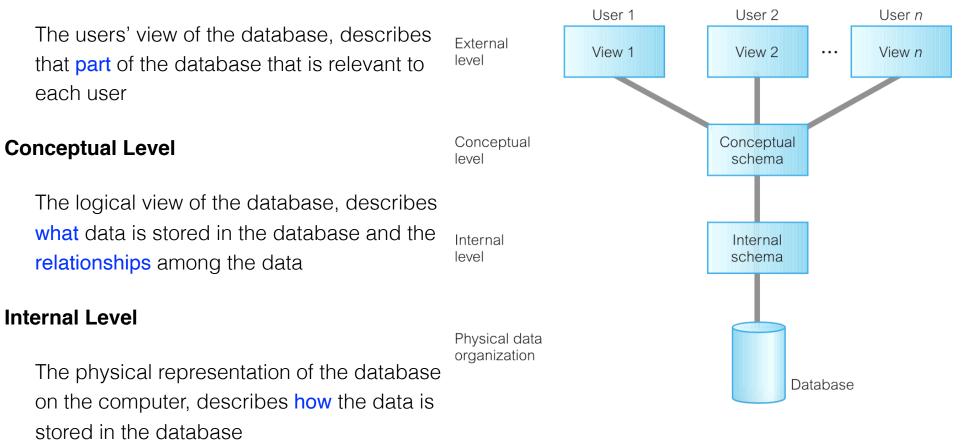
Advanced Management of Data

Concepts of Distributed Databases (2)

Exam Registration WS19/20

The following information is valid only if you can **not** register for exam "Advanced Management of Data" via SB Service / Central Examination Office.

The examination board of department of computer science has approved to accept "Advanced Management of Data" instead of "Datenbanken und Objektorientierung"


Please register in Opal:

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/20312915968/CourseNode/99737891886219

If you pass the exam you have to apply for acceptance of "Advanced Management of Data" as "Datenbanken und Objektorientierung". Further information you can find on our website.

Non-Distributed DBMS-Architecture

External Level

[Connolly & Begg]

DDBMS-Architecture

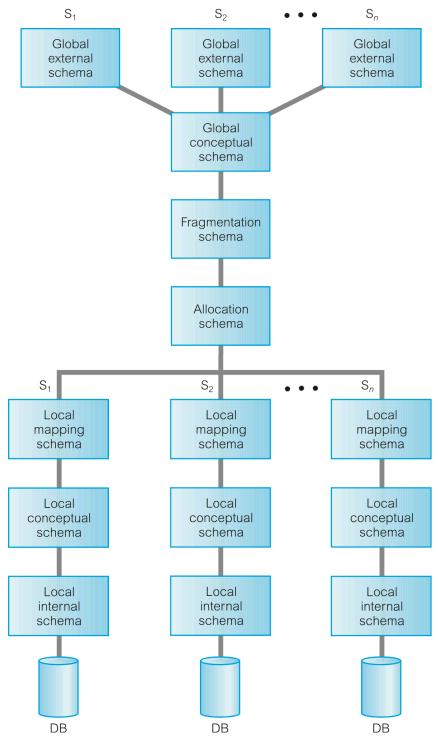
Global conceptual schema

- logical description of the whole database
- provides physical data independence from the distributed environment

Global external schemas

• provide logical data independence

Fragmentation schema

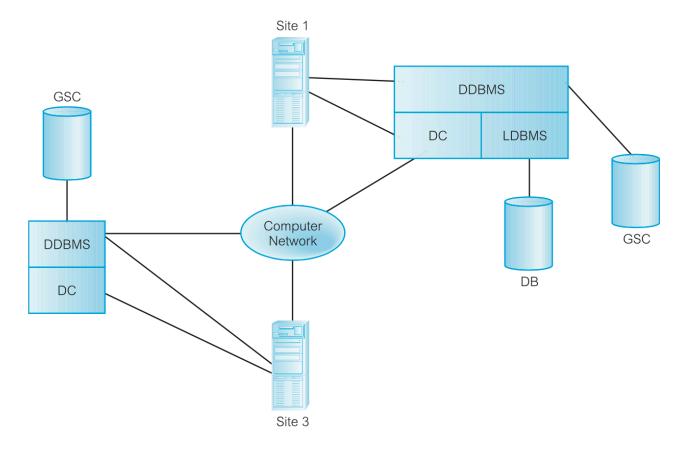

• description of how the data is logically partitioned

Allocation schema

 description of where the data is located, taking account of any replication

Local mapping schemas

 map fragments in the allocation schema into external objects in the local database

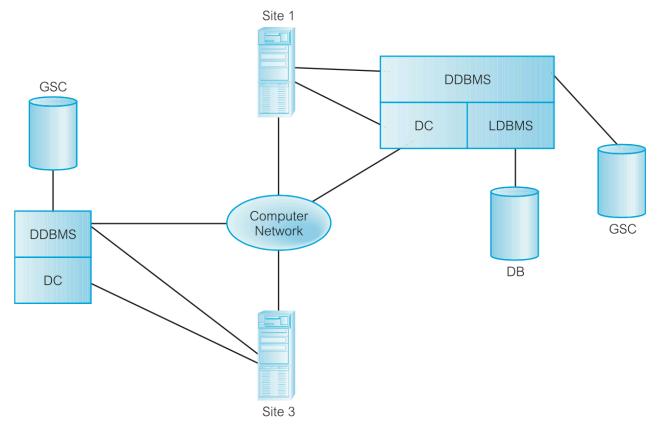

DDBMS Component Architecture

Local DBMS (LDBMS) component

- standard DBMS, responsible for controlling the local data at each site that has a database
- has its own local system catalog that stores information about the data held at that site.

Data communications (DC) component

- software that enables all sites to communicate with each other
- contains information about the sites and the links


DDBMS Component Architecture

Global system catalog (GSC)

- holds information specific to distribution, such as the fragmentation, replication, and allocation schemas
- can itself be managed as a distributed database (showing similar advantages and disadvantages)

DDBMS component

· controlling unit of the entire system

Distributed Queries / Updates

DDBMS with no distribution transparency

• users phrase a query by specifying the location of needed fragments directly

DDBMS with no replication transparency

• users are responsible for maintaining consistency of replicated data items when updating

DDBMS with full distribution, fragmentation, and replication transparency

- users specify a query just as in a non-distributed DBMS
 - 1. a query decomposition module decomposes a query into subqueries that can be performed at the individual sites
 - 2. a subquery composition module combines the results of the subqueries
- for updates, the DDBMS is responsible for maintaining consistency among replicated items

Query and Update Decomposition

Whenever the DDBMS determines that a referenced item is replicated, it must choose a particular replica during query execution.

The DDBMS catalog stores information about

- replication
- distribution
- fragmentation, for each
 - vertical fragment, the attribute list is kept
 - horizontal fragment, a selection condition called guard is kept
 - mixed fragment, both the attribute list and the guard condition are stored

EMPD_4

Fname	Minit	Lname	<u>Ssn</u>	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	25000	987654321	4
Jennifer	S	Wallace	987654321	43000	888665555	4
Ahmad	V	Jabbar	987987987	25000	987654321	4

Example

DEP_4

DEP_4_LOCS

Location

Stafford

Dname	<u>Dnumber</u>	Mgr_ssn	Mgr_start_date	<u>Dnumber</u>
Administration	4	987654321	1995-01-01	4

WORKS_ON_4

Essn	<u>Pno</u>	Hours
333445555	10	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0

Fragmentation information stored in DDBMS catalog:

Symbol * specifies all attributes of a relation

PROJS_4

Pname	<u>Pnumber</u>	Plocation	Dnum
Computerization	10	Stafford	4
New_benefits	30	Stafford	4

[Elmasri & Navathe]

EMPD4 attribute list:Fname, Minit, Lname, Ssn, Salary, Super_ssn, DnoEMPD4 guard:Dno = 4

DEP4 attribute list: * DEP4 guard: Dnumber = 4

DEP4_LOCS attr: * DEP4_LOCS guard: Dnumber = 4

```
PROJS4 attribute list: *
PROJS4 guard: Dnum = 4
```

WORKS_ON4 attr.: * WORKS_ON4 guard: Essn IN (π_{Ssn} (EMPD4)) OR Pno IN ($\pi_{Pnumber}$ (PROJS4))

Query Processing

A distributed database query is processed in four stages:

- **1. Query Mapping** The input query on distributed data is specified formally using a query language. It is then translated into an algebraic query on global relations using the global conceptual schema.
- **2. Localization** The distributed query is mapped on the global schema to separate queries on individual fragments using data distribution and replication information.
- 3. Global Query
 Selecting a strategy from a list of candidates that is closest to optimal.
 A list of candidate queries can be obtained by permuting the ordering of operations within a fragment query generated by the previous stage.
 The total cost is a weighted combination of CPU cost, I/O costs, and communication costs.
- 4. Local Query The techniques are similar to those used in centralized systems.Optimization

Query Processing

Network Data Transfer

- relational data needs to be transferred to other sites for further processing
 - single tuples
 - intermediate files (the result of a partial query)
 - entire relations
- the final query result may be needed at a different site than it has been computed

Distributed query optimization

Network data transfer is an important cost factor in DDBs, because in most cases it is relatively slow compared to CPU or I/O transfer speeds \rightarrow reducing the amount of network data transfer is an important optimization criterion in DDBMS.

EMPLOYEE

Ssn field is 9 bytes long Fname field is 15 bytes long Dno field is 4 bytes long Lname field is 15 bytes long Site 2: DEPARTMENT Dname Dnumber Mgr_ssn Mgr_start_date 100 records each record is 35 bytes long Dnumber field is 4 bytes long Dnumber field is 4 bytes long Dname field is 10 bytes long Mgr_ssn field is 9 bytes long [Emasri	Dno									
Dno field is 4 bytes long Lname field is 15 bytes long Site 2: DEPARTMENT Dname Dnumber Mgr_ssn Mgr_start_date 100 records each record is 35 bytes long Dname field is 10 bytes long Dnumber field is 4 bytes long Dname field is 10 bytes long (Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
Dno field is 4 bytes long Lname field is 15 bytes long Site 2: DEPARTMENT Dname Dnumber Mgr_ssn Mgr_start_date 100 records each record is 35 bytes long Dname field is 10 bytes long Dnumber field is 4 bytes long Dname field is 10 bytes long [Elmasri Guery Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
Site 2: DEPARTMENT Dname Dnumber Mgr_ssn Mgr_start_date 100 records each record is 35 bytes long Dnumber field is 4 bytes long Dname field is 10 bytes long Mgr_ssn field is 9 bytes long [Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
DEPARTMENT Dname Dnumber Mgr_ssn Mgr_start_date 100 records each record is 35 bytes long Dnumber field is 4 bytes long Mgr_ssn field is 9 bytes long Dname field is 10 bytes long (Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
DEPARTMENT Dname Dnumber Mgr_ssn Mgr_start_date 100 records each record is 35 bytes long Dnumber field is 4 bytes long Mgr_ssn field is 9 bytes long Dname field is 10 bytes long (Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
Dname Dnumber Mgr_ssn Mgr_start_date 100 records each record is 35 bytes long Dnumber field is 4 bytes long Mgr_ssn field is 9 bytes long Dname field is 10 bytes long (Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
100 records each record is 35 bytes long Dnumber field is 4 bytes long Mgr_ssn field is 9 bytes long [Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
each record is 35 bytes long Dname field is 10 bytes long Dnumber field is 4 bytes long Dname field is 10 bytes long Mgr_ssn field is 9 bytes long [Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
each record is 35 bytes long Dname field is 10 bytes long Dnumber field is 4 bytes long Dname field is 10 bytes long Mgr_ssn field is 9 bytes long [Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
Mgr_ssn field is 9 bytes long [Elmasri Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
Query Q1: For each employee, retrieve the employee name and the name of the department for which the employee works (we assume that every										
department for which the employee works (we assume that every	Navathe									
department for which the employee works (we assume that every										
Result side: The query is submitted at a distinct site 3										

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno		
10,000 records											
	ach record is 100 bytes long										
Ssn field is	-	•			d is 15 bytes						
Dno field is	s 4 bytes	s long	L	name field	d is 15 bytes	long					
Site 2:											
DEPARTM	ENT										
Dname	Dnum	number Mgr_ssn Mgr_start_date									
100 record											
each record		bytes long									
Dnumber f				Dname fiel	d is 10 bytes	long					
Mgr_ssn fi			·		2	0			Novethe 1		
•								[Elmash a	& Navathe]		
Query Q2	: Fo	For each department, retrieve the department name and the name of the							9		
	de	department manager (we assume that each department has a manager)									
Result sid	le: Th	The query is submitted at a distinct site 3.									

 \mathcal{O} (Task) Φ xample

EMPLOYEE

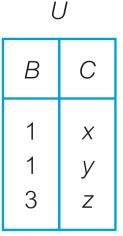
	-								_
Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
10,000 rec each recor Ssn field is Dno field is	d is 100 9 bytes	s long	F		d is 15 bytes d is 15 bytes	•			
Site 2:									
DEPARTM	ENT								
Dname	Dnum	nber N	/lgr_ssn	Mgr_s	tart_date				
100 record each record Dnumber fi Mgr_ssn fie	d is 35 eld is 4	bytes long	g C	Dname fiel	d is 10 bytes	s long		[Elmasri	& Navathe
Query Q1:	_	each empl hich the e			employee r	name a	nd the nar	me of the depa	urtment

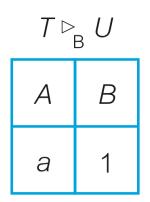
Result side: Both queries are submitted at site 2

Query Processing Using Semijoin

Semijoin

R ⊳_F **S**


The Semijoin operation defines a relation that contains the tuples of **R** that participate in the join of **R** with **S** satisfying the predicate *F*.


We can rewrite the Semijoin using the Projection and Join operations:

$$R \triangleright_F S = \prod_A (R \bowtie_F S)$$

(A is the set of all attributes for R)

TABa1b2

Query Processing Using Semijoin

Idea

Reduce the number and size of tuples before transferring them to another site

Steps

- 1. send the joining column(s) *jc* of one relation *R* to the site where the other relation *S* is located
- 2. join *jc* with *S*
- 3. project the *jc* and attributes required in the result from S and transfer them to the site of R
- 4. join the transferred columns with R

Realization of distributed Semijoin

- 1. Project the join attributes of *S* and transfer them to the site where *R* resides
- 2. Join the transferred attributes with R.

xample

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
10,000 red each recor Ssn field is Dno field is	rd is 100 s 9 bytes	•		DEPARTME	ENT Dnumber	<u> </u>	r_ssn	Mgr_start_date	
Fname field is 15 bytes long 100 records Lname field is 15 bytes long each record is 35 bytes long Dnumber field is 4 bytes long Dname field is 10 bytes long Mgr_ssn field is 9 bytes long [Elmasri & Navathe]								U	
Using Sem	nijoin St	trategy for	r Query	y Q1 (at si	i te 2) S	ELECT	Fname,	Lname, Dname	9
 Project the join attributes of DEPARTMENT (Dnumber) at site 2, and transfer them to site 1: 						ROM HERE	EMPLOYE Dno=Dnu	E, DEPARTMEN mber	1T
				4 * 10	0 = 400 by	ytes			

2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer the required attributes from the resulting file (Dno, Fname, Lname) to site 2:

34 * 10,000 = 340,000 bytes

- 3. Perform the query by joining the transferred file with DEPARTMENT
 - in total, we transferred 400 + 340,000 = 340,400 (vs. 403,500 without semijoin) bytes

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno	
	rd is 100) bytes long	r	ite 2: EPARTM	ENT					
Ssn field is 9 bytes long Dno field is 4 bytes long				Dname	<u>Dnumber</u>	<u>per</u> Mgr_ssn Mgr_start_date				
Fname fiel Lname fiel		, ,	e D	number fi	s d is 35 bytes eld is 4 bytes eld is 9 bytes	s long	Dnan	ne field is 10 byt [Elmasri	t es long & Navathe]	
Using Sen	nijoin Si	trategy for	r Query	v Q2 (at s	ite 2)	ELECT	Fname,	Lname, Dnam	e	
 Project the join attributes of DEPARTMENT (Mgr_ssn) at site 2, and transfer them to site 1: 					1471	FROM DEPARTMENT, EMPLOYEE WHERE Mgr_ssn=Ssn			EE	
				9 * 10	0 = 900 byt	es				

2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer the required attributes (Mgr_ssn, Fname, Lname) from the resulting file to site 2:

39 * 100 = 3,900 bytes

- 3. Perform the query by joining the transferred file with DEPARTMENT
 - in total, we transferred 900 + 3,900 = 4,800 (vs. 7,500 without semijoin) bytes