Vision
{1990), V. Kumar, K. L.N., and P. Fopalkrishman, Eds.,
Springer Verlag, pp. 66 101.

Algorithmique paralléle sur les arbres de

FriunpMann, R., MysoiwirTz, P., AND VORNBERGER,
0. A local area network used as as parallel architecture.
Tech. Rep. 31, University of Paderborn, Sept. 1986.

Hyarr, M., Surer, B., axp NELsoN, H. A parallel
alpha/beta searching algorithm. Parallel Computing 10,
3 (1989), 299-308.

Kuszmaul, B. Synchronized MIMD Computing. PhD
thesis, Department of Flectrical Engineering and Com-
puter Science, Massachusetts Institute of Technology,
May 1994,

Kuszmaun, B. The StarTech massively-parallel chess
program. ICCA Journal 18,1 (Mar. 1995), 3 19.
MarsLaND, 1. A review of game-tree pruning. ICCA
Journal 9, 1 (1986), 3- 19,

MARsLAND, T., axD CamPBELL, M. Parallel search of
strongly ordered game trees. Computing Survcys 14, 1
{1982), 553-562.

MARSLAND, T., OLAFSSON, M., AND SCHAEFFER, J.
Multiprocessor tree-search experiments. In Advences in
Computer Chess 1V (1986), D. Beal, Ed., Pergamon
Press, pp. 37-51.

MARSLAND, 'I'., AND Porowici, F. Parallel game tree
scarch. [(EEE Transactions on Pattern Analysis and

NEWBORN, M. Unsynchronized itcratively deepening
parallel alpha-beta search. IFEFE Transactions on Pat-
tern Analysis and Machine Intelligence PAMI-10, 5
(Sept. 1988), 687—691.

Or1710, S., AND FRLTEN, E. Chess on a hypercube. In

The Third Conference on Hypercube Concurrent Com-
puters and Applications (1988), vol. 2, pp. 1329- 1341,

~138-

[19]

[24]

PrARL, J. Asymptotic properties of minimax trees and
game-searching procedures. Artificial Intelligence 14
(1980}, 113--138.

REINEFELD, A. An improvement to the scout tree-
search algonithm. 1CCA Journal 6, 4 (1983), 414,

ScHABFFER, J. Distributed game-tree search. Jowrnal
of Parallel and Distributed Computing 6, 2 (1989), 90-
114.

TiwkiNnG Maciings CORPORATION. CMMID Refer-
ence Manual V3.0. Cambridge, Massachusetts, May
1993.

Wi, J.-C. Programines d’¢checs de chamnpi-
onnat © avclitechture logicielle, synthése de fonctions
d’évaluation, paraliélise de recherche. Phl) thesis,
Université de Paris VITI, Saint-Denis (France), Jan.
1995.

Winrn, N. Algorithins and Data Stractures. Prentice-
Hall International Editions, 1986.

