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Abstract

Object Orientation is a well established programming paradigm. The idea of having an
entity whose identity and memory persist over time and can be interacted with through an
interface is very appealing to programming large-scale software. Functional specifications,
on the other hand, are much cleaner and allow us to apply a number of reasoning techniques
to prove properties of a given specification. Ideally, we would like to think using objects and
calculate with their functional specification.

It turns out that there are connections between both paradigms. This technical report
emerges from the ideas behind a so-called objectification law. We give semantics for a toy
object oriented language using software components in their functional form and showing
that we can objectify software components and be able to trace their different interactions.
We also address, albeit superficially, the connection between the behaviour monad and dif-
ferent language constructs that such monad corresponds to. A proof-of-concept compiler
that outputs Haskell code, following the semantics presented here, was also developed as a
basis for this research.
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Abstract. Object Orientation is a well established programming paradigm.
The idea of having an entity whose identity and memory persist over time and
can be interacted with through an interface is very appealing to programming
large-scale software. Functional specifications, on the other hand, are much
cleaner and allow us to apply a number of reasoning techniques to prove
properties of a given specification. Ideally, we would like to think using ob-
jects and calculate with their functional specification.

It turns out that there are connections between both paradigms. This tech-
nical report emerges from the ideas behind a so-called objectification law. We
give semantics for a toy object oriented language using software components
in their functional form and showing that we can objectify software compo-
nents and be able to trace their different interactions. We also address, albeit
superficially, the connection between the behaviour monad and different lan-
guage constructs that such monad corresponds to. A proof-of-concept com-
piler that outputs Haskell code, following the semantics presented here, was
also developed as a basis for this research.

1 Introduction

Component Calculi, as introduced in [1], provides a coalgebraic approach to software engi-
neering, where these so called components are coalgebras of a given category. This report is
concerned with the semantics of a language in terms of components, and emerges as a con-
tinuation of [4], in terms of the expressiveness of the Monadic Mealy Machines formalism
explained in the aforementioned paper.

The central idea of this report lies in theorem 1, where combinators ; and @ represent
sequential composition and choice, respectively.

Theorem 1 (Objectification exchange law). Let m1, m2, n1 and na be Mealy Machines, assum-
ing that they are suitably typed for the following construction, then

(m1 @mz2) 5 (1 ®nz2) = (m1;11) O (M2 5 n2)

On the left-hand side we can see two two method choices linked together, sequentially.
Whereas on the right-hand side we see a choice between two sequential executions. The
left-hand side is a bottom-up approach, where we put together two existing components
using wires and compositions, contrasting with the top-down version, where we specify the
functionality of the whole. Let us illustrate this with a simple example.

We will build a folder that provides two buttons, one for turning pages left and the other
for turning them right. For this, we are going to use two communicating stack components.

Component oriented approach. Let us consider the following functions, from which we’ll
build a stack component:

push :: (Monad F) = ([p],p) = F ([p],1)
push (tv h) =n (h : t, ())

pop :: (Monad F) = ([p],1) — F ([p], p)



pop (1,()) =n'$ (tail, head) 1

stack :: (Strong F) = ([p],1+p) = F ([p],p+ 1)
stack = pop ® push

We can now (almost) construct our folder component. It consists in the external choice
of two stacks, with a wiring separating the interface wires 1 + 1 from the private ones, p + p,
that will be used to feed back information.

preFolder :: (Strong F)
(([p] [p []) S(1+1)+(p+p))

F(([p],Ip]),1+1)+ (p + p))
preFolder = stack B stack{[(i1; ,io1]

Jli12 si22]l—[li21 s411] S[i22 i12]]}

We now need to specify how these folders will talk, that is, the result of popping the first
stack must be pushed to the second and vice-versa, this is translated to:

connectFolder :: (Strong F)

= (([p],[p]), 1+ 1)+ (p +p))
= F(([p];[p]),(1+1) +ﬁ(p +p))

connectFolder = (preFolder{idHMJrer})

Although connectFolder is already a fully functional folder, the user can let it misbehave
by giving, for instance, a iz (i1 p) as input. Thus we hide those buttons users shouldn’t see:

folder :: (Strong F)
(([p]; [p]), 1+ 1)
F((pl,[p]),1+1)

folder = connectFolder ;. ;11— (ia+v)-at-(id+1)}
our actions are, then:

tiBtn = ’ig ()
trBtn = i1 ()

Method-oriented approach. The small example above gives evidence of the overhead intro-
duced by wiring and interfacing components. Below we investigate how to build the same
folder in a lighter, more functional flavor. For this we start the other way around (top-down
rather than bottom-up) and specify what this folder should be able to do. Well, the only two
actions it can do is turning pages, either to the left or to the right:

redlof :: (Strong F)
= (([p],[p]), 1+1)

), 1+
F(([p],[p]),1+1)
redlof = tr & tl

where

tl, tr 2 (Strong F) = (([p],[p]), 1) = F (([p],[p]), 1)
tr = pop ; push
tl = p0p<;_push

capture the interaction between stacks in a method-driven way.

And now, we can use the same t/Btn and trBin to control both our folder and redlof
component. In fact, we can prove that they are the same component[3] and such proof uses
the objectification theorem in it’s core.

In this example we could see how to convert from a objectified version to a functional
one, when we only have one communication channel (one variable being passed around,
which is the page that is being turned). If we have more variables, a different wiring pat-
tern arises. How should we deal with such pattern? How expresive the Mealy Machines
formalism is? We seek to answer such questions in this report.



The structure of the document is as follows: section 2 will give a more formal introduc-
tion to components and clarify some naming conventions we’ll use; In section 3 we explore
the connection with object orientation; Section 4 introduces the language we’ll be using to
explain and define the semantics, that is given first informally in sections 5, 6 and 7, and
formally in section 8. The appendix of the document contains examples and a simple usage
manual for the compiler we developed.

2 Components, Machines and Objects

Before delving into anything more technical, we need to clarify some nomenclature prob-
lems. In [1], Barbosa defines a component as a (seeded) coalgebra for the functor:

T8S =B(S x 0)'

where B is called the behavior monad, we require it to be strong'. This means that a given
computation will produce a B-structure of a new state S and an output O. There are several
possibilities for the behaviour monad, to name a few:

Pointed Machines, the possibility of deadlock, failure or termination can be expressed by
the maybe monad, B = Id + 1.

Error Codes, analogous to the maybe monad, we can use a error type E and set B = |[d+E
to allow special states with more information.

Nondeterminism is modeled by the finite powerset monad, B = P.

Probabilistic Machines live under the discrete sub-distribution monad B = Dist.

As in Haskell, in [5] we can see how we can combine different behaviour monads to
achieve even more expressive machines. One restriction is that B-B" must be a strong monad.
One of such combination that is being studied are the pointed probabilistic machines, where
their behaviour is Dist - (Id + 1). The advantage of the component calculus is that we can
work with almost arbitrary monads, and still use every definition.

For a more detailed explanation of which monads can be composed together, we refer
the reader to [4]. Keeping it short, we can prove that if T is a strong monad and F the free
monad? of a given functor, then, the lifting of F in the Kleisli Category of T is also a monad.
The Kleisli category is important since, by definition, Monadic Mealy Machines compute
results over one monad. With this technique, we’re able to change the underlying category
in which our Mealy machines are defined and keep (almost) every definition intact.

For the purpose of this document, we’ll consider machines with the type:

(Strong B) = (s,1) — B ((s,0) + ¢€)
for an abstract B. Let’s unroll this type and see what we’re dealing with:

(s,7) = B ((s,0) +¢)

= {swap + }
(s,7) = B (e+ (s,0))
= { runErrorT }

(s,4) — ErrorT e B (s, 0)

IR

{ swap; curry }
i — s — ErrorT e B (s, 0)

{ runStateT }

IR

i — StateT s (ErrorT e B) o

! A strong monad is a monad that has two natural transformations 7. : BX xY — B(X xY))
and 7y : X x BY — B(X x Y), they're already a well studied subject. More information
can be found in [1]

2 The free monad of a functor G is defined by FX = X + G(FX) with 7 = ing.i; and p =
([id, ing.i2]), where (-) denotes a catamorphism. It is simple to check that these definitions
satisfy the monad laws.



Therefore, monadic Mealy Machines are just another view of a very common transformer pat-
tern. The machines (or components) are presented as a state transition system that receives
and sends pulses, while a Haskeller may view the component as a StateT s (ErrorT e T)
function, we may call this monad the imperative ImpT s e T monad.

type ImpT s e T = StateT s (ErrorT e T)

The ImpT monad confers some imperative-style constructs to a pure functional pro-
gram. To the reader unfamiliar with such monads in Haskell, the StateT monad provides
a getState and putState that can be used to manipulate what one would call global or
class variables. Whereas the ErrorT provides a throwError and catchError functionality that
works just like throwing and catching exceptions.

Our approach is different from what we can see in [2] where the authors define an in-
terface functor that has explitic components for pure and impure computations of an object
(computations that maintains or changes the internal state, respectively). Here, we take ad-
vantage of the state component already present in the Mealy Machines to model that. Pure
computations turns out to be a simple lifting of a function.

Another difference is the degree of abstraction of both approaches. In [2] a generic func-
tional language is considered and they derive an object for a specific catamorphism over a
given datatype, where we merely provide an encoding of an object using Monadic Mealy
Machines.

2.1 Selection of Combinators

In this section we’ll introduce just enough combinators to be able to express normal pro-
gramming tasks in terms of component algebra. Although this selection is small, it proved
to be a minimal but expressive kernel. To keep things simple, some combinators will be
introduced later, when the need for them arises.

Wiring. Tt is evident that we'll need to bring the whole pure-function machinery to our
MMM universe, if we want to calculate anything. The -;._,.; and "-7 components serve this
purpose.

(= (Monad F)
= ((s,1) = F (s,0))
— (i — 1)
— (0= 0")
— (s,i') = F (s,0")
Mifimsfoy = folemerfil

where ™7 lifts a ordinary function to a Mealy machine:

r.7:: (Monad m) = (a — b) — (s,a) = m (s,b)
f=n-(id x )

Sequential composition. State extension is essential to defining two forms of sequential ma-
chine composition, either forward composition ( which sends data from the left component
to right one)

-5 - (Strong F) =
((s,2) = F (s,0)) —
((ry0) = F(r,k)) —
((s,7),4) = F((s,7), k)
p 3 q=(extl q) o (extr p)

or backwards sequential composition (which sends data from right to left):



-1 (Strong F) =
((s,i) = F (s,0)) —
((r,0) = F (r,k)) —
E( s),1) = F ((r,s), k)

p5 q = (eatr p) o (eatl q)
Where extr and extl are state extensions to the right and to the left:

extr :: (Strong F) =
((s,1) = F (s,0))
((s,7),4) = F ((s,7),0)

extr p=F xr-7. - (p x id) - xr

extl :: (Strong F) =
((s,i) = F (s,0))
((r,9), ‘)—>F(( 5); 0)
extl g =F a°- (zdxq)

We are going to need a more general version of state extension, which is introduced in
section 5. Although more general, we prove that in the simplest programming pattern, it
reduces to the sequential composition.

Sum and Choice. A central aspect to programming languages is the ability to choose a
method or procedure to run, this way we can write non-linear code. The - @ - combinator is,
for components, what methods are for classes. Given two components p and ¢, p @ ¢ is the
component that runs either p or ¢ over the same state.

@ - :: (Monad F)
= ((s,1) = F (s,0))
— ((s,t) = F (s,u))
= (s,i+t) = F(s,0+u)
m®n. =F (dr°) - cozip- (m+n.)-dr

where

cozip :: (Functor F) = (F a) + (Fb) - F (a + b)
cozip = [F i1, F ig)

Taking advantage of the state extensions, we can also extend the shared-state sum to
run each component in it’s own, separate state.

-8B - :: (Strong F) =

((s,3) = F (s,0)) —

((t,j) = F(t,r) —

((s,t),04+7) = F ((s,t),0+T1)
pHq=extr p® extl q

Split. Besides sums, we’ll also need a form of product to be able to couple inputs and
outputs together. Although named split, this combinator is not a categorical split, in fact, in
an arbitrary (p, ¢) we don’t even have cancellation laws (in the particular case when one
component is a pure function the cancellation laws hold, as it can be seen in appendix A).

() = (Strong F) =
((s,4) = F (s,7)) —
(
(

??.\_/v

(
(8,) ( )

(p,q) = F ((zdxs) 2) - (rv - (g x id) - xr) & (72~ (p x id) - {id, m2))



Identity. Having a neutral element in our MMM toolbox will prove to be extremely useful,
it is, in fact, a very simple machine:

copy :: (Strong F) = (s,i) = F (s, 0)
copy = "id™

Now that we have a simple, yet powerful, set of combinators, let us build the intuitive
connections between them and the world of objects.

3 Relationship with OOP

Starting by the very definition of object, in the OOP setting: it is a collection of methods that
work over an encapsulated state, that is, the object itself is the state (in C' + +, the keyword
this is a pointer to the state structure). The methods just change the object and the type
system guarantees that everything works fine. We can formalize this notion using compo-
nent calculus, assuming that our state is S and we have a collection m1, - - - ,m, of methods
that operate over it, each with type S x I; — F(S x 0;), 0 < ¢ < k. We then define the object
M as:

i<k

If we were to write, for instance, Java code, to run m; for some j < k we would use the
method selection constructor, the result would be something like M.m;. In the component-
oriented mindset, one would use wires to provide access only to the j-th® component of our
object: M{injﬁid}, where in; has type I; — Zigk I;, for j < k. In other words, we're running
only m; and wiring its output with in;.

Theorem 2 (Method Selection). Selecting a method from a object is the same as running this
method and masking its output as the object’s output.

M{injﬁid} = m]’{id%in]}

Now we know at least what basic language features we’re able to model using MMM'’s.
More complex topics such as inheritance, error-handling and probabilistic methods shall be
addressed further down the road.

If we take a look at the echoice combinator, we can see it provides some sort of class
inheritance. It respects the object definition, that is, if A and B are coproducts, then so is A+
B. And it allows us to add more state variables to the new class. It is not proper inheritance
since the subclass have no access to the superclass state, for that reason we’ll not deal with
such topics here, and this subject is addressed as future work.

4 A Minimal Language

For the moment, we’ll only introduce a minimal toy language. The features are just the
default features one finds in any programming language plus the notion of object, that is,
an encapsulated state and some syntax-sugar to implicitly pass this state to our methods.

A Class C = (V, M) is defined by variables v € V(C) and methods m € M(C), for
illustration purposes we’ll consider a minimal OOP language to illustrate the translation
into (monadic) Mealy Machines. The classical Stack example follows:

* Although every definition of binary coproducts is extensible to finitary sums (coprod-
ucts), in order to implement these notions in Haskell, for instance, we would need a suit-
able definition for this in;. Assume the coproducts are left associative and define:

0,5 =1,

in; = igk—j) -ig‘m where 65 = {Lj -1



class Stack of p
var st :: list of p;

Stack(s :: list of p) {
st=s;

method pop() = p {
i=head st;
st = tail st;
return i;

}

method push(a :: p) :: void {
st=p @ st;// Q is the cons operator.

}

You probably noticed that we useabasic 1ist of a type, which works just like the Haskell
[a]. In fact, that’s the only structured type we’ll provide built-in, equipped with the func-
tions: head, tail, cons and length.

As discussed in section 3, the methods are not part of the object itself, but ways to in-
teract with it. Therefore, the inhabitants of class Stack are the lists [p], and the only possible
interactions we can have with them are through pop and push. Given an arbitrary class C,
the inhabitants of C' are those with type

type(C):H{t| var x :: t €C}

For practical reasons, we’ll consider this product (and every other, unless mentioned) to be
in it’s left-associative form. And we also define a family of projections for each

var x :: tinV(C)bymy : type(C) — t, which is just a n-ary projection in the component
corresponding to where x is sfored.

4.1 Code Transformations

We cannot translate the code as is, since it is too general. We need to gather some assump-
tions about it before attempting to write it as monadic Mealy machines. In this section we’ll
provide a brief explanation of the transformations applied to the code and how do they help
us achieve a successful translation.

Statement Purification. Impure and pure statements are separated. Impure statements are
those that access (set, read or modify) the object’s state. If we can assume that a state-
ment is either pure or impure, we can immediately know if it’s going to be just a func-
tion lifted to a machine (pure machine) or not.

. auxl1 = this.v.m(2xy);
x = this.v.m(2+y) stmt—purif aux2 = this.v. parm}']
+ 6xthis.v.parm; ﬁ o ’

X = aux + 6xaux2;

Expression Linearization. A linear expression is one that has, at most, one operator. We
transform every expression into it’s corresponding list of linear sub-expressions. This
step is crucial to variable management. We now know that a given statement either
modifies the state or applies an operation to, at most, two other variables.

aux3 = 2xy;
aux1 = this.v.m(2xy); aux1 = this.v.m(aux3);
aux?2 = this.v.parm; exp—lin aux2 = this.v.parm;
X = aux + 6xaux2; aux4 = 6xaux2;

x = auxl + aux4;

If-Completion. This transformation is explained in more detail in section 7. In short, we
garbage-collect the variables that are created in one branch only, this transformation
allows us to unify the output type of both branches.

Explicit Getters and Setters. After having linear expressions and either pure or impure
statements (not mixed ones), we lift the impure assignments to special constructors.
This step is not really necessary but it makes the implementation easier.



aux3 = 2xy; aux3 = 2xy;

aux1 = this.v.m(aux3); aux1 = this.v.m(aux3);
aux2 = this.v.parm; ewpliCit*QEtSEt: GET(this.v.parm, aux2);
aux4 = 6xaux2; aux4 = 6xaux2;

x = aux1 + aux4; x = auxl + aux4;

5 Managing State, or, Class Variables

Programming is about setting and retrieving values, the variables are just labels. Just
like normal imperative programming and RAM memory, we need to store our values
into some ordered containers, in our case, specially when we want to generate Haskell
code to run our objects, our container is of type type(C'), and the address of the variables
are the position they occupy in the container. For instance, if we have a class C' with
four variables: = :: a, y :: b, w :: cand z :: a, declared in this order. Then type(C) =
((a x b) X ¢) X a, and the address of x is 1, whereas the address of w is 3.

Let’s consider global (or state) variables for now, we’ll discuss the handling of locals
later. Retrieving x value is very simple. Let’s consider the following component, that
outputs it’s state:

get :: (Monad F) = (s,()) — F (s, s)
get =mn - (w1, m)

Whenever we need = value, we can use "7, ' ® get

Setting it’s value is analogous, but the setter depends on the type of the object. Consider
that we have a class C with type(C) = (a x b) X c and we wish to set the second variable
(index 2, type b). Our setter would be:

set_C_b:: (Monad F) = (((a, b),c),b) = F (((a,b),¢),())
set_C.b=mn-{(((m1 w1 -m1),m2), (71 - 72)),!)

As expected, working with class variables is very close to working with the state monad.
If we use no other classes inside a class C, everything works fine. Some care must be
taken, though, to call methods over other classes. We need to extend the method state
with eztl and extr until it is compatible with Cs state.

To illustrate this, let’s consider a folder:

class Folder of p

var stL :: Stack of p;
var stR :: Stack of p;

Folder(s :: Stack of p) {
stL =s;
stR = new Stack([]);
}

method tr() : void {

page = stL.pop();
stR.push(page);

The type of Folder is type(stL) x type(stR) = type(Stack) x type(Stack) = [p] x [p].
Yet, in line o, we're calling push on one of it’s variables. We can’t pass a Folder to push
because it does not typecheck and we can’t separate the two stacks from the folder as
they are the folder we want to manipulate, but we can accommodate push to just do
nothing with the other stack:

extl push :: (Monad F) = ((a,[p]),p) = F ((a,[p]),())

Let C be a class, z € V(C) a class variable, i the address of x and #C' the dimension of
the state space. We then define the generalized state extension of = in C by:

extg = extl®C " extr®®

Mind the type of extS, and note that it receives a mealy machine and returns a mealy
machine. in fact, given a machine m, the machine extSm will run m on C’s state space,
but will only affect the x component.



6 Wiring Up, or, Local Variables

In general, when we encode a given component as a monadic Mealy Machine, we use
wires to pass values from a subcomponent to another. In the technical report [3] we
work the folder example and cite this paper for further information, since the gener-
alization is not so straight-forward. The difficulty to provide a simple, concise, algo-
rithm for encoding wires lies in the fact that there are infinite possible wiring patterns.
However, with the help of some additional combinators we’re able to mimic memory
behaviour in our machine’s input type. The main idea is simple: the input type has
the form I; x I». I is a product corresponding to the variables that are going to be
used in the next statement, we call this the focus of the product, I is a product of the
unchanged variables.

It's worthwhile to mention that if we were translating to a language that had support
for heterogeneous lists (I :: [forall a - a]) with run-time type-casting operations, lists
would be a much simpler choice for storing local variables. Since we're translating to
Haskell, we have to stick with (binary) products.

runm :: (Strong m) =
((s,7) = m(s,0)) —

((s, (4, 0)) = m(s, (i, (b, 0))))

runm p ="a" e (copy, (p e "m "))
runm_:: (Strong m) =
((s,2) = m(s,0)) =
(s, (4, 0)) = m(s, (i,)))
runm_p = "m -a°" e runm p
The above combinators are two possible ways of running a statement. It either assigns
a value to a variable, that is, creates a new component in the unchanged part of our
input, or we only need it’s side effects. Before running each machine, we need to select

the needed variables and, if it assigns a new value to an existing variable, we need to
rewrite such variable.

extg pop ethConp
ext g,x compute
—
x = sl.pop();

y =s2.pop();
x = box.compute(x, y); :I
p—

rw
return 6xXx;
*
rw
i [ ]

Fig. 1. Graphical Representation

Note how the output of each new step is it’s input and a new value appended to it. That
is, in the Kleisli Category of F we have the following diagram (Let’s assume that the
types of x and y are X and Y/, respectively).



Tpwnil?

S x I

1x1I)

runm (extg’, pop)

1x(IxX))

select(]

1x (I x X))

runm (extg’é pop)

1x (I x X) x )

select! 9]

(X xY)x (1x1))

runm (extbc;l compute)

x
x
x (
x (
x (
X (X x Y) x (1%
x
x (X
x (X
X (

I) x X))
ik (X xY)x1)x1I)
select! 7] x (Y x 1) x I))
runm (A 6+a’ X (Y x 1) x 1) x X))
wr (X xY) x1) x 1)
seect” §x (X x (Y x 1) x 1)

Tpwnil® - (mq,1)7

Sx X

Where pwnil is the A x 1 = A isomorphism.

So, we're using a fancy associativity isomorphism, called select’, to push the variables
we need to the first component then we run the desired machine, then we fix the out-
put type with a projection after associativity. We join everything together using Kleisli
compositions and the final result is a mealy machine, equivalent to the initial code.

6.1 Selecting and Rewriting

The select” and rw are meta-combinators. We can’t encode them directly into Haskell
since they require dependent types to be written. Yet we can see their types and discuss
how to generate them on-the-fly when translating machines. Let V' be a set of variables
with types T, for each v € V and P C V, then:

select{j i HTi — HT] X H T;

i€V jeP i€V\P

It’s easy to see that select’ is an isomorphism, it is just a generalization of the s iso-
morphism for finitary products. For practical matters, since Haskell does not support
finitary products, we have to translate every finitary product into a binary one. This is
easy to do, as it has been explained in the previous sections, but we gotta take special
care with how we associate our products. Note that select” creates a focus, breaking the
left-associativity constraint into a product of two left-associated products. It is impor-
tant to note that select!! has type 1 x I, Ts, that is, selects a button (or a void variable).
The rewrite operator has type:

wi s [[TixTe = [T
eV eV

And it can be easily implemented by (where z’ denotes the new value of z. Note that
T, = T, since our language is statically typed):

[z,0"]
17T select (T xTy)x ] T
eV i€V\{z}
o X id Tz « H Ti
i€V \{z}

a HT—L

i€V



Where a° is a left-associativity isomorphism generalized to finitary products.
Another useful house-keeping operator that can strongly influence the space complex-
ity of the generated code is the garbage-collection, collect’, meta combinator:

collect’ =
| 1
[[7xt ——== . [[rx [] 7
i€V i€l 1€V\L
. Il =
ieV\l

The lifting of select’, collect” and rw to Mealy Machines is trivial. We may use them
as functions and machines interchangeably. Distinction will be made only when the
context is not clear.

A simple example with the meta-combinators translated to Haskell, is provided in fig-
ure 2. Although the code is not readable, it compiles and works correctly. We invite the
not faint-of-heart to check the types of the select’’s with the help of ghci in order to see
this focusing heuristic working.

inc (i:int) : void {

inc(i : int) : void { GET(this.c, p0);

this.c = this.c + i; simplify ggégg:ci?z)_
¥ return NHL; ’
counterINC ~ :: (Strong F) = (Integer, Integer) — F (Integer,())
counterINC = "mwy-_a4”’
o my-_a3”
o runm_ set_c_Counter
e _ag27
o runm "A(_pure0,i) — (-pure0 + i)
e T qall
o runm get_c_Counter
e a0
o runm get_c_Counter
o  nilpw?
where

—a0 = (w1, m2)

)
=(( - Wl)a(ﬂz 7T1)> (m1 - m2)))

-a3 = ((m2 - 7T2)< )s (1 - 1) - m2)), (72 - 1) - 72)))

—af = ((id - m), ((((m1 - 1) - 72), (72 - 71) - 72)), (72 - 72)))

Fig. 2. A counter’s inc: from raw code to MMM

7 Branching

Everything seems to be working fine so far, but we still have no means to handle non-
linear code. In this section we shall explain how branches can be translated into Mealy
Machines.



In order to handle if-then-else constructs we need to apply some code transformations
beforehand. In most imperative-style languages conditionals are regarded as statements,
this makes them very handy for writing programs but it’s also too general. To illustrate
the problem we should take a look at the (modified) McCarthy conditional on Monadic
Mealy Machines:

Strong m) =

i+ B) -

((s,1) = m(s,0))) —
((s,i) = m(s,0))) —
((s,1) = m(s,0))

c—th,el="vV'eth®ele grd ¢

= (
(i
(
(

Note how both branches must have the same input and output type. Remember that
the input type of our machines represent our memory, and store the variables that are
in scope at a given moment. Therefore, in order to unify their types, they need to use the
same variables. One alternative is to complete the branches by adding L assignments
and rely on lazy evaluation of Haskell to never evaluate them. Yet, we can do a better
job by using our collect’ meta-combinator. Figure 3 illustrates this transformation. By
collecting the variables that are used in only one of the branches we’re able to unify
their output types and save memory, by not accumulating variables that are not going
to be used.

-0 y= 0;
e ¥ ifc
then a = 10; then a = 10;
b=g(y); if —comp b=g(y);
x = f(a, b); —— x = f(a, b);
= f(a,b); o
else x—0; COLLECT(a, b);
o else x =0;

Fig. 3. If-completion transformation

And, with both branches being unifiable, we’re able to use the - — -,- combinator to
give semantics to our conditional statements.

8 Semantics

In this section we’ll provide a summary of the semantics discussed above, although
not formally mentioned in the definition, we’ll denote by V' the new variable set after
performing a semantic translation step. Let C' be a class:



[l

B [l

meM(C)

[func(ay,-- - xn) : t{ body v = [bodylvia, .- 20}

— — runml Ff‘l’ #V =1 [z1..2n]
[o=f@y,an)lv = { runm Tf7, otherwise. select
o [ runml (ext(?bjm)7 #V =1 [o1..an]
[v = obj.m(ws, -, zn)lv = { runm (exts,;m), otherwise. * select
[obj.m(zy1, - ,xn)]v = runm_ (extfbj m) e select!™ "]

[this.v = 2]y = runm_ set_C_v o select!”!

[z = thisw]y = runm (T, e get) o select!!
[COLLECT(I)]v = collect’,set V =V \ I

[return z]y = "m e select!®]

[if ¢ then a else b]v = (7.) — [a]v, [b] v, where 7. :: H T, = T,
veV

[s; sts]v = [sts]v ® [s]v

It's important to note that for the variable assignment statements, the variable set has
to change to V U {z}.

In [3], we work out a example by hand, showing the equivalence of it’s functional and
objectified versions, yet, the semantics given above are somewhat far away from the
concise representation we arrived at in the aforementioned report. This distance is due
to the infinite number of wiring patterns a programmer can use, therefore we need a
more general approach. Nevertheless, the sequential composition combinator arises as
the trivial case of the semantics given above.

Let us consider a class C with type(C') = S x R, where o0l and 02 are it’s subobjects with
types S and R respectively. Let’s now consider the (intuitive) sequential composition
pattern (which is exactly the turning of pages of the folder component):

function () : a {
p = this.ol.m1();
x = this.02.m2(p);
return x:

}

We have that (we'll omit the this keyword for readability):

p =o0l.ml();
X = 02.m2(p);

return x; 0

= [return x;]py o[ = 02.m2(p);]pyolp = 0o1.m1();]

= [return x;](p} o [x = 02.m2(p);]{p} ® runmi (extr mi) e select!!

]

= [return x; o runm (extl mo o select'”! o runmi (extr mi o select!!
{r}

! Ve runmi (extr my) e select!!

= e select!”) o runm (extl my) o select!”
Remembering that select” is a meta-combinator, we need to translate it to it’s corre-
sponding associativity isomorphism. The first selection, select!), is translated to id, since
we already have a button coming from the void input type of function. The second
one must have type 1 x p — p x 1, therefore a swap suffices. The last select!”), corre-
sponding to the statement return x, must have type p x (1 x ) — x x (1 X p), so it
is's - xr - s, with s and xr being the isomorphisms A x B -+ B x Aand (A x B) x C —



(A x C) x B respectively.
Tmi e s -xr-s' e runm (extl m2) @ "s™ @ runm1 (extr mq) e "id”

= { identity; runm1 def; " fusion }

Ty -s-xr-s" e runm (extl m2) @ "s™ e {copy, (extr m1))
= { runm def; "-7 fusion }

Tmy-s-xr-s-a'e (copy, (extl mae"m ")) @ s e (copy, (extr m1))
= {m s-xr-s-a=m}

T e (copy, (extl mo @ "1 7)) @ Ts™ e (copy, (extr my))
= { {5 def; copy ="id™ }

(Tid™, (extl ma  "m 7))

= {EqA3}

idsmyy @' S @ (copy, (extr ma))

extl mo e "1 @ s e (copy, (extr m1))

{7 fusion; w1 -s =72 }
extl mo @ "2 @ (copy, (extr m1))

{-{=.y def; copy ="id; Eq A3}

extl mo o extr m;
{-35-def}
mi 5 m2
|
At this point, we have all the tools we need to translate a simple language with stan-
dard features into Monadic Mealy machines. The thing is that we didn’t even touch the

monadic part yet. In the next section we’ll give some thougths on how one could use
monads to add more (realistic) features to the language.

9 Exploiting the Behavior Monad

In section 2 we talked about how the behavior monad B added a lot of expressivity.
Recall the example we took, with B = B’.(+e¢) (note that the state-monadic component
is already part of our Mealy Machines, by construction), or, in Haskell:

(Strong B) = (s,i) = B ((s,0) +¢€)
= {}

1 — StateT s (ErrorT e B) o

Which means that we can easily add error-handling functionality to our language. In
fact, if we look at the declaration of MonadError e m we have:

class Monad m = MonadError e m | m — e where
throwError :: e = m a
catchError :m a — (e > m a) > m a

Looking at both available functions, they are not Mealy Machines, but they can be
translated into one. First we need a (parametrized) machine that always throws an
Exception*:

* In the declaration of MonadError e m, m uniquely determines e for each instance, for
everything to work nicely inside Haskell, we also need to declare an instance Error e.
This is easy though. A static analysis could determine the labels of each thrown exception
in our code and combine them in a datatype called Fzception, that would be an instance
of Error.



mthrow :: (Strong F) =

FException —

(s,2) — (ErrorT Ezception F) (s, 0)
mthrow e = (throwError e)

And, one that catches possible exceptions:

mcatch :: (Strong F) =
((s,1) — (ErrorT Ezception F) (s, 0)) —
((s, Exception) — (ErrorT Ezception F) (s, 0)) —
(s,1) — (ErrorT Ezception F) (s, 0)

mecatch p handle (s,i) = p (s, 1) ‘catchErrort (q - (s, id))

Now we’re able to add two language constructs, a throw and catch statements that be-
have just like expected. Their translation into MMM is just mthrow and mcatch. We
need to be careful and add ErrorT Ezception F instead of only F in the type-sig of every
method and lift the pure F parts to ErrorT.
Besides error handling, we could add probabilistic extensions. For instance, if we also
consider DistT B, the monad of probability (sub-)distributions, in our chain of monads,
we would also be able to add a keyword to model function failure, for instance:
increment(i:int ) :int
with 80% {
return i+1;
}
with 15% {
return i;
}
with 5% {
return 0;

}

And, using the DistT F monad machinery, we could still implement this as a MMM, of
course, taking care to correctly lift the F functions properly and adding the correct type
signature to the proper places.

10 Conclusions and Future Work

The translation of Object Oriented Programming into Monadic Mealy Machines is a
first step in a proof of a general objectification theorem. By writing wired-MMMs as
Classes and translating them to MMMs that use no wires we can see that a pattern
starts to unfold. It is evident that the generated code could be simplified, in fact, this is
an interesting line of future work. Can we simplify it enough so that we can witness the
exchange law?

Another very interesting question is how can we use the Abstract Strong Monad present
in a MMM type to add semantics to different language constructs. Exception Handling
is the most straightforward of these, as we already showed. What if we start to consider
more combinators into our translation, what is the meaning of the rest of the compo-
nent combinators in terms of object-oriented code? In fact, we would like to implement
the monadic layer into our compiler and investigate further practical monads and see
what language constructs they correspond to. One very positive, immediate, result of
adding failure probabilities to our language is the ability to compute the probability of
an overall failure given the probability of the parts failing.

In this document we provided a semantic of a toy-language into MMMs and shown a
proof-of-concept tool developed to illustrate the algorithm. Now, we’re able to formally
express the connection between programming with objects and components.
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A Relevant Proofs

(-

-)-cancel As we stated before, (p, q) is not isomorphic to (g, p), since the order of

the side effects and state changes matters. Formally, (-, -) is nof a categorical product.
Nevertheless, if one of it’s components is pure (that is, does not change the state nor
has any side effect), we can prove some sort of cancelation properties about it:

((p, I—f—l>){id—m1} =D ()
(«(f @){mam} =4q 3)

We shall prove equation 2, the other one is analogous.

B

(2, ")) fidmmry
= { (> def;(-,-) def }
Tmi oF ((id xs)-a) - (7r - (Tf7 x 4d) - xr) ® (7 - (p x id) - (id, 72))
{7 def; - / @ assoc }
n-(id x m1) - (id x s)-a e (1. (Tf7 x id) - xr) @ (7 - (p x id) - {id, 72))
= {(id x m1) - (id X s)-a=m -xr; - / ®assoc }
n-m-oF xr- (1 - (Tf7 X id) - xr) @ (1 - (p X id) - (id, w2))
= { extr def }

n-m-eextr Tfe (1 (p X id) - (id, m2))

{n-meextr"f1=mn-m}
n-m e (7 (p X id) - (id, m2))
= { - / e assoc; e identity }

Fri-7 - (p xid) - (id, m2)
= {Fm 7 =m}

w1 - (p X id) - (id, 7w2)

{ 71 natural; x cancel }

p
(]

oop2mmm Example

As a proof-of-concept for the semantics explained in this report, we wrote a Haskell tool
that translates the same toy object oriented language into monadic Mealy Machines.



Although the tool is available for the community, it is still highly experimental, and we
provide no guarantees whatsoever. In this section we’ll explain the usage and provide
some examples.

In general, the tool is fairly simple to use. Let’s say that we have the contents of listing
1.1 into a file called obj_stack.mmm (this file can be found in the Examples folder, if you
download the source).

Listing 1.1. Stack Component Listing 1.2. Simplified Stack Code

class Stack { var st : list of int;
var st : list of int;
push (i : int) : void {

push(i : int) : void { GET(this.st, _pure4);
this.st =1 @ this.st; iftset9 = ((:) 1 -pure4);
} SET(this.st, liftset9);
return NIL;
top() : int {
res = 0; top () : int {
if (length this.st == 0) GET(this.st, _pure5);
then {res=0; } _explin2 = (length _pure5);
else { res = head(this.st); } _parmlin0 = (_explin2 == 0);
return res; res = 0;
} if _parmlin0
then {
pop() : void { res =0;
if (length this.st > 0)
then { this.st = tail(this.st); } else {
} GET(this.st, _pure6);
} res = (head _pure6);
COLLECT(_pure6)
}
return res;

pop () : void {

GET(this.st, _pure?);

_explin3 = (length _pure?7);

_parmlinl = (_explin3 > 0);

if _parmlinl

then {
GET(this.st, _pure8);
iftset10 = (tail _pure8);
SET(this.st, _liftset10);
COLLECT(liftset10, _pure8)

return NIL;

}

Running the command
$ oop2mmm —--output="Stack.hs" —--dump MMM/Examples/obJj_stack.mmm

Will dump the simplified code (listing 1.2) and write the Haskell equivalent (part of the
code is shown in figure 4) of the Stack component to Stack.hs.
We can actually run some snipets and see that the code is exetucing correctly:

*Stack> stackPUSH ([2,3,4], 1)
([1,2,3,41, ()

*Stack> stackTOP ([1,2,3,4]1, ())
([1,2,3,41,1)

*Stack> stackPOP ([1,2,3,4], ())
([2,3,41, ()

«*Stack> stackPOP ([], ())
([1,0)

xStack> stackTOoP ([]1, ())

([1,0)



Fig. 4. (Part of) Haskell-encoded MMM of the Stack Component

module Stack where

import MMM.Core.All

{-# LINE 2 "MMM/Examples/obj_stack.mmm" #-}
set_st_Stack (strong m) => (MMM m [Integer] [Integer] ())
set_st_Stack = (return . (split p2 bang))
{-# LINE 2 "MMM/Examples/obj_stack.mmm" #-}
get_st_Stack :: (Strong m) => (MMM m [Integer] () [Integer])
get_st_Stack = ((f2m id) .! getst)
{-# LINE 4 "MMM/Examples/obj_stack.mmm" #-}
stackPUSH (Strong m) => (MMM m [Integer] Integer ())
stackPUSH = (f2m (pl . _a3))
! (runm_ set_st_Stack)
L1 (£2m _a2)
! (runm (f2m (\ (i , _pured) -> ((:) i _pured))))
L (f2m _al)
! (runm get_st_sStack)
b(f2m _a0)
! (f2m nilpw)
where
—— (NIL, 1)
—  —> (NIL, i)
_a0 = (split pl p2)
-— (NIL, (i, _pured))
--  => ((i, _pured), NIL)
al = (split (split (pl . p2) (p2 . p2)) (id . pl))
-- ((i, _pured), (NIL, _liftset9))
--  —> (_liftset9, ((i, _pure4), NIL))
_a2 = (split (p2 . p2) (split (split (pl . pl) (p2 . pl)) (pl . p2)))
—— (_liftset9, ((i, _pured), NIL))
——  —> (NIL, ((_liftset9, i), _pured))
_a3 = (split (p2 . p2) (split (split (id . pl) ((pl . pl) . p2)) ((P2 . pl) . P2)))
stackTOP (Strong m) => (MMM m [Integer] () Integer)
stackTOP = (f2m (pl . _a8))
.! (mcond
((p2 . pl) . p2)
((£2m ((split (split (split (split (id . pl) (((pl . pl) . pl) . p2)) ((p2 (pl . pl)) . p2)) ((p2 . pl)!
1. p2)) (p2 . p2)) ((p2 >< id) (split (split ((p2 . pl) . p2) (p2 . p2)) (split (split (split (id . pl) ((((pl . p1)!
! . pl) . pl) . p2)) ((p2 ((pl . pl) . pl)) . p2)) ((p2 (p1 . pl)) . p2))))))
.! (runm (f2m (const 0)))
LU (£2m _ad))
((f2m (split (split (split (split (((pl . pl) . pl) . pl) (P2 . ((pl . pl) . pl))) (P2 . (pl . pl))) (p2 !
!. pl)) p2))
LPo(f2m _c7)
.1 (£2m ((split (split (split (split (split (id . pl) ((((pl . pl) . pl) . pl) . p2)) ((p2 . ((pl . p!
1) . pl)) . p2)) ((P2 . (Pl . p1)) . p2)) ((P2 . pl) . P2)) (P2 . p2)) . ((P2 >< id) . (split (split ((p2 . pl) . p2) (p!
'2 . p2)) (split (split (split (split (id . pl) (((((pl . pl) . pl) . pl) . pl) . p2)) ((p2 (((pl . pl) . pl) . pl)) !
'p2)) ((p2 ((p1 . pl) . pl)) . p2)) ((p2 (pl . p1)) . p2))))))
. (runm (f2m (\ _pureé -> (head _pure6))))
b (f2m _a6)
.1 (runm get_st_Stack)
LU (f2m _a5)))
! (runm (£2m (const 0)))
.1 (f2m _a3)
! (runm (f2m (\ _explin2 -> (_explin2 == 0))))
Lo (f2m _a2)
! (runm (f2m (\ _pure5 -> (length _pure5))))
Lo (f2m _al)
! (runml get_st_Stack)
LU (£2m _a0)
! (f2m id)
where
-- NIL
-—  -> (NIL,)
_a0 = id
-— (NIL, _pure5)
--  -> (_pure5, NIL)
_al = (split (id . p2) (id . pl))
-— (_pure5, (NIL, _explin2))
- -> (_explin2, (_pure5, NIL))
_a2 = (split (p2 . p2) (split (id . pl) (pl . p2)))
-- (_explin2, ((_pure5, NIL), _parmlin0))
--  -> (NIL, ((_explin2, _pure5), _parmlin0))
_a3 = (split ((p2 . pl) . p2) (split (split (id . pl) ((pl . pl) . p2)) (P2 . pP2)))
-— (NIL, (((_explin2, _pure5), _parmlinO), res))
-—  -> (NIL, (((_explin2, _pure5), _parmlin0), res))
_a4 = (split (id . pl) (split (split (split (((pl . pl) . pl) . p2) ((p2 . (pl . pl)) . p2)) ((p2 . pl) . p2)) (p2 .!
' p2)))
—— (NIL, (((_explin2, _pure5), _parmlin0), res))
-- > (NIL, (((_explin2, _pure5), _parmlin0), res))
_a5 = (split (id . pl) (split (split (split (((pl . pl) . pl) . p2) ((p2 (pl . pl)) . p2)) ((pP2 . pl) . p2)) (p2 .!
! p2)))
-- (NIL, ((((_explin2, _pure5), _parmlin0), res), _pure6))
- -> (_pure6, ((((NIL, _explin2), _pure5), _parmlin0), res))
_a6 = (split (p2 . p2) (split (split (split (split (id . pl) ((((pl . pl) . pl) . pl) . p2)) ((p2 ((pl . pl) . pl)!
1) . p2)) ((p2 (pl . pl)) . p2)) ((p2 . pl) . p2)))
-— (((((res, _pure6), NIL), _explin2), _pure5), _parmlin0)
-— > ((((res, NIL), _explin2), _pure5), _parmlin0)
_c7 = (p2 . (split (p2 . (((pl . pl) . pl) . pl)) (split (split (split (split ((((pl . p1) . pl) . pl) . pl) (P2 . (!
Hpl . pl) . pl))) (p2 (Pl . pl))) (p2 . pl)) p2)))
-— ((((res, NIL), _explin2), _pure5), _parmlin0)
- -> (res, (((NIL, _explin2), _pure5), _parmlin0))
_a8 = (split (((pl . pl) . pl) . pl) (split (split (split (p2 ((pl . pl) . pl)) (p2 (pl . pl))) (P2 . pl)) p2))



