
Advanced
Management of Data

Concepts of Distributed Databases (2)

Exam Registration WS19/20

The following information is valid only if you can not register for exam „Advanced

Management of Data“ via SB Service / Central Examination Office.

The examination board of department of computer science has approved to accept

„Advanced Management of Data“ instead of „Datenbanken und Objektorientierung“

Please register in Opal:

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/20312915968/CourseNode/99737891886219

If you pass the exam you have to apply for acceptance of „Advanced Management of Data“

as „Datenbanken und Objektorientierung“. Further information you can find on our website.

Non-Distributed
DBMS-Architecture

External Level

The users’ view of the database, describes
that part of the database that is relevant to
each user

Conceptual Level

The logical view of the database, describes
what data is stored in the database and the
relationships among the data

Internal Level

The physical representation of the database
on the computer, describes how the data is
stored in the database

311

[Connolly & Begg]

DDBMS-Architecture
Global conceptual schema

• logical description of the whole database

• provides physical data independence from the
distributed environment

Global external schemas

• provide logical data independence

Fragmentation schema

• description of how the data is logically partitioned

Allocation schema

• description of where the data is located, taking account
of any replication

Local mapping schemas

• map fragments in the allocation schema into external
objects in the local database

312
[Connolly & Begg]

DDBMS Component
Architecture

313

[Connolly & Begg]

Local DBMS (LDBMS) component

• standard DBMS, responsible for
controlling the local data at each
site that has a database

• has its own local system catalog
that stores information about the
data held at that site.

Data communications (DC)
component

• software that enables all sites to
communicate with each other

• contains information about the
sites and the links

DDBMS Component
Architecture

314

[Connolly & Begg]

Global system catalog (GSC)

• holds information specific to
distribution, such as the
fragmentation, replication, and
allocation schemas

• can itself be managed as a
distributed database (showing
similar advantages and
disadvantages)

DDBMS component

• controlling unit of the entire system

Distributed Queries / Updates
DDBMS with no distribution transparency

• users phrase a query by specifying the location of needed fragments directly

DDBMS with no replication transparency

• users are responsible for maintaining consistency of replicated data items when updating

DDBMS with full distribution, fragmentation, and replication transparency

• users specify a query just as in a non-distributed DBMS

1. a query decomposition module decomposes a query into subqueries that can be
performed at the individual sites

2. a subquery composition module combines the results of the subqueries

• for updates, the DDBMS is responsible for maintaining consistency among replicated items

315

Query and Update
Decomposition

Whenever the DDBMS determines that a referenced item is replicated, it must choose a

particular replica during query execution.

The DDBMS catalog stores information about

• replication

• distribution

• fragmentation, for each

• vertical fragment, the attribute list is kept

• horizontal fragment, a selection condition called guard is kept

• mixed fragment, both the attribute list and the guard condition are stored

316

317

EMPD4 attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dno
EMPD4 guard: Dno = 4

DEP4 attribute list: *
DEP4 guard: Dnumber = 4

DEP4_LOCS attr: *
DEP4_LOCS guard: Dnumber = 4

PROJS4 attribute list: *
PROJS4 guard: Dnum = 4

WORKS_ON4 attr.: *
WORKS_ON4 guard: Essn IN (πSsn (EMPD4)) OR Pno IN (πPnumber (PROJS4))

[Elmasri & Navathe]

Example

Fragmentation information
stored in DDBMS catalog:

Symbol * specifies all
attributes of a relation

Query Processing
A distributed database query is processed in four stages:

1. Query Mapping The input query on distributed data is specified formally using a query
 language. It is then translated into an algebraic query on global relations
 using the global conceptual schema.

2. Localization The distributed query is mapped on the global schema to separate queries
 on individual fragments using data distribution and replication information.

3. Global Query Selecting a strategy from a list of candidates that is closest to optimal.
Optimization A list of candidate queries can be obtained by permuting the ordering of
 operations within a fragment query generated by the previous stage.
 The total cost is a weighted combination of CPU cost, I/O costs, and
 communication costs.

4. Local Query The techniques are similar to those used in centralized systems.  
Optimization

318

Query Processing
Network Data Transfer

• relational data needs to be transferred to other sites for further processing

• single tuples

• intermediate files (the result of a partial query)

• entire relations

• the final query result may be needed at a different site than it has been computed

Distributed query optimization

Network data transfer is an important cost factor in DDBs, because in most cases it is
relatively slow compared to CPU or I/O transfer speeds ➔ reducing the amount of
network data transfer is an important optimization criterion in DDBMS.

319

Ex
am

pl
e

(T
as

k)
 1

Query Q1: For each employee, retrieve the employee name and the name of the
 department for which the employee works (we assume that every
 employee is related to a department).

Result side: The query is submitted at a distinct site 3

320

[Elmasri & Navathe]

Ex
am

pl
e

(T
as

k)
 2

Query Q2: For each department, retrieve the department name and the name of the
 department manager (we assume that each department has a manager)

Result side: The query is submitted at a distinct site 3.

321

[Elmasri & Navathe]

Ex
am

pl
e

(T
as

k)
 3

Query Q1: For each employee, retrieve the employee name and the name of the department
 for which the employee works.

Query Q2: For each department, retrieve the department name and the name of the
 department manager.

Result side: Both queries are submitted at site 2

322

[Elmasri & Navathe]

Query Processing Using
Semijoin

Semijoin

The Semijoin operation defines a relation that

contains the tuples of R that participate in the

join of R with S satisfying the predicate F.

We can rewrite the Semijoin using the Projection

and Join operations:

(A is the set of all attributes for R)

323

Query Processing Using
Semijoin

Idea

Reduce the number and size of tuples before transferring them to another site

Steps

1. send the joining column(s) jc of one relation R to the site where the other relation S is located

2. join jc with S

3. project the jc and attributes required in the result from S and transfer them to the site of R

4. join the transferred columns with R

Realization of distributed Semijoin

1. Project the join attributes of S and transfer them to the site where R resides

2. Join the transferred attributes with R.

324

Using Semijoin Strategy for Query Q1 (at site 2)

1. Project the join attributes of DEPARTMENT
(Dnumber) at site 2, and transfer them to site 1:

4 * 100 = 400 bytes

2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer the required
attributes from the resulting file (Dno, Fname, Lname) to site 2:

34 * 10,000 = 340,000 bytes

3. Perform the query by joining the transferred file with DEPARTMENT

• in total, we transferred 400 + 340,000 = 340,400 (vs. 403,500 without semijoin) bytes
325

Ex
am

pl
e

4

[Elmasri & Navathe]

SELECT Fname, Lname, Dname  
FROM EMPLOYEE, DEPARTMENT  
WHERE Dno=Dnumber

Using Semijoin Strategy for Query Q2 (at site 2)

1. Project the join attributes of DEPARTMENT
(Mgr_ssn) at site 2, and transfer them to site 1:

9 * 100 = 900 bytes

2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer the required
attributes (Mgr_ssn, Fname, Lname) from the resulting file to site 2:

39 * 100 = 3,900 bytes

3. Perform the query by joining the transferred file with DEPARTMENT

• in total, we transferred 900 + 3,900 = 4,800 (vs. 7,500 without semijoin) bytes
326

Ex
am

pl
e

5

[Elmasri & Navathe]

SELECT Fname, Lname, Dname  
FROM DEPARTMENT, EMPLOYEE  
WHERE Mgr_ssn=Ssn

