
Advanced
Management of Data

Concepts of Distributed Databases (1)

Distributed Databases

Distributed Computing System

• number of processing sites or nodes (computers)

• nodes are interconnected by a computer network

• nodes cooperate in performing certain tasks

Goal

• decompose big, unmanageable problems into smaller tasks

• solve the parts in a coordinated way

 275

Distributed Databases
Big Data Technologies

Distributed databases combine concepts of distributed systems and database
technologies to deal with the vast amounts of data that are being produced and
collected, which includes

• storage

• retrieval

• analysis & mining

• data mining and machine learning algorithms are often used to extract the
needed knowledge

 276

Distributed Database Concepts

Distributed Database (DDB)

• collection of database nodes that must be

• logically related

• connected over a computer network to transmit data and

commands among sites

Distributed database management system (DDBMS)

• software system that manages a distributed database

• in most cases the distribution is made transparent to the user

 277

Distributed Database Concepts

Heterogeneous DDBMS

Different sites may run different hardware, different DBMS products, and may even be based
on different underlying data models. Translations are required to allow communication
between different DBMSs.

Heterogeneous systems usually result when individual sites have implemented their own
databases and integration is considered at a later stage.

Homogeneous DDBMS

All sites use the same DBMS product.

Homogeneous systems are much easier to design and manage. They provide incremental
growth, making the addition of a new site to the DDBMS easy, and allow increased
performance by exploiting the parallel processing capability of multiple sites.

 278

Distributed Database Concepts

Transparency

• data organization / distribution / network transparency

• location transparency

• naming transparency

• replication transparency

• fragmentation transparency

• horizontal fragmentation

• vertical fragmentation

• design transparency

• execution transparency

 279

Example

 280

[Elmasri & Navathe]

Distributed Database Concepts

Reliability

• probability that a system is running at a certain time point.

Availability

• probability that the system is continuously available during a time interval

Failure

• deviation of a system’s behaviour from that which is specified in order to ensure correct
execution of operations

Errors

• subset of system states that causes the failure

Fault

• cause of an error

 281

Distributed Database Concepts

Cause of DDBMS failures

• transactions

• hardware

• communication networks

• occur due to errors associated with messages and line failures

• message errors can include loss, corruption, or out-of-order arrival at destination

Reliable DDBMS

• tolerates failures of underlying components

• processes user requests as long as database consistency is not violated

 282

Distributed Database Concepts

Scalability

Scalability determines the extent to expand the capacity of a distributed system while

continuing to operate without interruption:

• Horizontal scalability

The number of nodes in the distributed system can be expanded to distribute some of the

data and processing loads from existing nodes to the new nodes.

• Vertical scalability

The capacity of individual nodes in the system can be expanded.

 283

Distributed Database Concepts

Network Partitioning

As the number of nodes of a distributed system expands, it is possible that the connecting

network may have faults.

This can cause the nodes to be partitioned into groups of nodes.

The nodes within each partition are still connected by a subnetwork, but communication

among the partitions is lost.

Partition tolerance

A distributed system should have the capacity to continue operating while the network is

partitioned.

 284

Distributed Database Concepts

Autonomy

determines the extent to which individual nodes in a DDBMS can operate independently.

• design autonomy Data model usage and transaction management techniques

 among nodes are independent.

• communication autonomy To which extent each node can decide on sharing of

 information with other nodes?

• execution autonomy Users are independent to act as they wish.

 285

Data Fragmentation

Horizontal Fragmentation (Sharding)

Horizontal fragmentation divides a relation R horizontally by grouping rows to create subsets
of tuples (shards). Each subset has a certain logical meaning and can be specified in the
relational algebra by a σCi(R) operation.

Complete horizontal fragmentation

Is a set of horizontal fragments whose conditions C1, C2, ... , Cn include all the tuples in R, that
is, every tuple in R satisfies (C1 OR C2 OR ... OR Cn)

By applying a UNION operation, the relation R can be reconstructed from a complete
horizontal fragmentation.

Derived horizontal fragmentation

The partitioning of a primary relation can be applied to other (secondary) relations, which are
related to the primary relation via a foreign key.

 286

Example

Sharding based on Department (Dno): The following set Cn is a complete horizontal fragmentation:

C1: select * from EMPLOYEE where Dno = 1

C2: select * from EMPLOYEE where Dno = 4

C3: select * from EMPLOYEE where Dno = 5

 287

[Elmasri & Navathe]

Data Fragmentation
Vertical Fragmentation

A vertical fragment of a relation keeps only certain attributes of a relation R and can be
specified by a πLi(R) operation in the relational algebra.

Complete Vertical Fragmentation

A set of vertical fragments whose projection lists L1, L2, ... , Ln include all the attributes in R
but share only the primary key attribute of R. The projection lists satisfy the following
conditions:

• L1 ∪L2 ∪...∪Ln =ATTRS(R), where ATTRS(R) is the set of attributes of R

• Li ∩Lj =PK(R) for any i≠j, where PK(R) is the primary key of R

R can be reconstructed from a complete vertical fragmentation by applying a Full-Outer-Join
operation.

 288

Example
Complete vertical fragmentation of PROJECT into

• PROJ_DATA:  
 SELECT Pname, Pnumber, Plocation  
FROM PROJECT

• PROJ_DEPT:  
 SELECT Pnumber, Dnum  
FROM PROJECT

 289

PROJ_DATA PROJ_DEPT

Data Fragmentation
Mixed Fragmentation

Horizontal and vertical fragmentation can be intermixed.

A fragment of a relation R can be specified by a selection /

projection combination of operations πL(σC(R)):

• vertical fragment: C = TRUE and L ≠ ATTRS(R)

• horizontal fragment: C ≠ TRUE and L = ATTRS(R)

• mixed fragment: C ≠ TRUE and L ≠ ATTRS(R)

• relation itself: C = TRUE and L = ATTRS(R)

 290

Data Fragmentation
Fragmentation schema

• defines a set of fragments that includes all attributes and tuples in the database

By applying some sequence of OUTER JOIN and UNION operations the whole

database must be reconstructable from these fragments.

Allocation schema

• describes the allocation of fragments to nodes

Replication

A fragment is said to be replicated, if it is stored at more than one site.

 291

Data Replication
Full Replication

The whole database is replicated at every node in the distributed system.

Advantages: As long as at least one site is up, the system can continue to operate, which

 maximizes availability.

 It also improves performance of retrieval for global queries because the

 results of such queries can be obtained locally from any one site.

Disadvantages: Update operations can be slowed down drastically, since every copy must

 be updated similarly to keep consistency.

 Concurrency control and recovery techniques are becoming more

 expensive.

 292

Data Replication
No Replication

Each fragment is stored at only one site.

In this case, all fragments must be disjoint, except for the repetition of primary keys among
vertical or mixed fragments.

Partial Replication

Some fragments of the database may be replicated whereas others may not.

The number of copies of each fragment can range from one up to the total number of sites in
the distributed system.

Replication Schema

A description of the replication of fragments.

 293

Data Allocation
Criteria for data distribution

Each (copy of a) fragment must be assigned to a particular site in the distributed system.

The choice of sites and the degree of replication depend on

• performance and availability goals of the system

• types and frequencies of transactions submitted at each site

Data that is frequently accessed at multiple sites should be replicated at those sites.

If many updates are performed, it may be useful to limit replication.

Finding an optimal or even a good solution to distributed data allocation is a complex

optimization problem.

 294

Example (1)
We want to fragment and distribute the following company database:

 295
[Elmasri & Navathe]

Example (2)
Description / Requirements

The company has three computer sites - one for each department:

• Site 1 is used by company headquarters and accesses all employee and project
information regularly.

• Site 2 is used for department 5 only

• Site 3 is used for department 4 only

At all sites, we expect frequent access to the EMPLOYEE and PROJECT information for the

employees who work in that department and the projects controlled by that department.

These sites mainly access the Name, Ssn, Salary, and Super_ssn attributes of EMPLOYEE.

 296

Example (3)

 297

According to these requirements, the whole database can be stored at site 1.

Example (4)

 298

According to these requirements, the whole database can be stored at site 1.

Example (5)
To determine the fragments to be replicated at sites 2 and 3, first
we horizontally fragment DEPARTMENT by its key (Dnumber).

 299

DEP_5

DEP_4

Ex
am

pl
e

(6
)

 300

PROJS_5

PROJS_4

DEP_5_LOCS

DEP_4_LOCS

We apply derived fragmentation to the PROJECT and DEPT_LOCATIONS relations
based on their foreign keys for department number (Dnum, Dnumber).

Ex
am

pl
e

(7
)

 301

We apply derived fragmentation to EMPLOYEE based on its foreign keys for department number (Dno).

Ex
am

pl
e

(8
)

 302

We vertically fragment the resulting EMPLOYEE fragments to include only the most frequently
accessed attributes.

Ex
am

pl
e

(9
)

 303

Allocation of fragments to sites

• relation fragments at site 2 correspond to department 5

• EMPD_5 shows a mixed fragment which includes the EMPLOYEE tuples satisfying the
condition Dno = 5

• the horizontal fragments of PROJECT, DEPARTMENT, and DEPT_LOCATIONS are similarly
fragmented by department number 5

Ex
am

pl
e

(1
0)

 304

Allocation of fragments to sites

• relation fragments at site 3 correspond to department 4

• EMPD_4 shows a mixed fragment which includes the EMPLOYEE tuples satisfying the
condition Dno = 4

• the horizontal fragments of PROJECT, DEPARTMENT, and DEPT_LOCATIONS are similarly
fragmented by department number 4

Example (11)
We must now fragment the WORKS_ON relation and decide which
fragments of WORKS_ON to store at sites 2 and 3.

Since each tuple in WORKS_ON relates an employee to a project, the
problem arises that no attribute of WORKS_ON directly indicates the
department to which each tuple belongs.

There may be projects, which are controlled by a different
department than the related employee.

Hence, we should fragment WORKS_ON based on the department in
which the employee works and then fragment further based on the
department that controls the projects that employee is working on

 305

Example (12)

Fragments of WORKS_ON for employees
working in department 5

C = Essn in (SELECT Ssn  
 FROM EMPLOYEE  
 WHERE Dno = 5)

The union of fragments G1, G2, and G3 gives
all WORKS_ON tuples for employees who
work for department 5.

 306

Example (13)

Fragments of WORKS_ON for employees
working in department 4

C = Essn in (SELECT Ssn  
 FROM EMPLOYEE  
 WHERE Dno = 4)

The union of fragments G4, G5, and G6
gives all WORKS_ON tuples for employees
who work for department 4.

 307

Fragments of WORKS_ON for employees
working in department 1

C = Essn in (SELECT Ssn  
 FROM EMPLOYEE  
 WHERE Dno = 1)

The union of fragments G7, G8, and G9
gives all WORKS_ON tuples for employees
who work for department 1.

 308

Example (14)

Example (15)

The union of fragments G1, G4, and G7 gives all

WORKS_ON tuples for projects controlled by
department 5.

Additionally, we union fragments G2 and G3 at site 2
(WORKS_ON_5)

This allocation strategy permits the join between the
local EMPLOYEE or PROJECT fragments at site 2
and the local WORKS_ON fragment to be performed
completely locally.

 309

Example (16)

The union of fragments G2, G5, and G8 gives all
WORKS_ON tuples for projects controlled by
department 4.

Additionally, we union fragments G4, and G6 at site
3 (WORKS_ON_4)

This allocation strategy permits the join between the
local EMPLOYEE or PROJECT fragments at site 3
and the local WORKS_ON fragment to be
performed completely locally.

 310

