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statistically independent. In the numerical example pre-
sented below, it turns out that decreasing the number N of
trajectories from 1000 to 100 has no sensible effects on the
residual of the difference between the true states and the
means of the inferred probabilities. The second drawback is
the need of large computing times, since the complexity of
the resampling procedure is O(N log(N)) [20].

3. Application to a literature example

The MC simulation approach to model-based fault
diagnosis has been applied to a simple problem taken from
the literature [2,10-15]. This case study has been used
frequently for benchmarking dynamic reliability methodol-
ogies and fault diagnostic techniques.

The system, sketched in Fig. 1, consists of a tank
containing a fluid whose level is controlled based on the
signals of suitable detectors which command actions on
units 1, 2, 3 to regulate the fluid inlet/outlet flow. A thermal
power source W heats uniformly the fluid in the tank under
adiabatic conditions (no heat is released to the outside).
The objective of the control is to maintain the fluid level x;
in the range (HLV, HLP).

At any time ¢, the (hidden) system states are the position
parameters o(f) of the three units which can only assume
the values 1 or 0 according to whether the unit is on
(o; = 1) or off (a; = 0); the measured process variables are
the fluid level x;(¢) (m) and temperature x,(¢) (°C). The
unknown states a,(¢) of the three units depend on the fluid
level value x(¢) according to the following control laws:

1 if x;<HLV
Oﬂl(xl): 0 if x; >HLP
Oor1 depending on previous switching
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Fig. 1. Sketch of the tank control system [2,14].

1 if x;>HLV
0 otherwise

oa(xy) = {

1 if x;<HLV
o3(x)) =< 0 if x;>HLP
0or1 depending on previous switching

unless the units are in a failed state, which can be either on
or off, in which case the corresponding «; states are
constant, independent of the fluid level.

The analysis aims at inferring the position of the three
units from the measured x;(¢) and x,(z) profiles. The
following simplifying physical assumptions are made, as
they do not influence the focus of the analysis: (1) the fluid
input in the tank by units 1 and 3 mixes instantaneously;
(2) the flow rate through the outlet unit 2 is independent of
the fluid head. With these assumptions, the time evolution
of the measured variables x;(¢) and x,(¢) can be described
by a pair of first-order nonlinear differential equations
determined by the mass and energy conservation laws [2].
Discretization of these equations yields (¢ = 0,1,2,..)

x1(0) = x1(t = )+ difon (xi (1 = D), (1 = 1) + a303(1 — 1)
— (1t = D)y (1 = DI +vi(9)

d
T‘_l){[al(w ~ )0t~ 1)

+ 0305(1 — D] — x2(t — 1)) + 23.88915} + v(1)
)

where the Q«f) (i = 1,2,3) are the fluid flow rates (m/h)
through the units, 3, is the assigned inlet fluid tempera-
ture, vy(f) and v,(f) are the measurement noises.

Note that the Q,’s are actually random quantities, since
the amount of fluid entering or exiting the tank during d¢ is
always affected by (small) fluctuations.

In spite of its simple structure, the system considered is
representative of the operation of nonlinear control
systems and possesses mathematical features that pose
difficulties to the application of conventional model-based
estimation techniques. For instance, the linearization of the
original differential equations required by the extended-
Kalman filter approach is not applicable because of the
stepwise dependence of the parameters o; on the system
variable x;.

The scenario considered in this application is the same of
[2]. The relevant data are summarized in Table 1.

Unit 3 is supposed to fail on (z3 = 1) upon demand at
time ¢ = 0 and to remain in this condition throughout the
time of interest. The control thresholds on the level are set
at HLV =4m and HLP = 10 m. The fluid level and the
temperature measurements are supposed to be affected by
a 2% and 0.1% Gaussian noise, respectively. The analysis
is performed in the time interval (0, 74.5 h) discretized with
a dt = 0.5h. A Gaussian noise of 0.5% is added to the Q;
flow rates to model their fluctuations.

Xo() = x2(t = 1) +
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