
Outputting to Raspberry Pi Pins
Raspberry Pi contains GPIO (General-Purpose Input Output) pins that allow the Raspberry Pi to
interact with external features through electronic circuits. The gpiozero module allows Python to
use these GPIO pins with a number of supported components (e.g. LEDs, buttons).

These pins fall into a number of categories: 3V3, 5V, Ground, or GPIO. The chart below shows
which pin is in what category on a Raspberry Pi.

https://www.raspberrypi.org/documentation/usage/gpio/

Using a Button
This activity uses a button connected to a Raspberry Pi’s GPIO pins to instruct the program
when to collect data. Each time the button is pressed, the sensors will collect a single data
point. The program will end when the button has been held down for 5 seconds.

1. Gather the following equipment:
a. Two jumper cables with a plug on one end and a socket on the other,
b. A breadboard,
c. Aa Raspberry Pi,
d. A button,
e. A resistor of 100 ohms or more.

https://www.raspberrypi.org/documentation/usage/gpio/


2. Create the circuit illustrated above.
a. Create a series circuit that connects GPIO pin 17 to the button and resistor in a

series circuit. The circuit is completed by connecting the free end to a ground
(GND) pin.You should have a jumper wire connecting a GND (ground) pin to the
resistor and one that connects a GPIO pin to the button. The program will be
written using GPIO 17.

Open your Python editor and create a new Python file. Note: if you have not installed the
gpiozero module on your Raspberry Pi, you will need to access the terminal and pip3 install it.
Type pip3 install gpiozero in the terminal prompt to install this module.

Create the following code. Add comments to help you remember what the code accomplishes.
We recommend skipping a line between these sections of code to make it easier to read.

Code Explanation

from gpiozero import LED
from gdx import gdx
gdx = gdx.gdx()

Import the required modules.
Create a variable gdx to streamline your code



gdx.open_ble() or gdx.open_usb()
gdx.select_sensors()

Only specify one type of “open” code - either
USB or BLE. This opens the GDX device.
The user is prompted to select a sensor, and
then starts collecting data at a specified rate
(100 milliseconds).
This does not store any data, simply connects
the sensor, and starts sampling data.

button = Button(17) Creates a constant to represent the button on
pin 17

saved_data = [] Creates a list to save data. This opens up
opportunities for extensions and is optional.

button.hold_time = 5 hold_time is a command in gpiozero. This will
be used to stop the program.

running = True
while running:

if button.is_pressed:
gdx.start(period=100)
data_list = gdx.read()
if data_list == None or len(data_list) == 0:

break
print(data_list[0])

saved_data.append(data_list[0])
gdx.stop()

This while loop starts data collection if the button is pressed, prints and stores the sensor
reading, and stops data collection.

while button.is_pressed:
if button.is_held:

running = False
Break

gdx.close()

This while loop is embedded in the previous
while loop. As long as the button is pressed
the program will loop through this section of
code.
When button.is_held is True (when the
button.hold_time is met) the initial while loop
is set to False and this loop is escaped.
This ensures a single data point will be
collected and provides a means of escaping
the while loop.
gdx.close() stops the sensor data collection.

This program is fully functional. Save and run the program now.

You will notice that the screen is full of output stating that the gdx sensor has started and
stopped. The following code will allow you to eliminate this text. Linux contains a special file,
/dev/null, that is a location that will receive information without cluttering the IDLE shell.



To access this, you will need to import two more modules. Follow these instructions to send
these messages to the null location.

Code Explanation

import os
import sys

Add these two modules after the code to
import other modules.

out_to_null = open('/dev/null', 'w')
out_og = sys.stdout

out_to_null constant will direct output to the
/dev/null location
out_og constant saves the default path
should you want to direct the output to the
IDLE shell.

sys.stdout = out_to_null Insert this before the
gdx.start(period=100) and before the
gdx.stop() lines of code.
This sets the output to the /dev/null location

sys.stdout = out_og Insert this code before
print(data_list[0]) and gdx.close()

The addition of these lines of code toggles
whether the output goes to the IDLE shell or
to the /dev/null/ location.

Run the program and make sure it is working properly. You should now be able to press the
button and have one data point printed to the screen, and end the program by holding the
button for 5 seconds.

Adjusting the Program
Once you have successfully run the program make changes as suggested below to customize
your program.

This activity saved the sensor readings in the saved_data list. Change this program to integrate
a graph of these data values using the VPython module.


