
TORSION VOLUME FORMS

FLORIAN NAEF AND PAVEL SAFRONOV

Abstract. We introduce volume forms on mapping stacks in derived algebraic geometry using a parametrized
version of the Reidemeister–Turaev torsion. In the case of derived loop stacks we describe this volume form
in terms of the Todd class. In the case of mapping stacks from surfaces, we compare it to the symplectic
volume form. As an application of these ideas, we construct canonical orientation data for cohomological
DT invariants of closed oriented 3-manifolds.

Introduction

Simple homotopy types. The key input to the construction of volume forms on mapping stacks in this
paper is a local factorization of the determinant of cohomology on a stack using what we call a simple
structure. Our motivation comes from the theory of simple homotopy types which we briefly recall.

Consider a homotopy type M . To define its Euler characteristic χ(M) ∈ Z one has to assume a finiteness
condition on M , i.e. that M is finitely dominated, which can be phrased in a homotopy-invariant way
by saying that M is a compact object of the ∞-category of spaces S. This ensures, for instance, that
given any local system L on M whose fiber at any point is finite dimensional (a perfect complex), the
homology H•(M ;L) is bounded and finite-dimensional in each degree. In particular, one may consider its
Euler characteristic.

If M is a finite CW complex, there is a local formula for the Euler characteristic obtained by computing
the homology H•(M ;L) using the cellular chain complex C•(M ;L):

χ(H•(M ;L)) =
∑
σ

(−1)dim(σ) dim(Lασ
),

where the sum is over cells σ of M and ασ ∈ M is a point in the interior of σ. One may ask what extra
structure on the homotopy type M allows for such a local description (i.e. which only involves information
about the individual fibers of L, but not the parallel transport maps) of the Euler characteristic. To have
a universal answer instead of computing the Euler characteristic of C•(M ;L), we will describe the point in
the K-theory space. Moreover, we will work over the sphere spectrum.

The corresponding K-theory is A-theory A(M) [Wal85] and, if M is finitely dominated, there is a
homotopy-invariant Euler characteristic which defines a point [SM ] ∈ A(M). There is, moreover, a canonical
assembly map

α : C•(M ; A(pt)) = Σ∞
+ M ⊗A(pt) −→ A(M).

The structure of a finite CW complex on M allows one to lift [SM ] ∈ A(M) to eA(M) ∈ Ω∞C•(M ; A(pt))
supported at the points ασ and this allows one to obtain a homotopy

[C•(M ;L)] ∼
∑
σ

(−1)dim(σ)[Lασ
]

in Ω∞A(M) for any (dualizable) parametrized spectrum L over M . Let us recall some known results:

• For a given finitely dominated space M ∈ S the obstruction to the existence of a lift of [SM ] along
the assembly map is Wall’s finiteness obstruction [Wal65]. It vanishes if, and only if, M is homotopy
equivalent to a finite CW complex.

• Given two finite CW complexes M1,M2 together with a homotopy equivalence f : M1 →M2 the dif-
ference between the corresponding lifts is captured by the Whitehead torsion Wh(f) of the homotopy
equivalence f .
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We will think of the space of lifts of [SM ] along the assembly map as the space of ways of endowing M
with the structure of a simple homotopy type. The description of the homotopy type of this space is the
content of the stable parametrized h-cobordism theorem [WJR13].

In this paper we transport this notion of a simple homotopy type to the world of derived stacks over
a ground ring k. Given such a derived stack X satisfying a finiteness assumption (analogous to finite
domination in the topological setting, see assumption 1.8) there is an assembly map

C•(X(k); K(k)) −→ Kω(X),

where Kω(X) is the K-theory of the stable∞-category QCoh(X)ω of compact quasi-coherent complexes over
X together with a canonical point [OX ] ∈ Ω∞Kω(X). A simple structure on X (see definition 1.9) is then
a lift of [OX ] along the assembly map. For the Betti stack X = MB of a homotopy type, we get exactly
the notion of a simple homotopy type from before and we describe this lift in concrete terms in section 3.2.
We also use the theory of de Rham ϵ-factors [Pat12; Gro18] to define simple structures on de Rham and
Dolbeault stacks MdR and MDol in section 4. We also expect that simple structures can be defined in other
sheaf contexts with a 6-functor functoriality, e.g. in the arithmetic setting.

With the definition of simple structure the following theorem is then straightforward which provides a
local description (an ϵ-factorization in the sense of [Bei07]) of cohomology of stacks.

Theorem (See theorem 1.12 for a complete statement). Let X be a derived stack equipped with a simple
structure and F ∈ Perf(X). Then there is a homotopy

[p♯F] ∼
∑
i

[Fxi
]αi

in Ω∞K(k) for some points xi ∈ X(k) and αi ∈ Ω∞K(k). Here p : X → pt and p♯ is the functor of homology
of X.

In many settings Poincaré duality allows one to state the above index theorem for cohomology (i.e. for
[p∗F]) in a similar way. The approach to (parametrized) topological index theorems via lifts along the
assembly map was described in [DWW03] and our construction and setup are directly inspired by that work.

Volume forms on mapping stacks. For a derived stack Y with a perfect cotangent complex LY the
analog of the sheaf of volume forms is the determinant line det(LY ). So, we define a volume form on Y
as a trivialization of det(LY ) (see definition 2.5). Smooth schemes with a trivial canonical bundle provide
examples. There are also more interesting examples defined as follows. Recall that given a smooth symplectic
scheme (X,ω), the symplectic volume form is ωdimX

(dimX)! . We generalize this construction to the derived setting
(where ωdimX no longer defines a section of the determinant line) as follows. Recall the notion of an n-shifted
symplectic structure on a derived stack from [Pan+13]. Using the formalism of Grothendieck–Witt spectra
of stable∞-categories with duality (or Poincare∞-categories) from [Sch17; Cal+23] in section 2.4 we define
symplectic volume forms on n-shifted symplectic stacks for any n ∈ Z divisible by 4.

One of our main theorems establishes the existence of volume forms on derived mapping stacks Map(X,Y ).

Theorem (See theorem 2.8 for the precise statement). Let X,Y be derived stacks, where X is equipped with
a simple structure. Either suppose dim(Y ) = 0 or choose an isomorphism det(p♯OX) ∼= k. Moreover, choose
either a volume form on Y or a trivialization of the Euler class e(X) ∈ C•(X(k);Z) (see definition 1.9).
Then Map(X,Y ) carries a canonical torsion volume form.

The construction of the torsion volume form (and the name) is directly inspired by the theory of Reide-
meister torsion with a refinement by Turaev [Tur86; Tur89]. We refer to [Tur01; Nic03] for a pedagogical
introduction. In fact, it directly reduces to the adjoint Reidemeister–Turaev torsion in the following impor-
tant example (see section 3.4 for more details). Let M be a finite CW complex and G an algebraic group
and consider the derived character stack LocG(M) = Map(MB,BG) whose classical stack parametrizes rep-
resentations of the fundamental group π1(M). Then the fiber of det(LLocG(M)) at a given G-local system
L is given by the determinant of the cohomology of the adjoint local system adL and the torsion volume
form is given by its Reidemeister torsion. This extends the well-known construction (see [Wit91; HP20])
of a volume form on (an open subset of good representations of) the character variety of a surface for a
semisimple group G to the full derived moduli stack.
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When M = Σ is a closed oriented surface, we prove the following related results connecting the torsion
volume form to the symplectic volume form:

• If G is a unimodular algebraic group with a nondegenerate pairing on its Lie algebra, we show in
theorem 3.35 that the torsion volume form on the derived character stack LocG(Σ) differs from the
symplectic volume form by a sign determined by the second Stiefel–Whitney class of the adjoint
representation (which is trivial when G is simply-connected).

• If L is an orthogonal rank 1 local system over Σ, the torsion element τs(L) of detH•(Σ;L) depends on
a spin structure s on Σ, while the symplectic volume form volL ∈ detH•(Σ;L) is defined canonically.
We show in proposition 3.38 that the map H1(Σ;µ2) → µ2 given by L 7→ τs(L)/volL is given by
Johnson’s quadratic refinement [Joh80] of the intersection pairing on Σ, where µ2 is the algebraic
group of second roots of unity. This gives an interesting new perspective on this function.

When M is a closed oriented 3-manifold, we give an application of our results to the theory of cohomo-
logical Donaldson–Thomas (DT) invariants. Let us briefly recall the setting. For any complex (−1)-shifted
symplectic stack X equipped with an orientation data (the choice of a square root of det(LX)) the authors of
[Ben+15] have defined a perverse sheaf ϕX on the underlying classical stack t0(X) whose local Euler charac-
teristic gives the Behrend function. The cohomology H•(t0(X), ϕX) is the cohomological DT invariant of X.
We refer to [JU21a; JU21b] for a construction of orientation data for many moduli spaces using techniques
from differential geometry.

Theorem (See proposition 3.41 and theorem 3.45). Let M be a closed oriented 3-manifold and G a split
connected reductive group. Then the (−1)-shifted symplectic stack LocG(M) = Map(MB,BG) of G-local
systems on M has a canonical orientation data.

Suppose P ⊂ G is a parabolic subgroup and L the Levi factor. Assume that either the modular character
of P admits a square root or that M is equipped with a spin structure. Then the (−1)-shifted Lagrangian
correspondence LocL(M)← LocP (M)→ LocG(M) has a canonical orientation data.

The orientation data on the Lagrangian correspondence LocL(M)← LocP (M)→ LocG(M) gives, assum-
ing a certain functoriality of the perverse sheaf ϕX conjectured by Joyce, a parabolic induction map

H•(t0(LocL(M)), ϕLocL(M))→ H•(t0(LocG(M)), ϕLocG(M))

as we explain in theorem 3.47.

Derived loop stacks. Given a morphism f : X → Y of smooth and proper schemes (over a field k of
characteristic zero) the Grothendieck–Riemann–Roch theorem asserts that the commutativity of the diagram

K0(X)
ch //

f∗(−)

��

⊕
n H

n(X,Ωn
X)

∫
f
TdX/Y ∪(−)

��
K0(Y )

ch //⊕
n H

n(Y,Ωn
Y )

where ch is the Chern character and TdX/Y is the relative Todd class. The correction by the Todd class has
the following interpretation in derived algebraic geometry [Mar09; BN21; KP21]. There is a commutative
diagram

K0(X)
ch //

f∗(−)

��

H0(LX,OLX)

∫
f
(−)

��
K0(Y )

ch // H0(LY,OLY )

where LX = Map(S1
B, X) ∼= X×X×XX is the derived loop space of X and

∫
f
: H0(LX,OLX)→ H0(LY,OLY )

is a certain natural integration map constructed using the formalism of traces. As this is an integration map
of functions, it is determined by a relative volume form along the fibers. As shown in [KP21], this volume
form comes from the natural structure of LX → X as a derived group scheme (with the group structure
given by loop composition). The Todd class then appears when we use the Hochschild–Kostant–Rosenberg
(HKR) isomorphism to identify LX ∼= T[−1]X with the shifted tangent bundle, where the natural volume
form on T[−1]X comes from its structure as a derived vector bundle over X.
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We provide an interpretation of the two volume forms using torsion volume forms. We identify the derived
loop space as LX = Map(S1

B, X) and the shifted tangent bundle as T[−1]X = Map(BĜa, X), where Ĝa is
the formal additive group. The circle S1 is a finite CW complex with χ(S1) = 0, so there is a natural torsion
volume form volLY on LX. There is also a (unique) simple structure on BĜa which induces a torsion volume
form volT[−1]X on T[−1]X.

Theorem (See theorem 5.23). The ratio volLX/volT[−1]X is given by an invertible function on T[−1]X
which is the Todd class Td(X).

In fact, we prove the above statement for any derived stack X (with a perfect cotangent complex). In
this case there is no isomorphism between LX and T[−1]X, but, nevertheless, there is a correspondence
T[−1]X ← Map(BGa, X) → LX with both maps formally étale, which allows us to compare the volume
forms.

Cotangent AKSZ theories. Given a (d−1)-shifted symplectic stack Z, there is an associated d-dimensional
topological classical field theory defined using the ASKZ formalism [Ale+97; Pan+13; CHS21]. Let us discuss
the case when Z = T∗[d− 1]Y is a shifted cotangent bundle. For instance, we have the following topological
field theories of this kind:

• The BF theory for Y = BG, the classifying stack of a group G, and any d.
• The 2d B-model with target a smooth complex variety Y .
• The 3d Rozansky–Witten theory with target T∗Y for Y a smooth complex variety.

As explained in [Wit91; Cos11], for cotangent AKSZ theories the quantization (for a closed oriented d-
dimensional spacetime manifold M) is one-loop-exact, the one-loop determinant defines a volume form on
Map(MB, Y ) and the partition function is given by the volume of Map(MB, Y ) with respect to this volume
form. We expect that the torsion volume form on Map(MB, Y ) provides a version of this volume form in
the world of derived algebraic geometry. For instance, the conditions for the existence of the torsion volume
form on Map(MB,BG) match the anomaly cancellation condition in BF theory: either G is unimodular or
χ(M) = 0.

Acknowledgements. We would like to thank Benjamin Hennion and Markus Land for useful discussions.

Notation. Throughout the paper we use the formalism of ∞-categories.
• We denote the smash product of spectra by ⊗.
• For a topological space X and a spectrum Y we denote by C•(X;Y ) the spectrum Σ∞

+ X ⊗ Y . We
denote by Hn(X;Y ) its n-th homotopy group.

• For a topological space X and a spectrum Y we denote by C•(X;Y ) the spectrum Map(X,Y ). We
denote by Hn(X;Y ) its (−n)-th homotopy group.

• For a spectrum Y we denote by τ≥0Y the connective cover of Y and by Ω∞Y the underlying space.
• Throughout the paper we work over a commutative ring k.

1. Preliminaries

In this section we introduce basic constructions in the paper: a finiteness condition on derived stacks we
will use in the paper and some operations on their K-theory.

1.1. Finiteness. For a commutative dg algebra A over k we denote by ModA the stable ∞-category of
A-modules.

Let X be a derived prestack over k. Recall the following ∞-categories associated to it:
• The symmetric monoidal ∞-category of quasi-coherent sheaves

QCoh(X) = lim
S→X

ModO(S),

where the limit is taken over all derived affine schemes with a map to X. For a morphism f : X → Y
of derived prestacks there is a symmetric monoidal pullback functor f∗ : QCoh(Y )→ QCoh(X).

• Let QCohω(X) ⊂ QCoh(X) be the full subcategory of compact objects.
• The full subcategory Perf(X) ⊂ QCoh(X) of perfect complexes, i.e. dualizable objects.

4



Dualizable objects are closed under the tensor product, so Perf(X) is a symmetric monoidal ∞-category.
Moreover, if F is perfect and G is compact, the functor

HomQCoh(X)(F ⊗ G,−) ∼= HomQCoh(X)(G,F
∨ ⊗ (−))

preserves colimits, so QCoh(X)ω is a Perf(X)-module category.
In the paper we will be interested in the following finiteness conditions on a derived prestack.

Assumption 1.1. Let X be a derived prestack satisfying the following conditions:
(1) The structure sheaf OX ∈ QCoh(X) is compact, i.e. the pullback p∗ : Modk → QCoh(X) along

p : X → pt admits a colimit-preserving right adjoint p∗.
(2) The pullback p∗ : Modk → QCoh(X) admits a left adjoint p♯.

Remark 1.2. We think of p∗ : QCoh(X)→ Modk as the functor of cohomology while p♯ : QCoh(X)→ Modk
as the functor of homology.

For a derived prestack X satisfying assumption 1.1 the functor p♯ : QCoh(X)→ Modk preserves compact
objects and hence p♯OX is a perfect complex.

Definition 1.3. Let X be a derived prestack satisfying assumption 1.1. Its Euler characteristic is

χ(X) = χ(p♯OX).

Let us now present several corollaries of this assumption. Recall the notion of an O-compact prestack
from [Pan+13, Definition 2.1].

Proposition 1.4. Let X be a derived prestack satisfying assumption 1.1. Then:
(1) Perf(X) ⊂ QCoh(X)ω.
(2) Let S be a derived affine scheme and let π : S × X → S be the projection. Then there are colimit-

preserving functors π♯, π∗ : QCoh(S ×X)→ QCoh(S), where π♯ ⊣ π∗ ⊣ π∗, which satisfy the projec-
tion formulas: the natural morphisms

π♯(F ⊗ π∗G) −→ π♯(F)⊗ G

and
π∗(F)⊗ G −→ π∗(F ⊗ π∗G)

are isomorphisms.
(3) X is O-compact. In particular, for a derived affine scheme S the functors π♯, π∗ preserve perfect

complexes, i.e. they restrict to functors

π♯, π∗ : Perf(S ×X) −→ Perf(S).

Proof. Let S be a derived affine scheme. Let p : X → pt and π : S × X → S be the projections, so that
π = id × p. As QCoh(S × X) ∼= QCoh(S) ⊗ QCoh(X), the functor (id × p)∗ : QCoh(S) → QCoh(S × X)
admits a colimit-preserving right adjoint π∗ = id⊗ p∗ and a left adjoint π♯ = id⊗ p♯. The forgetful functor
QCoh(S)→ Modk is colimit-preserving, so the total pushforward functor QCoh(S ×X)→ Modk is colimit-
preserving as well. Therefore, OS×X is compact. The tensor product of a perfect complex and a compact
object is still compact. So, Perf(S ×X) ⊂ QCoh(S ×X)ω.

As π∗ is colimit-preserving, π♯ preserves compact objects. As compact and perfect objects in QCoh(S)
coincide, we see that π♯ preserves perfect objects. But then if F ∈ Perf(S ×X), we have

HomQCoh(S)(π♯F
∨,OS) ∼= HomQCoh(S×X)(F

∨,OS×X) ∼= π∗F

and hence π∗F is a perfect complex on S. □

Finally, recall from [GR17, Chapter 1, Definition 7.1.2] the notion of a derived prestack X admitting a
representable deformation theory. In this case there is a cotangent complex LX ∈ QCoh(X). For two derived
prestacks X,Y we may consider the mapping prestack Map(X,Y ) together with the evaluation morphism

ev : Map(X,Y )×X −→ Y

and the projection
π : Map(X,Y )×X −→ Map(X,Y )

5



on the first factor.

Proposition 1.5. Suppose X,Y are derived prestacks, where Y admits a perfect cotangent complex and X
satisfies assumption 1.1. Then Map(X,Y ) admits a perfect cotangent complex given by the formula

LMap(X,Y ) = π♯ev
∗LY .

Proof. The formula for LMap(X,Y ) is proven in [Roz21, Proposition B.3.5]. The fact that it is perfect follows
from proposition 1.4: for any derived affine scheme S the pushforward π♯ : QCoh(S × X) → QCoh(S)
preserves perfect complexes. □

1.2. K-theory. Let X be a derived prestack. Consider the following objects:
• The prestack Perf of symmetric monoidal stable∞-categories which assigns Perf(S) to S. We denote

by Perf∼ the underlying ∞-groupoid.
• The prestack Perf(X) = Map(X,Perf) of stable ∞-categories which assigns Perf(S ×X) to S.
• The stable ∞-category Perf∨(X) of exact functors Perf(S ×X) → Perf(S) natural in S (i.e. com-

patible with base change); explicitly,

Perf∨(X) = Funex(Perf(X),Perf).

There is a natural evaluation functor

Perf∨(X)× Perf(X) −→ Perf.

In this paper we use the formalism of algebraic K-theory of stable ∞-categories. Given a stable ∞-
category C, there is a connective spectrum K(C). An object x ∈ C defines a point [x] ∈ Ω∞K(C). Moreover,
a fundamental property of K-theory is its additivity; we will repeatedly use the following manifestation of
this property: given a filtered object x ∈ C, there is a canonical homotopy between [x] ∈ Ω∞K(C) and its
associated graded [grx] ∈ Ω∞K(C) which we call the additivity homotopy . For instance, given a fiber
sequence x → y → z, one has a canonical homotopy from [y] to [x] + [z], where we think of x → y as the
data of a two-step filtration on y and x⊕ z as its associated graded.

We will consider several versions of K-theory of X:
• K(X) denotes the connective K-theory of the stable ∞-category Perf(X). As Perf(X) is symmetric

monoidal, K(X) has an E∞ structure.
• Kω(X) denotes the connective K-theory of the stable ∞-category QCoh(X)ω. As QCoh(X)ω is a
Perf(X)-module category, Kω(X) is a K(X)-module.
• K is the prestack which sends a derived affine scheme S to K(S).
• K(X) is the prestack which sends a derived affine scheme S to K(S × X). Note that there is a

natural map K(X) → Map(X,K) sending K(S ×X) → limA→X K(S × A) that is generally not an
equivalence.

• K∨(X) is the connective K-theory of the stable ∞-category Perf∨(X).
There is a natural evaluation map

K∨(X)⊗K(X) −→ K.

If X satisfies assumption 1.1, we have several new features:
• The inclusion Perf(X) ⊂ QCoh(X)ω induces a map K(X)→ Kω(X) of connective spectra.
• We may consider the class [OX ] ∈ Ω∞Kω(X) of the structure sheaf OX ∈ QCoh(X)ω.
• There are pushforward functors π♯, π∗ ∈ Perf∨(X).
• There is a functor

tensX : QCoh(X)ω −→ Perf∨(X)

given by integral transform as follows. For a derived affine scheme S it is the functor

QCoh(X)ω −→ Funex(Perf(S ×X),Perf(S))

given by F 7→ (G 7→ π♯(F ⊗ G)). Under this functor OX ∈ QCoh(X)ω is sent to π♯ ∈ Perf∨(X).
Let us now describe a situation when π♯ : K(X)→ K is nullhomotopic.
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Definition 1.6. Let X be a derived prestack satisfying assumption 1.1. An Euler structure on X is a
nullhomotopy of [OX ] ∈ Ω∞Kω(X).

Theorem 1.7. Suppose X is a derived prestack equipped with an Euler structure. Then π♯ : K(X) → K
admits a nullhomotopy.

Proof. The functor tensX : QCoh(X)ω → Perf∨(X) descends to a morphism

tensX : Kω(X) −→ K∨(X).

Under this morphism [OX ] ∈ Ω∞Kω(X) is sent to [π♯] ∈ Ω∞K∨(X). Thus, the nullhomotopy of [OX ] ∈ Kω(X)
induces a nullhomotopy of π♯ : K(X)→ K. □

1.3. Assembly and coassembly. In some of our examples derived prestacks will not have an Euler struc-
ture, but instead a slightly weaker structure. To describe the precise situation let us introduce the assembly
and coassembly maps.

Let S be a derived affine scheme. For a point i : pt → X, i.e. an element x ∈ X(k), the functor
(id× i)∗ : Perf(S ×X)→ Perf(S) induces a map

K(S ×X) −→ K(S).

This map is natural in x ∈ X(k) and S, so we obtain the coassembly map

ϵ : K(X) −→ C•(X(k); K).

We can also define a map “dual” to the coassembly map. For this we need a stronger assumption on X.

Assumption 1.8. Let X be a derived prestack satisfying assumption 1.1 and the following condition: for
every point i : pt→ X the pullback functor i∗ : QCoh(X)→ Modk admits a left adjoint i♯ : Modk → QCoh(X)
satisfying the projection formula, i.e. such that the natural morphism X)

i♯(i
∗F ⊗ V ) −→ F ⊗ i♯V

is an isomorphism for every F ∈ QCoh(X) and V ∈ Modk.

Let X be a derived prestack satisfying assumption 1.8 and S a derived affine scheme. For any point
i : pt → X the functor (id × i)♯ : QCoh(S) → QCoh(S ×X) preserves compact objects as it has a colimit-
preserving right adjoint. Therefore, it induces a map

i♯ : K(S) −→ Kω(S ×X).

It is natural in x ∈ X(k) and S, so we obtain the assembly map

α : C•(X(k); K(k)) −→ Kω(X).

Definition 1.9. Let X be a derived prestack satisfying assumption 1.8. A simple structure on X is the
data of the K-theoretic Euler class eK(X) ∈ Ω∞C•(X(k); K(k)) together with a homotopy α(eK(X)) ∼ [OX ]
in Ω∞Kω(X). In this case the Euler class is the image e(X) ∈ C•(X(k);Z) of eK(X) under the map
χ : K(k)→ Z.

Remark 1.10. One can think of an Euler structure as a pair of a simple structure together with a trivialization
of the Euler class eK(X) ∈ C•(X(k); K(k)).

Remark 1.11. Tracing through the definitions one obtains that the pushforward of the Euler class e(X) along
X(k)→ pt coincides with the Euler characteristic of X.

We will now state a version of theorem 1.7 in the presence of a simple structure on X rather than an
Euler structure. Consider the composite

⟨−,−⟩ : C•(X(k); K(S))⊗ C•(X(k); K(k)) −→ K(S)⊗K(k) −→ K(S),

where the first map is the natural pairing between chains and cochains on X(k) and the second map is
induced by the tensor product.

7



Theorem 1.12. Suppose X is a derived prestack equipped with a simple structure. Then the pushforward

π♯ : K(X) −→ K

factors as

K(X)
ϵ−→ C•(X(k); K)

⟨−,eK(X)⟩−−−−−−−→ K.

Proof. The map
K(S ×X) −→ Kω(S ×X)

factors as
K(S ×X)

id⊗[OX ]−−−−−→ K(S ×X)⊗Kω(X) −→ Kω(S ×X).

Given a simple structure on X, the latter map factors as

K(S ×X)
id⊗eK(X)−−−−−−→ K(S ×X)⊗ C•(X(k); K(k))
α−→ K(S ×X)⊗Kω(X)

−→ Kω(S ×X).

The projection formula gives a commutative diagram

K(S ×X)⊗ C•(X(k); K(k))

ϵ

ss

α

**
C•(X; K(S))⊗ C•(X; K(k))

⊗
��

K(S ×X)⊗Kω(X)

⊗
��

C•(X; K(S))
α // Kω(S ×X)

Thus, the original map factors as

K(S ×X)
id⊗eK(X)−−−−−−→ K(S ×X)⊗ C•(X(k); K(k))
ϵ−→ C•(X(k); K(S))⊗ C•(X(k); K(k))

⊗−→ C•(X(k); K(S))
α−→ Kω(S ×X).

Postcomposing with the pushforward map π♯ : K
ω(S ×X)→ K(S) and identifying the composite

C•(X(k); K(S))
α−→ Kω(S ×X)

π♯−→ K(S)

with the homology along X(k) we get the claim. □

Remark 1.13. Consider a derived prestack X with a simple structure and write

eK(X) =
∑
i

xiαi

for some points xi ∈ X(k) and αi ∈ Ω∞K(k). Let F ∈ Perf(X) be a perfect complex. Then theorem 1.12
provides a homotopy

[π♯F] ∼
∑
i

[Fxi ]αi

in Ω∞K(k). This is an example of an ϵ-factorization in the sense of [Bei07, Proposition 4.1].

By taking pushouts we may glue derived prestacks with simple structures to obtain new derived prestacks
with a simple structure as follows.

8



Proposition 1.14. Consider a pushout diagram of derived prestacks

X0
f //

g

��

X1

g′

��
X2

f ′
// X

Moreover, assume X0, X1, X2 carry simple structures and suppose the functors f∗ : QCoh(X1)→ QCoh(X0)
and g∗ : QCoh(X2) → QCoh(X0) admit left adjoints f♯ and g♯ satisfying the projection formula. Then X
carries a glued simple structure.

Proof. Let us begin by verifying assumption 1.8 for X. By definition QCoh(−) takes colimits of derived
prestacks to limits of ∞-categories, so we have a Cartesian diagram of ∞-categories

QCoh(X)
(g′)∗ //

(f ′)∗

��

QCoh(X1)

f∗

��
QCoh(X2)

g∗
// QCoh(X0)

As f∗ and g∗ preserve limits, so do (f ′)∗ and (g′)∗ (as the inclusion PrR ⊂ Ĉat∞ preserves limits). Therefore,
passing to left adjoints we have a coCartesian diagram in PrL (with functors satisfying the projection formula)

QCoh(X0)
f♯ //

g♯

��

QCoh(X1)

g′
♯

��
QCoh(X2)

f ′
♯ // QCoh(X)

and a coCartesian square in QCoh(X)

(1) (g′ ◦ f)♯OX0
//

��

g′♯OX1

��
f ′
♯OX2

// OX ,

As OXi
∈ QCoh(Xi) are compact, we get that OX ∈ QCoh(X) is compact. Moreover, p♯ : QCoh(X)→ Modk

exists and it is tautologically induced by the compatible family of functors (pi)♯ : QCoh(Xi)→ Modk using
the equivalence QCoh(X) ∼= QCoh(X1)

∐
QCoh(X0)

QCoh(X2) in PrL.
Finally, consider a point of X1(k) corresponding to a map i : pt→ X1. Then the composite

QCoh(X)
(f ′)∗−−−→ QCoh(X1)

i∗−→ Modk

admits a left adjoint satisfying the projection formula given by f ′
♯ ◦ i♯ and similarly for points in X2(k). This

immediately implies the claim for points in X(k) = X1(k)
∐

X0(k)
X2(k).

We can now produce a simple structure on X by gluing together the simple structures on Xi using the
following homotopies in Ω∞Kω(X):

[OX ] ∼ g′♯[OX1
] + f ′

♯[OX2
]− (g′ ◦ f)♯[OX0

] ∼ α(g′eK(X1) + f ′eK(X2)− (g′ ◦ f)eK(X0)).

Here the first homotopy is obtained from the additivity homotopy by using the fiber sequence

f ′
♯OX1 ⊕ g′♯OX2 −→ OX −→ (g′ ◦ f)♯OX0 [1]

coming from the pushout square (1) and the second homotopy is obtained from the simple structures of
Xi. □

9



1.4. Duality. In this section we consider an even stronger assumption on the derived prestack X. Recall
that the ∞-category PrStk of k-linear presentable stable ∞-categories has a natural symmetric monoidal
structure with the unit given by Modk.

Assumption 1.15. Let X be a derived prestack satisfying assumption 1.8 and the following conditions:
• The ∞-category QCoh(X) is compactly generated.
• The pullback functor ∆∗ : QCoh(X)⊗QCoh(X)→ QCoh(X) admits a left adjoint

∆♯ : QCoh(X)→ QCoh(X)⊗QCoh(X)

satisfying the projection formula, i.e. it is a functor of QCoh(X) ⊗ QCoh(X)-module categories;
equivalently, the natural morphism

∆♯(F ⊗ G) −→ ∆♯(F)⊗ (G⊠ OX)

is an isomorphism.

Using the symmetric monoidal structure on PrStk we can talk about dualizable objects in PrStk . Given
two such dualizable categories C,D ∈ PrStk with duals C∨,D∨ ∈ PrStk as well as a colimit-preserving functor
F : C→ D, there is a naturally defined dual functor F∨ : D∨ → C∨ which is uniquely specified by a natural
isomorphism

evD(F (x), y) ∼= evC(x, F
∨(y))

for x ∈ C and y ∈ D∨.

Theorem 1.16. Let X be a derived prestack satisfying assumption 1.15. Then:
(1) For any derived prestack Y the natural functor ⊠ : QCoh(X) ⊗ QCoh(Y ) → QCoh(X × Y ) is an

equivalence.
(2) The functors

ev : QCoh(X)⊗QCoh(X)
∆∗

−−→ QCoh(X)
p♯−→ Modk

and
coev : Modk

p∗

−→ QCoh(X)
∆♯−−→ QCoh(X)⊗QCoh(X)

establish a self-duality of QCoh(X) in PrStk .
(3) Under this self-duality of QCoh(X) the functors p♯ : QCoh(X)→ Modk and p∗ : Modk → QCoh(X)

are dual to each other.
(4) The symmetric bilinear functor

B : QCoh(X)ω ⊗QCoh(X)ω −→ Sp

given by
(x, y) 7→ HomQCoh(X×X)(x⊠ y,∆♯OX)

is non-degenerate, i.e. there is an equivalence

D: QCoh(X)ω,op −→ QCoh(X)ω

satisfying B(x, y) ∼= HomQCoh(X)(x,D(y)). Moreover,

B̃(x, y) = HomQCoh(X)(D(x), y) ∼= p♯(x⊗ y)

for every x, y ∈ QCoh(X)ω.

Proof. Since QCoh(X) is compactly generated, it is dualizable by [Lur18, Proposition D.7.2.3]. The first
statement then follows from [Gai13, Lemma B.2.3]. The second statement is standard (see e.g. [Hoy+21,
Proposition 2.17] for a related statement).

The third statement follows from the obvious isomorphisms

evQCoh(X)(p
∗V,F) = p♯(V ⊗ OX ⊗ F) ∼= V ⊗ p♯F = evModk

(V, p♯F).

Let us now prove the fourth statement. By [Lur18, Proposition D.7.2.3] the category QCoh(X) has a
duality data with the dual Ind(QCoh(X)ω,op) and the evaluation functor given by HomQCoh(X)(x, y) for
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x ∈ QCoh(X)ω,op and y ∈ QCoh(X)ω. By (1) there is another duality data. So, by uniqueness of the
duality data we obtain an equivalence

D: Ind(QCoh(X)ω,op) ∼= QCoh(X)

which intertwines the two duality data. Concretely, it is given by the formula

D(x) = Hom⊠(x,∆♯OX),

where Hom⊠(x,−) : QCoh(X×X)→ QCoh(X) is the right adjoint to the functor QCoh(X)→ QCoh(X×X)
given by y 7→ x⊠ y. This formula provides an isomorphism

HomQCoh(X)(x,D(y)) ∼= HomQCoh(X×X)(x⊠ y,∆♯OX).

Comparing the two evaluation functors, we get an isomorphism

HomQCoh(X)(D(x), y) ∼= p♯(x⊗ y).

□

Example 1.17. X = pt satisfies assumption 1.15. In this case the duality functor on QCoh(pt)ω ∼= Perfk is
the usual linear duality.

We will use the language of Poincare ∞-categories from [Cal+23] and their Grothendieck–Witt spectra.
The main points we will use are the following:

• A Poincaré structure on a stable∞-category C consists of a quadratic functor Ϙ : Cop → Sp such that
there is an equivalence D: Cop → C satisfying B(x, y) ∼= HomC(x,D(y)), where B : Cop × Cop → Sp
is the underlying symmetric bilinear functor of Ϙ.

• The equivalence D: Cop → C defines the structure of a C2-homotopy fixed point on C in the ∞-
category of categories. In particular, there is an induced C2-action on the K-theory spectrum K(C)
and we may consider the spectrum of invariants K(C)C2 .

• Given a Poincaré ∞-category (C, Ϙ) we may talk about Poincaré objects which are objects x ∈ C

equipped with an element of Ω∞
Ϙ(x) such that the induced map x→ D(x) is an isomorphism. Let

Pn(C, Ϙ) be the space of Poincare objects in C.
• Given a Poincaré∞-category (C, Ϙ) there is the corresponding Grothendieck–Witt spectrum GW(C)

with a forgetful map GW(C)→ K(C)C2 .
• Conversely, given any symmetric bilinear functor B : Cop×Cop → Sp such that there is an equivalence
D: Cop → C satisfying B(x, y) ∼= HomC(x,D(y)) (this is equivalent to C being an ∞-category with
duality in the sense of [HLS16]) the functor Ϙ : Cop → Sp given by Ϙ(x) = B(x, x)C2 defines a Poincaré
structure on C. All our examples will be of this form.

• In the previous setting there is a Poincaré structure Ϙop on Cop with underlying symmetric bilinear
functor B̃(x, y) = HomC(D(x), y). There is a natural equivalence of spaces Pn(C, Ϙ) ∼= Pn(Cop, Ϙop).

Remark 1.18. Even though we use the formalism of Grothendieck–Witt spectra from [Cal+23], for our
purposes it is enough to use earlier definitions of Grothendieck–Witt spectra for dg categories with duality
as in [Sch17].

Consider the following Poincaré structures:
• By the previous proposition the quadratic functor

Ϙ : QCoh(X)ω,op −→ Sp

given by x 7→ B(x, x)C2 = Hom(x⊠ x,∆♯OX)C2 is a Poincaré functor. We denote its shifts by

Ϙ
[n](x) = Ϙ(x)[n].

• For any derived prestack Perf(X) is a rigid symmetric monoidal ∞-category. In particular, the
quadratic functor

Ϙ : Perf(X)op −→ Sp

given by x 7→ HomQCoh(X)(x⊗ x,OX)C2 is Poincaré. As before, we denote by Ϙ[n] its shift.
• The Poincaré structure Ϙ[n] on Perf(X) induces one on Perf∨(X) using the internal Hom of Poincaré

categories described in [Cal+23, Remark 6.2.4].
11



Using the formalism of [Cal+20] we can define the Grothendieck–Witt (alias, hermitian K-theory) spectra:
• GWω,[n](X) = GW(QCoh(X)ω, Ϙ[n]).
• GW[n](X) = GW(Perf(X), Ϙ[n]).
• GW[n](X) is the prestack which sends a derived affine scheme S to GW[n](S×X). GW[n] = GW[n](pt)

is the prestack which sends a derived affine scheme S to GW[n](S).
• GW[n],∨(X) = GW(Perf∨(X), Ϙ[n]).

Remark 1.19. The functor C → C given by x 7→ x[2] defines an equivalence of Poincaré structures Ϙ[n] and
Ϙ
[n−4]. So, the Grothendieck–Witt spectra GW[n] are 4-periodic in n.

We will now show that several natural functors preserve Poincaré structures.

Proposition 1.20. Let X be a derived prestack satisfying assumption 1.15.
(1) For a point i : pt→ X and a derived affine scheme S the pullback functor

(id× i)∗ : Perf(S ×X)→ Perf(S)

is Poincaré.
(2) For a point i : pt→ X the pushforward functor i♯ : Perf(k)→ QCoh(X)ω is Poincaré.
(3) The functor tensX : QCoh(X)ω → Perf∨(X) is Poincaré.

Proof. The pullback functor (id × i)∗ : Perf(S × X) → Perf(S) is symmetric monoidal, so it is a Poincaré
functor.

Let us now show that i♯ : Perf(k)→ QCoh(X)ω is Poincaré. For this we need to show that it intertwines
the symmetric bilinear functors and preserves the duality strictly. Indeed, the functor i♯ has an oplax
symmetric monoidal structure. Therefore, the composite

V ⊗W ∼= p♯(i♯(V ⊗W )) −→ p♯(i♯V ⊗ i♯W )

for V,W ∈ Perf(k) defines a natural transformation of symmetric bilinear functors underlying Poincaré
structures on Perf(k)op and QCoh(X)ω,op. The corresponding dualities are preserved strictly as shown by
the sequence of isomorphisms

HomQCoh(X)(D(i♯V ), x) ∼= p♯(i♯V ⊗ x)
∼←− p♯i♯(V ⊗ i∗x) ∼= V ⊗ i∗x ∼= HomQCoh(X)(i♯V

∨, x).

Finally, to show that tensX : QCoh(X)ω → Perf∨(X) is Poincaré, we have to show that the functor
QCoh(X)ω → Funex(Perf(S × X),Perf(S)) given by x 7→ (y 7→ π♯(x ⊗ y)) is Poincaré naturally in S. In
turn, this is equivalent to showing that

QCoh(X)ω ⊗ Perf(S ×X) −→ Perf(S)

given by x, y 7→ π♯(x ⊗ y) is Poincaré with respect to the tensor product of the Poincaré structures on the
left. For this we need to construct a natural transformation

p♯(x1 ⊗ x2)⊗ π∗(y1 ⊗ y2) −→ π♯(x1 ⊗ y1)⊗ π♯(x2 ⊗ y2)

which is natural in x1, x2 ∈ QCoh(X)ω, y1, y2 ∈ Perf(S × X) and symmetric under the permutation
(x1, y1)↔ (x2, y2). By duality this is equivalent to providing a map

π♯(OS ⊗ x1 ⊗ x2) −→ π♯(x1 ⊗ y1)⊗ π♯(x2 ⊗ y2)⊗ π♯(y
∨
1 ⊗ y∨2 ).

This map arises by applying the coevaluation for y1, y2 and the oplax symmetric monoidal structure on
π♯. To show that this hermitian functor is Poincaré we have to check that the corresponding dualities are
preserved strictly. This follows from the following sequence of natural isomorphisms in x ∈ QCoh(X)ω,
y ∈ Perf(S ×X) and z ∈ Perf(S):

HomQCoh(S)(z, π♯(D(x)⊗ y∨)) ∼= HomQCoh(S×X)(x⊗ z, y∨)

∼= HomQCoh(S×X)(x⊗ y, z∨ ⊠ OX)

∼= HomQCoh(S)(π♯(x⊗ y), z∨),

which shows that π♯(x⊗ y)∨ ∼= π♯(D(x)⊗ y∨) in Perf(S). □
12



In particular, by the above proposition we obtain the assembly

α : C•(X(k);GW[n](k)) −→ GWω,[n](X)

and coassembly
ϵ : GW[n](X) −→ C•(X(k);GW[n])

maps which fit into commutative diagrams

C•(X(k);GW[n](k)) //

��

GWω,[n](X)

��
C•(X(k); K(k)) // Kω(X)

and
GW[n](X)

��

// C•(X(k);GW[n])

��
K(X) // C•(X(k); K).

We will now define analogs of Poincare duality spaces.

Definition 1.21. Let d ∈ Z and X a derived prestack satisfying assumption 1.15. A fundamental class
of X of degree d is a map

[X] : k −→ p♯OX [−d]
which is a unit of an adjunction p∗[−d] ⊣ p♯.

Recall from [Pan+13, Definition 2.4] the notion of an O-orientation of degree d on an O-compact derived
prestack X which is a morphism p∗OX → k[−d] satisfying a nondegeneracy property. By proposition 1.4
assumption 1.15 implies that X is O-compact.

Proposition 1.22. Suppose 2 is invertible in k. Let X be a derived prestack satisfying assumption 1.15.
The following pieces of data are equivalent:

(1) The structure of a Poincaré object on OX ∈ QCoh(X)ω with respect to the Poincaré structure Ϙ[d].
(2) A fundamental class of X of degree d.

Moreover, either of them gives rise to an O-orientation of degree d on X.

Proof. Recall from theorem 1.16 that there are natural isomorphisms

Hom(x⊠ y,∆♯OX) ∼= Hom(x,D(y)), p♯(x⊗ y) ∼= Hom(D(x), y).

The structure of a Poincaré object on OX is that of a symmetric map

OX ⊠ OX → ∆♯OX [d]

such that the induced map OX → D(OX)[d] is an isomorphism. Recall from theorem 1.16 that there is a
symmetric self-duality data on QCoh(X) ∈ PrStk with

coev(k) = ∆♯OX [d], ev(x, y) = p♯(x⊗ y).

Then the data of a Poincare object is that of a nondegenerate symmetric map

OX ⊠ OX → coev(k)[d].

It is equivalent to the data of a nondegenerate symmetric map

k → ev(OX ,OX)[−d] = p♯OX [−d],
where nondegeneracy means that the induced map D(OX)→ OX [−d] is an isomorphism. As OX is the unit,
the C2-action on p♯OX is trivial and, since 2 is invertible, (p♯OX)C2 ∼= p♯OX .

For k → p♯OX [−d] to be a fundamental class we need to ensure existence of the counit of the adjunction,
i.e. a natural transformation

OX ⊗ p♯F → F[d]
13



of endofunctors of QCoh(X). Identifying Fun(QCoh(X),QCoh(X)) ∼= QCoh(X ×X) using the self-duality
of QCoh(X), such a counit is the same as a morphism

OX ⊠ OX → ∆♯OX [d].

The adjunction axioms boil down to the condition that the map D(OX)→ OX [−d] induced by k → p♯OX [−d]
is inverse to the map OX [−d] → D(OX) induced by OX ⊠ OX → ∆♯OX [d]. This shows the equivalence of
the first two pieces of structure.

An O-orientation is the data of a morphism p∗OX → k[−d] such that for derived affine scheme S and a
perfect complex F ∈ Perf(S ×X) the natural morphism

π∗F → (π∗(F
∨))∨[−d]

induced by [X] is an isomorphism, where π = id × p : S ×X → S is the projection on the first factor. We
may identify (π♯F)

∨ ∼= π∗(F
∨). Thus, to check that a given morphism p∗OX → k[−d] is an O-orientation,

we need to show that the natural morphism

π∗F → π♯F[−d]
is an isomorphism for every F ∈ Perf(S ×X).

Now fix a fundamental class on X of degree d. The dual of [X] : k → p♯OX [−d] is a morphism p∗OX [d]→ k.
The fundamental class [X] provides a natural isomorphism p∗ → p♯[−d] as p∗ is defined to be the right adjoint
of p∗. We have π♯ = (id ⊗ p♯) and π∗ = (id ⊗ p∗) and it is easy to see that the morphism π∗F → π♯F[−d]
appearing in the definition of O-orientation is induced by the isomorphism p∗ → p♯[−d] and is, therefore, an
isomorphism. □

So, a fundamental class on X defines a point [OX ] ∈ Ω∞GWω,[d](X). By proposition 1.20 the func-
tor tensX : QCohω(X) → Perf∨(X) is Poincaré, so π♯ : (Perf(X), Ϙ[n]) → (Perf, Ϙ[n+d]) preserves Poincaré
structures for any n ∈ Z. Thus, in this case π♯ descends to a map

π♯ : GW[n](X) −→ GW[n+d]

of Grothendieck–Witt spectra.
We will now investigate what happens to the factorization theorem 1.12 in the presence of a compatible

fundamental class.

Definition 1.23. Let X be a derived prestack equipped with a fundamental class [X] of degree d and a simple
structure. We say the simple structure is compatible with Poincaré duality if we are given the Euler
class eGW(X) ∈ Ω∞C•(X(k);GW[d](k)) together with a homotopy α(eGW(X)) ∼ [OX ] in Ω∞GWω,[d](X)
which projects to the given simple structure in Ω∞Kω(X).

Remark 1.24. Note that the natural map

C•(X(k); τ≥0GW[d](k)) −→ τ≥0C•(X(k);GW[d](k))

is not an equivalence as GW[d](k) is not connective (its negative homotopy groups are, up to a shift, the
L-groups of k).

For a derived affine scheme S consider the composite

⟨−,−⟩ : C•(X(k);GW[n](S))⊗ C•(X(k);GW[d](k)) −→ GW[n](S)⊗GW[d](k) −→ GW[n+d](S),

where the first map is given by the natural pairing between chains and cochains on X(k) and the multipli-
cation map on the Grothendieck–Witt spectra induced by the tensor product. The following statement is
proven analogously to theorem 1.12.

Theorem 1.25. Suppose X is a derived prestack equipped with a fundamental class of degree d and a simple
structure compatible with Poincaré duality. Then the pushforward

π♯ : GW[n](X) −→ GW[n+d]

factors as

GW[n](X)
ϵ−→ C•(X(k);GW[n])

⟨−,eGW(X)⟩−−−−−−−−→ GW[n+d].
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2. Determinant lines and volume forms

In this section we construct the determinant line over the moduli stack of perfect complexes and the
torsion volume form on the mapping stack.

2.1. Perfect complexes and their determinants. Let R be a connective commutative dg k-algebra.
There is a weight structure on the stable ∞-category Perf(R) whose heart is Vect(R) ⊂ Perf(R), the
subcategory of projective finitely generated R-modules (i.e. retracts of R-modules of the form R⊕n). The
∞-category Perf(R) has a natural E∞ semiring structure in the sense of [GGN15] with respect to the
symmetric monoidal structures ⊕ and ⊗, see [GGN15, Example 8.12].

Consider the following derived stacks:
• Vect is the derived stack of vector bundles which sends R 7→ Vect(R).
• Pic = BGL1 is the derived stack of line bundles.
• PicZ = Pic×Z is the derived stack of graded line bundles, where Z is the étale sheafification of the

constant presheaf with value Z.
If R is a (discrete) commutative k-algebra, the groupoid PicZ(R) has a E∞ ring structure. This can be

modeled by a E∞-algebra object (we denote the corresponding symmetric monoidal structure by ⊗∗) in the
(2, 1)-category of Picard groupoids (we denote the symmetric monoidal structure of the Picard groupoid by
⊗). We refer to [Lap72] for the distributivity conditions and axioms that ⊗ and ⊗∗ have to satisfy. In the
case PicZ(R) the data is as follows:

• The first tensor product is (L1, n1)⊗ (L2, n2) = (L1⊗L2, n1+n2). It has an obvious associator and
the braiding given by the flip on L1 ⊗ L2 multiplied by the sign (−1)n1n2 . The unit is (O, 0).
• The second tensor product is (L1, n1)⊗∗ (L2, n2) = (Ln2

1 ⊗Ln1
2 , n1n2). It has an obvious associator

and the braiding given by the flip on Ln2
1 ⊗ Ln1

2 multiplied by the sign (−1)(n1(n1−1)/2)(n2(n2−1)/2).
The unit is (O, 1).
• For (L1, n1), (L2, n2), (L3, n3) ∈ PicZ(R) we let the left distributivity isomorphism

Ln2+n3
1 ⊗ (L2 ⊗ L3)

n1 ∼= Ln2
1 ⊗ Ln1

2 ⊗ Ln3
1 ⊗ Ln1

3

be the obvious isomorphism of line bundles multiplied by the sign (−1)n2n3n1(n1−1)/2.
• For (L1, n1), (L2, n2), (L3, n3) ∈ PicZ(R) we let the right distributivity isomorphism

(L1 ⊗ L2)
n3 ⊗ Ln1+n2

3
∼= Ln3

1 ⊗ Ln1
3 ⊗ Ln3

2 ⊗ Ln2
3

be the obvious isomorphism of line bundles.

Proposition 2.1. Let R be a (discrete) commutative k-algebra. There is a functor

detgr : Vect(R)∼ −→ PicZ(R),

natural in R, of E∞ semiring categories sending V ∈ Vect(R) to (det(V ) = ∧rkV V, rkV ). The monoidal
structure with respect to ⊗ is given by the isomorphism

detgr(V )⊗ detgr(W ) −→ detgr(V ⊕W )

given by
∧rkV
i=1 vi ⊗ ∧rkW

j=1 wi 7→ (∧rkV
i=1 vi) ∧ (∧rkW

j=1 wi).

The monoidal structure with respect to ⊗∗ is given by the isomorphism

detgr(V )⊗∗ detgr(W ) −→ detgr(V ⊗W )

which is an isomorphism of line bundles

det(V )rkW ⊗ det(W )rkV −→ det(V ⊗W )

given by
(⊗rkW

j=1 ∧rkV
i=1 vij)⊗ (⊗rkV

i=1 ∧rkW
j=1 wij) 7→ ∧rkV

i=1 ∧rkW
j=1 (vij ⊗ wij).

Proof. The fact that detgr : (Vect(R)∼,⊕) → (PicZ(R),⊗) is a symmetric monoidal functor is shown in
[KM76]. The compatibility with the E∞ semiring structure is straightforward. □
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Let us now extend the determinant functor to K-theory following [STV15, Section 3.1] and [Hel20, The-
orem 3.9]. Since (PicZ(R),⊗) is a Picard groupoid, we may regard it as a connective spectrum.

Theorem 2.2. PicZ is a stack of E∞ ring spectra on the site of derived affine schemes. Moreover, there is
a morphism of prestacks of E∞ ring spectra

detgr : K −→ PicZ

such that Vect → K → PicZ coincides with the classical determinant functor from proposition 2.1 when
restricted to discrete commutative k-algebras.

Proof. Let us first construct an E∞ ring structure on PicZ. As shown in [Hel20, Section 2] and [Elm+20,
Appendix A], the stacks Vect and PicZ are left Kan extended from smooth commutative k-algebras (in
particular, discrete). Note that the corresponding pointwise formula for the left Kan extension is given by
a sifted colimit as observed in [Elm+20, Lemma A.0.5]. The forgetful map RingE∞

(S) → S from E∞-ring
spaces to spaces preserves sifted colimits, so to endow PicZ with an E∞ ring structure it is enough to endow
the stack R 7→ PicZ(R) for R a smooth commutative k-algebra with an E∞ ring structure, which we have
already defined above.

By [HS21, Corollary 8.1.3] (see also [Hel20, Corollary 1.40] and [Fon18]) the natural map of spectra
K(Vect(R)) → K(Perf(R)) is an equivalence for any connective commutative dg k-algebra R. So, it is
enough to construct an E∞ ring structure on PicZ as well as a morphism of E∞ ring spectra

detgr : K(Vect(R)) −→ PicZ(R)

natural in R. As PicZ is an E∞ ring, this is the same as a morphism of E∞ semiring spaces

detgr : Vect(R) −→ PicZ(R).

As Vect is left Kan extended from smooth commutative k-algebras, it is enough to construct this morphism
for R classical which was done in proposition 2.1. □

By precomposition with Perf∼ → K the determinant map gives rise to a determinant morphism

detgr : Perf∼ −→ PicZ.

It splits into a pair of maps
det : Perf∼ −→ Pic, χ : Perf∼ −→ Z,

where we note that det : Perf∼ → Pic is merely an E1 map of spaces. The following statement is well-known.

Proposition 2.3. Let R be a (discrete) k-algebra. Suppose V • = (V −m → V −m+1 → · · · → V 0) is a chain
complex of projective finitely-generated R-modules. Then there is a canonical homotopy

[V •] ∼
m∑

n=0

(−1)n[V −n] ∈ Ω∞K(R).

Therefore, if R is commutative, there is a canonical isomorphism

detgr(V •) ∼= detgr(V 0)⊗ detgr(V −1)−1 ⊗ · · · ⊗ detgr(V −m)(−1)m .

Proof. Consider a filtration on V • by the brutal truncation on cohomological degree. Its associated graded
V • with the zero differential. As the class of any filtered object is equivalent to the class of its associated
graded in K-theory, this provides the relevant homotopy.

The isomorphism on the level of determinant lines is obtained after applying detgr to the homotopy in
K(R). □

The following construction will be useful. Suppose V • is a chain complex as in proposition 2.3, its
cohomology H•(V •) consists of projective modules and there is a quasi-isomorphism H•(V •) → V • (e.g. R
is a field). Then we obtain an isomorphism of the determinant lines

(2) ϕV : detgr(V •) −→ detgr(H•(V •)).

We refer to [FT00, Section 2.2] for explicit formulas.
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Definition 2.4. Let X be a derived prestack satisfying assumption 1.1. The determinant line bundle is
the graded line bundle on Perf(X)∼ given by the composite

Perf(X)∼
π♯−→ Perf∼

detgr−−−→ PicZ.

Explicitly, for an object F ∈ Perf(X) the fiber of the determinant line bundle on Perf(X) is

DF = detgr(π♯F),

the determinant of the homology of F. If X is equipped with an Euler structure, by theorem 1.7 we obtain
a determinant section of D giving rise to an isomorphism D ∼= OPerf(X).

2.2. Volume forms.

Definition 2.5. Let Y be a derived prestack which admits deformation theory whose cotangent complex
LY is perfect.

• The virtual dimension of Y is the locally constant function dim(Y ) : Y → Z given by χ(LY ). We
say Y has pure dimension n ∈ Z if dim(Y ) is the constant function with value n.

• A volume form on Y is an isomorphism det(LY ) ∼= OY .
• A squared volume form on Y is an isomorphism det(LY )

⊗2 ∼= OY .

Example 2.6. Let G be an algebraic group equipped with a G-invariant volume form on the Lie algebra g.
Suppose Y is a derived prestack equipped with a G-invariant volume form volY . Then there is a natural
volume form on the quotient [Y/G]. Indeed, under the identification of QCoh([Y/G]) with G-equivariant
quasi-coherent complexes on Y we have

L[Y/G] 7→ (LY → OY ⊗ g∗).

Therefore, the G-invariant trivialization volY of det(LY ) and a G-invariant trivialization of det(g∗) induce a
trivialization of det(L[Y/G]).

Volume forms can be glued as follows. Suppose Y1, Y2 and Y0 are derived prestacks equipped with volume
forms and consider a pullback diagram

Y
g′
//

f ′

��

Y1

f

��
Y2

g // Y0.

The cotangent complex of Y fits into a Cartesian square

LY
//

��

g′∗LY1

��
f ′∗LY2

// (gf ′)∗LY0 .

Applying determinants we get an isomorphism

det(LY ) ∼= det(g′∗LY1
)⊗ det(f ′∗LY2

)⊗ det((gf ′)∗LY0
)−1.

The volume forms on Y1, Y2, Y0 then give a volume form on Y . We call it the glued volume form .
In this section we consider mapping prestacks Map(X,Y ), where Y is a derived prestack with a perfect

cotangent complex and X a derived prestack satisfying assumption 1.1. By proposition 1.5 we have

LMap(X,Y ) = π♯ev
∗LY

in that case and hence, using that by definition D = detgr ◦ π♯, it follows that

detgr(LMap(X,Y )) = detgr(π♯ev
∗LY ) = D(ev∗LY ) = g∗D,

where g : Map(X,Y ) → Perf is the classifying map of ev∗LY , i.e. the map which sends a morphism
f : S × X → Y to f∗LY ∈ Perf(S × X). This observation will allow us to apply the results of the pre-
vious section. Applying theorem 1.7 we get the following.
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Theorem 2.7. Let Y be a derived prestack with a perfect cotangent complex. Let X be a derived prestack
with an Euler structure. Then Map(X,Y ) carries a canonical volume form and dim(Map(X,Y )) = 0.

Often one does not have a full Euler structure, but instead a simple structure. In that case we have the
following statement.

Theorem 2.8. Let Y be a derived prestack of pure dimension dim(Y ). Let X be a derived prestack equipped
with a simple structure. Consider either of the following data:

(1) An equality dim(Y ) = 0.
(2) An isomorphism det(p♯OX) ∼= k.
(3) An isomorphism det(p♯OX)⊗2 ∼= k with dim(Y ) even.

and either of the following data:
(1) A volume form on Y .
(2) A trivialization of the Euler class e(X) ∈ C•(X(k);Z).
(3) A squared volume form on Y as well as a a trivialization of the mod 2 Euler class e(X) ∈ C•(X(k);Z/2).

Then Map(X,Y ) carries a canonical volume form, the torsion volume form, and

dim(Map(X,Y )) = dim(Y )χ(X).

Proof. By proposition 1.5 we can write detLMap(X,Y ) as the map of prestacks

Map(X,Y )
LY // Map(X,Perf∼)

π♯ // Perf∼
det // Pic

We can extend this to a commuting diagram

Map(X,Y )
LY // Map(X,Perf∼)

π♯ //

��

Perf∼
det //

��

Pic

K(X)
π♯ //

ϵ

��

K
detgr // PicZ

OO

C•(X(k); K) C•(X(k); K)

⟨−,eK(X)⟩

OO

detgr // C•(X(k); PicZ)

⟨−,detgr(eK(X))⟩

OO

where the top two squares commute by definition (of π♯ : K(X) → K and detgr), the bottom-left square
commutes by theorem 1.12 and the bottom-right square commutes by theorem 2.2. From naturality of
coassembly applied to

K(X)→ Map(X,K)→ Map(X,PicZ)

we obtain the commuting diagram

Map(X,Perf∼)
detgr //

��

Map(X,PicZ)

ϵ

��

K(X)

��
C•(X(k); K)

detgr // C•(X(k); PicZ).

We have thus obtained the isomorphism

detgr(LMap(X,Y )) ∼= ⟨ϵ(ev∗detgr(LY )),det
gr(eK(X))⟩ ∈ PicZ(Map(X,Y )),

where
⟨−,−⟩ : C•(X(k); PicZ(Map(X,Y ))⊗ C•(X(k); PicZ(k)) −→ PicZ(Map(X,Y ))

18



is given by the natural pairing between chains and cochains on X(k) and the tensor product map

⊗∗ : PicZ(Map(X,Y ))⊗ PicZ(k)→ PicZ(Map(X,Y )).

Under the equivalence PicZ ∼= Pic× Z we decompose the individual determinants as follows:
• detgr(LY ) = (det(LY ),dim(Y )) ∈ PicZ(Y ) where we note that dim(Y ) is constant by assumption.
• detgr(eK(X)) = (det(eK(X)), e(X)) ∈ C•(X(k); PicZ(k)). Its pushforward under X(k) → pt is
(det(p♯OX), χ(X)) ∈ PicZ(k).

We write (recall that we write addition and multiplication in PicZ as ⊗ and ⊗∗, respectively)

detgr(LMap(X,Y )) ∼= ⟨ϵ(ev∗detgr(LY )),det
gr(eK(X))⟩

= ⟨ϵ(ev∗ det(LY )), e(X)⟩ ⊗ ⟨dim(Y ),detgr(eK(X))⟩
= ⟨ϵ(ev∗ det(LY )), e(X)⟩ ⊗ (dim(Y )⊗∗ p♯det

gr(eK(X))

=
(
⟨ϵ(ev∗ det(LY )), e(X)⟩ ⊗ det(p♯OX)⊗ dim(Y ),dim(Y )χ(X)

)
where by the description of ⊗∗ the pairing ⟨−,−⟩ used in the last two lines is

C•(X(k); Pic(Map(X,Y ))⊗ C•(X(k);Z) −→ Pic(Map(X,Y ))⊗ Z −→ Pic(Map(X,Y )),

where the last map is (L, n) 7→ L⊗n.
The two tensor factors of det(LMap(X,Y )) are trivialized using the two pieces of data assumed in the

statement. In this way we have constructed a canonical trivialization of det(LMap(X,Y )) and hence a volume
form on Map(X,Y ). □

Remark 2.9. Rescaling the volume form on Y by A ∈ k∗, the torsion volume form on Map(X,Y ) gets
rescaled by Aχ(X). Similarly, rescaling the trivialization of det(p♯OX) by B ∈ k∗, the torsion volume form
on Map(X,Y ) gets rescaled by Bdim(Y ).

Let us now show that the construction of the torsion volume form on mapping stacks is compatible with
gluing.

Proposition 2.10. Consider a diagram of derived prestacks X1 ← X0 → X2 equipped with simple structures
and equip X = X1

∐
X0

X2 with the glued simple structure. Consider isomorphisms det(p♯OXi)
∼= k for

i = 0, 1, 2 and consider the isomorphism det(p♯OX) ∼= k induced by the pushout square (1). Let Y be a
derived prestack of pure dimension dim(Y ) and choose a volume form on Y . Then the torsion volume form
on Map(X,Y ) coincides with the volume form on

Map(X,Y ) = Map(X1, Y )×Map(X0,Y ) Map(X2, Y )

glued from the torsion volume forms on Map(Xi, Y ).

Proof. We have a pushout diagram

X0
f //

g

��

X1

g′

��
X2

f ′
// X

Let

Map(X,Y )
g̃′
//

f̃ ′

��

Map(X1, Y )

f̃

��
Map(X2, Y )

g̃ // Map(X0, Y )

be the induced pullback diagram of mapping prestacks.
Let us spell out the canonical volume form obtained from the glued simple structure. We first write

detgr(LMap(X,Y )) = det(π♯(ev
∗LY ⊗ OX)),
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as the image of [OX ] under the map F : Kω(X)→ PicZ(Map(X,Y )) induced by the functor

F 7→ detgr(π♯(ev
∗LY ⊗ F)).

From the commutative diagram

(3) C•(X(k),K(k)) //

α

��

C•(X(k),PicZ(k))

⟨ϵ(ev∗LY ),−⟩
��

Kω(X)
F // PicZ(Map(X,Y ))

we obtained

detgr(LMap(X,Y )) = F ([OX ]) ∼= F (αeK(X)) = ⟨detgr(ev∗LY ), eK(X)⟩ ∈ PicZ(Map(X,Y )).

We then split the projection to Pic(Map(X,Y )) into two components using the description of the tensor
product ⊗∗ to obtain the two terms

⟨det(ev∗LY ), e(X)⟩, ⟨dim(Y ),det(p♯OX)⟩

which we trivialized separately: the first one using the volume form on Y and the second one by using
det(p♯OX) ∼= det(p♯OX1

)⊗ det(p♯OX2
)⊗ det(p♯OX0

)−1.
Note that the diagram (3) is natural in X. Moreover, the map F factorizes as

Kω(X) −→ K(Map(X,Y ))
detgr−−−→ PicZ(Map(X,Y )),

so we obtain the commuting diagram

F ([OX ])
∼

∼

F (g′♯[OX1 ] + f ′
♯[OX2 ]− (g′f)♯[OX0 ])

∼

g̃′∗F ([OX1
])⊗ f̃ ′∗F ([OX2

])⊗ (g̃′f̃)∗F ([OX0
])−1

where the horizontal arrow is given by the additivity homotopy in Kω(X) and the diagonal arrow is the
isomorphism

detgr(LMap(X,Y )) ∼= g̃′∗detgr(LMap(X1,Y ))⊗ f̃ ′∗detgr(LMap(X2,Y ))⊗ (g̃′f̃)∗detgr(LMap(X0,Y ))
−1.

We thus get that the isomorphism F ([OX ]) ∼= F (αeK(X)) ∼= ⟨detgr(ev∗LY ), eK(X)⟩ can be factored as

F ([OX ]) ∼= g′∗F ([OX1
])⊗ f ′∗F ([OX2

])⊗ (g′f)∗F ([OX0
])−1

∼= g′∗F (α(eK(X1)))⊗ f ′∗F (α(eK(X2)))⊗ (g′f)∗F (α(eK(X0)))
−1

∼= ⟨detgr(ev∗LY ), eK(X1)− eK(X2)− eK(X0)⟩

Finally, the trivialization of the two summands in the Pic(Map(X,Y ))-component of

⟨detgr(ev∗LY ), eK(X1)− eK(X2)− eK(X0)⟩

we used above are equivalent to the trivialization for each ⟨detgr(ev∗LY ), eK(Xi)⟩ separately (clear for the
first summand and by definition for the second). This finishes the proof. □

2.3. Poincaré duality for volume forms. Assume 2 is invertible in k throughout this section. Let R be
a connective commutative dg k-algebra. Consider the following two Poincaré structures on Perf(R):

• Ϙ+ = Ϙ[0] given by x 7→ Hom(x⊗ x,OX)C2 . We denote GW+(R) = GW[0](R).
• Ϙ− given by x 7→ (Hom(x⊗x,OX)⊗ sgn)C2 , where sgn is the sign representation of C2. The functor
Perf(R)→ Perf(R) given by x 7→ x[1] defines an equivalence of Poincaré categories

(Perf(R), Ϙ−)→ (Perf(R), Ϙ[2]).

We denote by GW−(R) the Grothendieck–Witt spectrum of this Poincaré structure which, using
this equivalence, may be identified with GW[2](R).
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The two Poincaré structures Ϙ± define two C2-actions on Perf(R) (we denote them by Perfϵ(R) for ϵ = ±1),
where the underlying duality functor is x 7→ x∨. The two are distinguished by the isomorphism x→ (x∨)∨,
where it is either the canonical pivotal element of the symmetric monoidal structure on Perf(R) (in the case
of Ϙ+) or the canonical pivotal element multiplied by (−1) (in the case of Ϙ−). Moreover, both Poincaré
structures restrict to Poincaré structures on the heart Vect(R) ⊂ Perf(R) of the weight structure. We have
that (Perf(R), Ϙ+) is a symmetric monoidal Poincaré∞-category and (Perf(R), Ϙ−) is a (Perf(R), Ϙ+)-module
∞-category.

Proposition 2.11. Let ϵ = ±1 be a sign. There is a C2-action on PicZ as a stack of E∞ spaces which we
denote PicZ,ϵ. On the level of underlying stacks it is given by sending (L, n) 7→ (L∗, n) with the isomorphism
(L, n) → (L∗∗, n) given by the pivotal structure L ∼= L∗∗ multiplied by ϵn and with the monoidal structure
with respect to ⊗

L∗
1 ⊗ L∗

2
∼= (L1 ⊗ L2)

∗

determined by the braiding of line bundles with no extra signs. It has the following properties:
(1) The ring structure

⊗∗ : PicZ,ϵ1 ⊗ PicZ,ϵ2 −→ PicZ,ϵ1ϵ2

is compatible with involutions via the isomorphism

(L∗
1)

n2 ⊗ (L∗
2)

n1 ∼= (Ln2
1 ⊗ Ln1

2 )∗

which is again determined by the braiding with no extra signs.
(2) The determinant functor

detgr : Perf∼,ϵ −→ PicZ,ϵ

is C2-equivariant, where the isomorphism

det(V ∗) ∼= det(V )∗

is given, for V ∈ Vect(R) and R discrete, by the pairing det(V ∗)⊗ det(V )→ O which sends

(ϕ1 ∧ · · · ∧ ϕn, v1 ∧ · · · ∧ vn) 7→
∑
σ∈Sn

sgn(σ)

n∏
i=1

ϕi(vσ(i)).

(3) The diagram

Perf∼,ϵ1 ⊗ Perf∼,ϵ2

detgr⊗detgr

��

// Perf∼,ϵ1ϵ2

detgr

��
PicZ,ϵ1 ⊗ PicZ,ϵ2 // PicZ,ϵ1ϵ2

is a commutative diagram of C2-equivariant stacks.

Proof. As in the proof of theorem 2.2, it is enough to construct a C2-action on PicZ(R) for R discrete as
well as show that the determinant functor

detgr : Vectϵ(R)∼ −→ PicZ,ϵ(R)

is C2-equivariant, again for R discrete, which is a straightforward check. □

We can describe the invariant categories as follows:
• Perf+(R)C2 is the ∞-category of perfect complexes equipped with a nondegenerate symmetric bilin-

ear pairing.
• Perf−(R)C2 is the ∞-category of perfect complexes equipped with a symplectic pairing.
• PicZ,+(R)C2 is the∞-category of graded line bundles (L, n) equipped with an isomorphism L ∼= L∗;

equivalently, a trivialization of L⊗2.
• PicZ,−(R)C2 is the ∞-category of graded line bundles (L, 2n) equipped with a trivialization of L⊗2.
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By the above statement the determinant functor detgr : Perf → PicZ descends to a morphism of spectra

detgr : K±,C2 −→ PicZ,±,C2

and hence, by precomposition with the forgetful map GW± → K±,C2 , to

detgr : GW± −→ PicZ,±,C2 .

Let µ2 be the algebraic group (defined over k) of second roots of unity. An element of µ2(R) is then the
same as an element g ∈ Gm(R) such that g2 = 1.

Proposition 2.12. Consider the determinant map of prestacks

detgr : τ[0,1]GW+ −→ PicZ,+,C2 ,

where τ[0,1](−) denotes the 1-truncation of the connective cover. This map induces an isomorphism after
étale sheafification.

Proof. We have
π0(Pic

Z,+,C2) ∼= Z, π1(Pic
Z,+,C2) ∼= µ2

as étale sheaves.
Étale locally every quadratic form admits an orthonormal basis which shows that rk : GW+

0 (R) → Z(R)
becomes an isomorphism after étale sheafification.

There is a homomorphism
GW+

1 (R) −→ Gm(R)/2⊕ µ2(R)

given by the spinor norm and the determinant which is shown to be an isomorphism Zariski locally in [Bas74,
Corollary 4.7.7]. But the multiplication by 2 map Gm → Gm is étale locally surjective. □

Recall the notion of a shifted symplectic structure on derived Artin stacks from [Pan+13]. Given an n-
shifted symplectic structure ωY on a derived Artin stack Y the perfect complex TY [1] ∼= LY [n+1] equipped
with the pairing coming from the symplectic structure defines a map Y → Ω∞GW[n+2]. Assume that n = 2k
is even. Then TY [−k] defines a map Y → Ω∞GWϵ, where the sign is ϵ = (−1)k+1. In particular, by the above
we obtain a squared volume form on Y and we denote the corresponding pairing det(LY )⊗ det(LY )→ OY

by (−,−)ωY
.

Let X be a derived prestack with a fundamental class [X] of degree d, where d is even. The pushforward
along p : X → pt gives a map

p♯ : GW[0](X) −→ GW[d](k).

The object OX ∈ Perf(X) has an obvious nondegenerate symmetric bilinear pairing. So, it defines a point
[OX ] ∈ Ω∞GW[0](X) and, hence, [p♯OX ] ∈ Ω∞GW[d](k). Since d is even, we obtain a canonical pairing
det(p♯OX)⊗ det(p♯OX)→ k which we denote by (−,−)[X].

By proposition 1.22 the fundamental class [X] on X gives rise to an O-orientation of X of degree d. Thus,
by the AKSZ construction [Pan+13, Theorem 2.5] we obtain an (n − d)-shifted symplectic structure ωMap

on Map(X,Y ). As both n and d are assumed to be even, (n−d) is even as well, so there is a natural squared
volume form on Map(X,Y ) and we denote the corresponding pairing on det(LMap(X,Y )) by (−,−)ωMap(X,Y )

.

Theorem 2.13. Let X be a derived prestack with a fundamental class [X] of even degree d and a simple
structure compatible with Poincaré duality. Let Y be an n-shifted symplectic stack, where n is even. Let o be
an isomorphism det(p♯OX) ∼= k and volY a volume form on Y . Let volMap(X,Y ) be the torsion volume form
constructed in theorem 2.8 from this data. Then

(volMap(X,Y ), volMap(X,Y ))ωMap(X,Y )
= ⟨ϵ(ev∗(volY , volY )ωY

), e(X)⟩((o, o)[X])
dimY .

Proof. Let S be a derived affine scheme and consider a morphism f : S → Map(X,Y ) corresponding to
f̃ : S×X → Y . Using the n-shifted symplectic structure ωY on Y we have that [LY [n+1]] ∈ Ω∞GW[n+2](Y ).
Similarly, using the (n − d)-shifted symplectic structure ωMap(X,Y ) obtained using the AKSZ construction
we have that [LMap(X,Y )[n− d+ 1]] ∈ Ω∞GW[n−d+2](Map(X,Y )). Therefore,

[LMap(X,Y )[n+ 1]] ∈ Ω∞GW[n+d+2](Map(X,Y )).
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Examining the AKSZ construction, the isomorphism

LMap(X,Y )[n+ 1] ∼= π♯ev
∗LY [n+ 1]

from proposition 1.5 is compatible with pairings, so

[LMap(X,Y )[n+ 1]] = π♯[ev
∗LY [n+ 1]] ∈ Ω∞GW[n+d+1].

By theorem 1.25 we have

[f∗LMap(X,Y )[n+ 1]] ∼ ⟨ϵ(f̃∗LY [n+ 1]), eGW(X)⟩ ∈ Ω∞GW(S).

Using proposition 2.11 we get that an isomorphism

det(f∗LMap(X,Y )[n+ 1]) ∼= ⟨det(f̃∗LY [n+ 1]), e(X)⟩ ⊗ det(p♯OX)⊗(− dim(Y ))

of lines equipped with nondegenerate pairings. In theorem 2.8 the volume form volMap(X,Y ) is constructed
using the trivialization volY of det(f̃∗LY [n+1]) and o of det(p♯OX). Compatibility with the nondegenerate
pairings implies the result. □

We will also need a slight variant of the above statement. Another setting where theorem 2.8 can be
applied is if Y merely has a squared volume form vol2Y ∈ det(LY )

⊗2 and X has a trivialization of the mod
2 Euler class e(X) ∈ C•(X;Z/2). In fact, we can take as vol2Y the canonical squared volume form on Y
induced by the even shifted symplectic structure ωY .

Theorem 2.14. Let X be a derived prestack with a fundamental class [X] of even degree d and a simple
structure compatible with Poincaré duality. Let Y be an n-shifted symplectic stack, where n is even. Let o
be an isomorphism det(p♯OX) ∼= k and choose a trivialization of the mod 2 Euler class e(X) ∈ C•(X;Z/2).
Let volMap(X,Y ) be the torsion volume form constructed in theorem 2.8 from this data. Then

(volMap(X,Y ), volMap(X,Y ))ωMap(X,Y )
= ((o, o)[X])

dimY .

2.4. Symplectic volume forms. In this section we continue assuming that 2 is invertible in k. We have
previously shown that if a derived stack Y has an n-shifted symplectic structure for n even, there is a natural
squared volume form on Y . We will now refine the result when n is divisible by 4 by constructing an actual
volume form. In this case TY [−n/2] ∼= LY [n/2] defines a class in Ω∞GW−(Y ).

Besides the stack PicZ of Z-graded lines we may also consider the stack PicZ/2 of Z/2-graded lines. There
is a natural forgetful map PicZ → PicZ/2.

Theorem 2.15. There is a commutative diagram

τ≥0GW− 0 //

��

PicZ/2,−,C2

GW− detgr // PicZ,−,C2

OO

Proof. The map (L, n) 7→ (L, n/2) defines an isomorphism PicZ,−,C2 ∼= PicC2 ×Z of E∞ stacks, where PicC2

is the stack of lines equipped with a nondegenerate pairing, which can be identified with Bµ2. So, we have
to construct a nullhomotopy of the composite

τ≥0GW− −→ GW− −→ Bµ2.

By the topological invariance of the étale site (see [TV08, Corollary 2.2.2.9]) it is enough to construct
this nullhomotopy for discrete commutative k-algebras R. By [HS21, Theorem A] the connective spectrum
τ≥0GW−(R) is the group completion of the monoid Pn(R,−) of finitely generated projective R-modules M
equipped with a symplectic structure ω ∈ ∧2M∗. As Bµ2 is a group, this implies that we have to construct
a nullhomotopy of the functor of symmetric monoidal groupoids

det : Pn(R,−) −→ (Bµ2)(R)
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obtained by sending M to the line bundle det(M) equipped with an isomorphism det(M)⊗2 ∼= O using the
symplectic structure.

We send (M,ω) to the section volM = γn(ω) of det(M∗), where n = rk(M) and γn is the n-th di-
vided power. This construction is clearly functorial in R, so to check that it defines a nullhomotopy of
Pn(R,−)→ (Bµ2)(R) we have to check the following:

• The nullhomotopy has to be compatible with the symmetric monoidal structure. This boils down to
the fact that under the isomorphism det(M∗

1 )⊗det(M∗
2 )→ det(M∗

1 ⊕M∗
2 ) the section volM1⊗volM2

goes to volM1⊕M2 . Indeed, if the ranks of M1 and M2 are n1 and n2, the symplectic structure on
M = M1 ⊕M2 is

ωM = ωM1 + ωM2 .

So,
γn1+n2

(ωM ) = γn1
(ωM1

) ∧ γn2
(ωM2

)

which implies the result.
• The volume form volM has to square to the canonical trivialization of det(M∗)⊗2. This can be

checked Zariski locally on R, so that we may assume that M admits a symplectic basis {e1, f1, e2, f2, . . . }.
Let {e1, f1, . . . , en, fn} be the dual basis of M∗, so that the volume form is

volM = e1 ∧ f1 ∧ · · · ∧ en ∧ fn ∈ det(M∗).

Under the isomorphism det(M∗) ∼= det(M)∗ given by proposition 2.11 it corresponds to

(e1 ∧ f1 ∧ · · · ∧ en ∧ fn)
−1 ∈ det(M)∗.

The isomorphism ω♯ : M →M∗ sends ei 7→ f i and fi 7→ −ei. So, it sends

e1 ∧ f1 ∧ · · · ∧ en ∧ fn 7→ e1 ∧ f1 ∧ · · · ∧ en ∧ fn

which proves the claim.
□

Concretely, the above statement shows that there is a symplectic volume form on any n-shifted sym-
plectic stack Y with n divisible by 4; moreover, this symplectic volume form squares to the trivialization of
det(LY )

⊗2 constructed by taking the determinant of the isomorphism ω♯ : TY → LY [n].
Let us now describe a compatibility of the symplectic volume form with respect to the tensor product.

The tensor product gives a functor of Poincaré ∞-categories

(Perf(R), Ϙ+)⊗ (Perf(R), Ϙ−) −→ (Perf(R), Ϙ−).

It gives a tensor product map on the Grothendieck–Witt spectra

GW+ ⊗GW− −→ GW−

and their connective covers
τ≥0GW+ ⊗ τ≥0GW− −→ τ≥0GW−.

The multiplication map
⊗∗ : PicZ,ϵ1,C2 ⊗ PicZ,ϵ2,C2 −→ PicZ,ϵ1ϵ2,C2

descends to a multiplication map

⊗∗ : PicZ,ϵ1,C2 ⊗ PicZ/2,ϵ2,C2 −→ PicZ/2,ϵ1ϵ2,C2 ,

where we use that (L1, n1)⊗∗(L2, n2) = (Ln2
1 ⊗L

n1
2 , n1n2) depends on n2 only modulo 2 as L⊗2

1 is canonically
trivial. Therefore, from proposition 2.11 we obtain a commutative diagram

τ≥0GW+ ⊗ τ≥0GW−

detgr⊗detgr

��

// τ≥0GW−

detgr

��
PicZ,+,C2 ⊗ PicZ/2,−,C2 // PicZ/2,−,C2
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Proposition 2.16. The diagram

τ≥0GW+ ⊗ τ≥0GW−

detgr⊗detgr

��

// τ≥0GW−

detgr

��
PicZ,+,C2 ⊗ PicZ/2,−,C2 // PicZ/2,−,C2

is compatible with the nullhomotopies of detgr : τ≥0GW− → PicZ/2,−,C2 given by the symplectic volume form.

Proof. The difference of the two nullhomotopies defines a map

GW+
0 (R)⊗Z GW−

0 (R) −→ µ2(R) = π1(Pic
Z/2,−,C2(R)).

We can check that this map is trivial as in theorem 2.15. By the homotopy invariance of the étale site it is
enough to prove the claim for R discrete. Then by [HS21, Theorem A] GW+

0 (R) is the group completion of
the monoid Pn0(R,+) of projective finitely generated R-modules equipped with a nondegenerate symmetric
bilinear pairing and GW−

0 (R) is the group completion of the monoid Pn0(R,−) of projective finitely generated
R-modules equipped with a symplectic pairing. As µ2(R) is a group, we need to check that the map

Pn0(R,+)⊗N Pn0(R,−) −→ µ2(R)

is trivial, where ⊗N denotes the tensor product of commutative monoids. Concretely, suppose V is a
projective finitely generated R-module equipped with a nondegenerate symmetric bilinear pairing and W is
a projective finitely generated R-module equipped with a symplectic pairing. Then V ⊗W carries a natural
symplectic pairing and we have to show that under the isomorphism

(det(V )⊗2)dimW/2 ⊗ det(W )dimV = det(V )dimW ⊗ det(W )dimV −→ det(V ⊗W )

the element (vol2V )
dimW/2 ⊗ voldimV

W is sent to volV⊗W , where vol2V is the natural trivialization of det(V )⊗2

obtained from the nondegenerate pairing on V and volW is the natural trivialization of det(W ) given by the
symplectic volume form.

To check this we may work étale locally on R, so we may assume that V has an orthonormal ba-
sis {v1, . . . , vn} and W has a symplectic basis {e1, f1, . . . , em, fm}. Then V ⊗ W has a symplectic basis
{vi ⊗ ej , vi ⊗ fj}i=1...n,j=1...m. We denote the dual bases by the same letters with upper indices. The iso-
morphism V → V ∗ given by the nondegenerate pairing on V sends vi 7→ vi. Therefore, det(V )→ det(V ∗) is
given by v1 ∧ . . . vn 7→ v1 ∧ · · · ∧ vn and hence

vol2V = (v1 ∧ · · · ∧ vn)
2.

By definition the symplectic volume form on W is

volW = e1 ∧ f1 ∧ · · · ∧ en ∧ fn.

Thus, the element of det(V )dimW ⊗ det(W )dimV is

(v1 ∧ · · · ∧ vn)
dimW ⊗ (e1 ∧ f1 ∧ · · · ∧ en ∧ fn)

dimV .

By proposition 2.1 it is sent to

∧ni=1 ∧mj=1 (vi ⊗ ej) ∧ (vi ⊗ fj) ∈ det(V ⊗W )

which is exactly the symplectic volume form volV⊗W . □

3. Betti setting

In this section we describe the results of section 2 for constant stacks.
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3.1. Finiteness. Let M ∈ S be a space and consider the constant derived stack X = MB with value M .
Then

QCoh(MB) ∼= Fun(M,Modk) =: LocSys(M)

is the∞-category of (infinite rank) local systems on M . The subcategory Perf(MB) ⊂ QCoh(MB) is the full
subcategory of local systems whose fibers are perfect complexes. If M is connected with a chosen basepoint,
we may further identify

LocSys(M) ∼= ModC•(ΩM ;k),

the ∞-category of modules over chains on the based loop space. In particular,

Kω(MB) ∼= K(C•(ΩM ; k)).

We refer to [Hau13] for details on the functoriality of the ∞-category of local systems. For any map
f : M1 → M2 there is a pullback f∗ : LocSys(M2) → LocSys(M1) given by restriction which admits a left
adjoint f♯ : LocSys(M1)→ LocSys(M2) given by the left Kan extension which satisfies the projection formula.

Remark 3.1. The assembly and coassembly maps in this context coincide with those defined in [Wil00].

Recall that M is finitely dominated if it is a retract of a finite CW complex in the homotopy category
of spaces. Equivalently, it is a compact object of S (see [Lur09, Remark 5.4.1.6]).

Proposition 3.2. Suppose M is a finitely dominated space. Then MB satisfies assumption 1.15.

Proof. The functors p∗, i∗,∆∗ admit left adjoints satisfying the projection formula. By [Hau13, Lemma 4.8]
the constant local system kM ∈ LocSys(M) is compact, i.e. p∗ is colimit-preserving. Finally, by [HL13,
Lemma 4.3.8] LocSys(M) is compactly generated. □

For a finitely dominated space M the Euler characteristic χ(M) is well-defined and it coincides with the
Euler characteristic of MB.

3.2. Lifts along the assembly map. Let M be a finitely dominated space. Then the structure sheaf
OMB

∈ QCoh(MB) is compact and hence defines a class [OMB
] ∈ Ω∞Kω(MB). We will be interested in lifts

of [OMB
] along the assembly map

C•(M ; K(k)) −→ Kω(MB).

To describe the known results, let us temporarily switch from working over the commutative ring k to
working over the sphere spectrum. Let

SpM = Fun(M,Sp)

be the ∞-category of parametrized spectra, so that

LocSys(M) = SpM ⊗Sp Modk.

Consider the A-theory
A(M) = K(SpM,ω)

defined to be the K-theory of the stable ∞-category of compact parametrized spectra. In this case the
assembly map becomes

C•(M ; A(pt)) −→ A(M)

and we want to lift the class [SM ] ∈ Ω∞A(M) of the constant parametrized spectrum SM ∈ SpM with value
the sphere spectrum. Let us recall some known results:

• Such a lift exists if, and only if, M is homotopy equivalent to a finite CW complex [Wal65].
• If M is a compact ENR, a canonical such lift was constructed in [DWW03, Section 8] using controlled

algebra.
The base change to k defines a commutative diagram of assembly maps

C•(M ; A(pt)) //

��

A(M)

��
C•(M ; K(k)) // Kω(MB)
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so any lift of [SM ] over the sphere spectrum gives rise to a simple structure on MB. Let us now describe
an explicit model of such a simple structure for k = Z if M is a finite CW complex following [Tur89]. For
simplicity we assume that M is connected with a basepoint x0 ∈M .

Proposition 3.3. The 1-truncation of the assembly map

τ≤1C•(M ; K(Z))
α−→ τ≤1K(C•(ΩM ;Z))

is equivalent to the map
BH1(M ;Z)× τ≤1K(Z) −→ τ≤1K(Z[π1(M)]),

where BH1(M ;Z) is the one-object groupoid with automorphisms given by H1(M ;Z), which sends the class
[V ] ∈ Ω∞K(Z) of the abelian group V to the class [Z[π1(M)]⊗V ] ∈ K(Z[π1(M)]) of the free Z[π1(M)]-module
generated by V . Under these identifications the class [Z] ∈ Ω∞K(C•(ΩM ;Z)) of the trivial C•(ΩM ;Z)-
module goes to the class [C•(M̃ ;Z)] ∈ Ω∞K(Z[π1(M)]) of the Z[π1(M)]-module given by chains on the
universal cover M̃ →M .

Proof. The natural map C•(ΩM ;Z)→ Z[π1(M)] is 1-connected, so by [Wal85, Proposition 1.1] the induced
map

K(C•(ΩM ;Z)) −→ K(Z[π1(M)])

is 2-connected, i.e. it induces an equivalence on τ≤1. The Cartesian diagram

M̃ //

��

pt

��
M // Bπ1(M)

shows that base changing along C•(ΩM ;Z)→ Z[π1(M)] identifies

Z⊗C•(ΩM ;Z) Z[π1(M)] ∼= C•(M̃ ;Z).

Finally we identify the 1-truncation of C•(M ; K(Z)) as

τ≤1C•(M ; K(Z)) ∼= BH1(M ;Z)× τ≤1K(Z).

□

Let A be the set of cells of M and An ⊂ A the set of n-dimensional cells. Let M̃ → M be the universal
cover. We can canonically lift the cell structure A of M to a π1(M)-equivariant cell structure Ã on M̃ .

Definition 3.4. A fundamental family of cells e in M̃ is the choice of a lift of a cell a ∈ A on M to a
cell ã ∈ Ã on M̃ .

Given two fundamental families of cells e, e′ in M̃ , for every a ∈ A there is a unique ha ∈ π1(M) such
that ã′ = haã. Let q : π1(M)→ H1(M ;Z) be the abelianization map and

e′/e =
∑
a∈A

(−1)dim(a)q(ha).

Definition 3.5. Two fundamental family of cells e, e′ in M̃ are equivalent if e′/e = 1 ∈ H1(M ;Z). Denote
by E(M) the set of equivalence classes of fundamental families of cells.

By definition E(M) is a nonempty H1(M ;Z)-torsor.

Proposition 3.6. Suppose M is a connected finite CW complex. Then there is a canonical lift of

[Z] ∈ Ω∞K(C•(ΩM ;Z)),

the class of the trivial C•(ΩM ;Z)-module, along the assembly map α : C•(M ; K(Z))→ K(C•(ΩM ;Z)) to an
element

eK(M) ∈ Ω∞C•(M ; K(Z)).

In other words, MB has a canonical simple structure.
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Proof. To describe a canonical lift of [Z] ∈ Ω∞K(C•(ΩM ;Z)) it is enough to lift the class of chains on the
universal cover [C•(M̃ ;Z)] ∈ Ω∞K(Z[π1(M)]) along the 1-truncation τ≤1 of the assembly map described in
proposition 3.3. Using cellular chains of M̃ we obtain that Ck(M̃ ;Z) is a finitely generated free π1-module.
The choice of a fundamental family of cells e defines a map of abelian groups Ck(M ;Z)→ Ck(M̃ ;Z) inducing
an isomorphism of π1-modules

Z[π1(M)]⊗Z Ck(M ;Z) ∼= Ck(M̃ ;Z).

Using proposition 2.3 we now obtain the homotopy

[C•(M̃ ;Z)] ∼
∑
k=0

(−1)k[Ck(M̃ ;Z)] ∼
∑
k=0

(−1)k [Z[π1(M)]⊗Z Ck(M ;Z)] ,

where the last term is in the image of the assembly map.
Given two fundamental family of cells e, e′, the corresponding lifts differ by e′/e ∈ H1(M ;Z) and hence

are homotopic. □

Remark 3.7. More explicitly, we have constructed a lift of Z along the assembly map to

eK(M) =
∑
k

(−1)k[Z[Ak]]x0

depending on a fundamental family of cells in M̃ . Changing the fundamental family of cells by a class γ in
H1(M ;Z) changes eK(M) by an automorphism given by γ.

Remark 3.8. Instead of choosing a single basepoint x0 ∈ M it is often useful to choose a point αa ∈ a for
every cell a ∈ A. Then one can analogously identify

eK(M) =
∑
a∈A

(−1)dim(a)[Z]αa.

Remark 3.9. It is shown in [Tur89] that the lift constructed in proposition 3.6 is invariant under cell subdi-
visions of M .

Let us now show that the simple structure constructed in proposition 3.6 is compatible with gluing.

Proposition 3.10. Suppose A,B,C are finite CW complexes with A ⊂ B and A ⊂ C a subcomplex.
Consider the pushout

A
f //

g

��

B

g′

��
C

f ′
// M

which endows M with the structure of a finite CW complex. Then the simple structure on MB constructed
in proposition 3.6 is obtained by gluing the simple structures on BB and CB along AB in the sense of
proposition 1.14.

Proof. As in the proof of proposition 3.6 it suffices to work in K(Z[π1(M)]). Let M̃ → M be the universal
cover and set Ã = A×M M̃ , B̃ = B ×M M̃ and C̃ = C ×M M̃ . The glued lift of [C•(M̃ ;Z)] is obtained as
follows.

[C•(M̃ ;Z)] ∼ [C•(B̃;Z)] + [C•(C̃;Z)]− [C•(Ã;Z)]

∼ [
⊕
k

Ck(B̃;Z)] + [
⊕
k

Ck(C̃;Z)]− [
⊕
k

Ck(Ã;Z)]

∼ α(eK(B) + eK(C)− eK(A)),

where the first two homotopies are given by additivity of K-theory (on the cellular chain complex). More
precisely, the first homotopy is induced by the fiber sequence

C•(Ã;Z) −→ C•(B̃;Z)⊕ C•(C̃;Z) −→ C•(M̃ ;Z).

The second homotopy is induced by proposition 2.3, that is by filtering the three chain complexes C•(Ã;Z),
C•(B̃;Z) and C•(C̃;Z) by the brutal truncation and finally by the choice of fundamental families of cells.
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We conclude that the above homotopy is obtained by the construction in proposition 3.6 for the natural
cell structure on B ∪A (A × I) ∪A C induced from the cell structures on A, B and C, and the induced
fundamental family of cells. Finally, note that the natural map B ∪A (A × I) ∪A C → M is a simple
homotopy equivalence. □

Next, we will show that one can endow M with further extra structure to trivialize [Z] ∈ Ω∞K(C•(ΩM ;Z)).
By proposition 3.16 we need to trivialize the lift of [Z] to eK(M) ∈ Ω∞C•(M ; K(Z)). Consider the map

C•(M ; K(Z)) −→ C•(M ;Z)×K(Z),

where the first map is induced by the degree map K(Z) → Z and the second map is induced by the
pushforward along M → pt. As M is connected and K(Z) → Z is an isomorphism on π0, this map is an
isomorphism on 1-truncations. Therefore, to trivialize eK(M) ∈ Ω∞C•(M ; K(Z)), we need to provide the
following information:

• Trivialization of the image of eK(M) under the degree map K(Z) → Z, i.e. the homological Euler
class e(M) ∈ C•(M ;Z).
• Trivialization of the image of eK(M) under the pushforward C•(M ; K(Z)) → K(Z), i.e. the class
[C•(M ;Z)] ∈ Ω∞K(Z).

Recall the following notion from [Tur89].

Definition 3.11. An Euler structure on M is a singular 1-chain ξ with integer coefficients with

∂ξ =
∑
a∈A

(−1)dim(a)αa,

where αa ∈ a. Two Euler structures ξ, η with ∂ξ =
∑

a∈A(−1)dim(a)αa and ∂η =
∑

a∈A(−1)dim(a)βa are
equivalent if for some paths xa : [0, 1]→ a from αa to βa the 1-cycle

ξ − η +
∑
a∈A

(−1)dim(a)xa

is a boundary. Let Eul(M) be the set of Euler structures on M .

Remark 3.12. One should not confuse the notion of an Euler structure on the finite CW complex M and
an Euler structure on the derived prestack MB. We will show in proposition 3.16, however, that the former
induces the latter.

The set of Euler structures on M is nonempty if, and only if, χ(M) = 0. In this case Eul(M) is a
nonempty H1(M ;Z)-torsor. Moreover, again under the assumption χ(M) = 0, there is a canonical isomor-
phism E(M) → Eul(M) of H1(M ;Z)-torsors. Clearly, an Euler structure is exactly a trivialization of the
homological Euler class e(M) ∈ C•(M ;Z).

In the case of 3-manifolds the set of Euler structures has the following geometric description [Tur97].

Proposition 3.13. Let M be a closed oriented 3-manifold. There is a canonical bijection between the set
of Euler structures on M and the set of Spinc-structures σ. Under this correspondence the characteristic
class c(ξ) ∈ H1(M ;Z) of the Euler structure (see [FT99, Section 5.2]) corresponds to the first Chern class
c1(σ) ∈ H2(M ;Z) ∼= H1(M ;Z) of the Spinc-structure.

Next, let us describe a trivialization of [C•(M ;Z)] ∈ Ω∞K(Z).

Definition 3.14. A homology orientation of M is an orientation of the R-line detH•(M ;R).

Using the canonical isomorphism

ϕ : detC•(M ;R) ∼= detH•(M ;R)

as well as the base change isomorphism

(detC•(M ;Z))⊗Z R ∼= detC•(M ;R)

we see that a homology orientation is the same as the choice of an isomorphism detC•(M ;Z) ∼= Z as abelian
groups. Thus, a homology orientation defines a trivialization of [C•(M ;Z)] ∈ Ω∞K(Z).
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Remark 3.15. Suppose M is a closed oriented topological manifold of dimension d. Depending on d, there
might be a canonical homology orientation:

• Suppose d is odd. Choose an arbitrary orientation of detHm(M ;R) for m = 0 . . . (d−1)/2. Poincare
duality gives an isomorphism detHm(M ;R) ∼= (detHd−m(M ;R))−1 which, therefore, induces an
orientation of detHm(M ;R) for m = (d + 1)/2 . . . d. As the homology groups are paired, the
corresponding homology orientation is independent of the original choices.

• Suppose d ≡ 2 (mod 4). Then H•(M ;R)[−d/2] carries a symplectic structure. So, the symplectic
volume form from section 2.4 provides a canonical homology orientation.

• If d is divisible by 4, there is no canonical homology orientation, i.e. in general det(H•(M ;R)) defines
a nontrivial character of the oriented mapping class group of M . As in the case d ≡ 2 (mod 4), using
Poincare duality a homology orientation is the same as an orientation of detHd/2(M ;R). But as
remarked in [Tur89], the complex conjugation on M = CP2 preserves the orientation of M , but
reverses an orientation of detH2(M ;R).

Proposition 3.16. Suppose M is a connected finite CW complex with χ(M) = 0. Choose an Euler structure
and a homology orientation on M . Then there is a canonical homotopy [OMB

] ∼ 0 in Ω∞Kω(MB). In other
words, in this case there is a canonical Euler structure on the stack MB.

Proof. We continue the proof of proposition 3.6 with the additional structure given in the present statement.
The choice of the Euler structure allows us to make a canonical choice of the fundamental family of cells in
M̃ , so that the homotopy

[Ck(M̃ ;Z)] ∼
∑
k=0

(−1)k [Z[π1(M)]⊗Z Ck(M ;Z)]

gives a well-defined lift along τ≤1K(Z)→ τ≤1C•(M ; K(Z))→ K(M). It remains to trivialize∑
k=0

(−1)k [Ck(M ;Z)] ∈ Ω∞K(Z),

but this is exactly the datum of a homology orientation. □

3.3. Poincare duality. In this section we assume 2 is invertible in k. Let M ∈ S be a space and ξ ∈ SpM an
invertible parametrized spectrum. Consider the visible Poincaré structure Ϙvξ : Sp

M,ω,op → Sp from [Cal+23,
Definition 4.4.4]. By [Cal+20, Corollary 4.6.1] there is a natural equivalence

GW(SpM,ω, Ϙvξ)
∼= LAv(M, ξ),

where LAv(M, ξ) are the visible LA-spectra from [WW14].
Suppose M ∈ S is finitely dominated. Then one can define the Spivak normal fibration ζM which

satisfies the universal property
p♯((−)⊗ ζM ) ∼= p∗(−),

where p : M → pt and p♯ (p∗) is the left (right) adjoint to p∗ : Sp → SpM . Assume ζM is invertible (i.e. M

is a Poincaré duality space) and let ξ = ζ−1
M . Then SM ∈ SpM has a canonical structure of a Poincaré object

in SpM,ω, Ϙvξ) (see e.g. [Cal+23, Corollary 4.4.20]). In particular, it defines a class

[SM ] ∈ LAv(M, ξ)

called the visible signature of M . There is a parametrized spectrum LAv(pt, ξ) over M whose fiber at
x ∈M is LAv(pt, ξ|x). In this setting we still have the assembly map

C•(M ; LAv(pt, ξ)) −→ LAv(M, ξ),

where C•(M ; LAv(pt, ξ)) = p♯LA
v(pt, ξ). The following is shown in [WW14, Section 10].

Theorem 3.17. Suppose M is a closed topological manifold. Then there is a canonical lift of the visible
signature [SM ] ∈ Ω∞LAv(M, ξ) along the assembly map

C•(M ; LAv(pt, ξ)) −→ LAv(M, ξ).
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Now suppose M is a closed oriented topological d-manifold. Under the equivalence

SpM ⊗Sp Modk ∼= LocSys(M)

we have ζM ⊠ k 7→ kM [−d], where kM ∈ LocSys(M) is the constant local system over M with fiber k. Thus,
the base change from the sphere spectrum to k defines a Poincaré functor

(SpM,ω, Ϙvξ) −→ (LocSys(M)ω, Ϙ[d]).

Using the equivalence provided by proposition 1.22 between fundamental classes and Poincaré structures,
the Poincaré structure on kM ∈ LocSys(M)ω corresponds to the usual fundamental class [M ] ∈ Hd(M ; k).

Remark 3.18. As we are working over a ring k where 2 is invertible, there is no difference between symmetric,
visible and quadratic Poincaré structures on LocSys(M).

Proposition 3.19. Let M be a closed oriented topological d-manifold. Then the fundamental class of M
provides a fundamental class of MB of degree d. Moreover, there is a simple structure with the Euler class
eGW(MB) ∈ Ω∞C•(M ; GW[d](k)) on MB compatible with Poincaré duality.

Proof. The fundamental class
[M ] : k −→ C•(M ; k)[−d]

of M defines a fundamental class
[MB] : k −→ p♯OMB

[−d].
The base change from the sphere spectrum to k provides a commutative diagram of assembly maps

C•(M ; LAv(pt, ξ)) //

��

LAv(M, ξ)

��
C•(M ; GW[d](k)) // GWω,[d](MB)

By what we have explained above, the visible signature [SM ] ∈ LAv(M, ξ) under the right vertical map goes
to the class of [OMB

] ∈ Ω∞GWω,[d](MB). Thus, the lift of the visible signature along the top assembly map
provided by theorem 3.17 provides a lift of [OMB

] ∈ Ω∞GWω,[d](MB) along the bottom assembly map, i.e.
a simple structure on MB compatible with Poincaré duality. □

Remark 3.20. There is a natural map GW[d](k) → L(k)[−d], where L(k) is the L-theory spectrum of
symmetric bilinear forms over k. Under this map the class eGW (MB) ∈ H0(M ; GW[d](k)) goes to the
fundamental L-homology class

[M ]L ∈ Hd(M ; L(k))

from [Ran92, Proposition 16.16]. There is a homomorphism W (k) = L0(k) → Z/2 from the Witt group
to Z/2 given by rank modulo 2. Under this homomorphism the fundamental L-homology class goes to the
usual Z/2 homology class [M ] ∈ Hd(M ;Z/2).

3.4. Reidemeister torsion. In this section we explain the relationship between our construction and Rei-
demeister torsion.

Definition 3.21. Let G be an algebraic group and M ∈ S a space. Let BG = [pt/G] be the classifying
stack. The character stack is the derived stack

LocG(M) = Map(MB,BG)

parametrizing G-local systems on M .

Now suppose M is a connected finite CW complex equipped with a homology orientation. Consider the
derived stack LocGLn

(M) of rank n local systems on M . It has a natural map

LocGLn
(M) −→ Perf(MB)

and we may pullback the determinant line to LocGLn
(M). Its fiber at a k-point F ∈ LocGLn

(M) is

DF
∼= detgr(C•(M ;F )).
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Recall the natural isomorphism

ϕ : det(C•(M ;F )) ∼= det(H•(M ;F ))

from (2). Given a local system F of vector spaces over M together with an Euler structure on M one can
define the Reidemeister–Turaev (refined) torsion (see [Tur86; FT99]) which is a a nonzero element

τ(M ;F ) ∈ det(H•(M ;F )).

Proposition 3.22. Choose a homology orientation and an Euler structure on M inducing an Euler structure
on MB as in proposition 3.16. Let ∆ be the determinant section of the determinant line bundle D on
LocGLn

(M). Then its fiber at F , under the isomorphism ϕ, coincides with the Reidemeister–Turaev torsion
τ(F ).

Proof. Let us unpack the trivialization of det(C•(M ;F )) from theorem 1.7. The local system F corresponds
to a k[π1(M)]-module F0, the fiber of M at the basepoint of M . Then

C•(M ;F ) ∼= F0 ⊗k[π1(M)] C•(M̃ ; k),

where M̃ → M is the universal cover. The proof of proposition 3.16 gives a model of C•(M̃ ; k) as a chain
complex of free based finite rank k[π1(M)]-modules. Therefore, this gives a model of C•(M ;F ) as a chain
complex whose d-th term is F⊕#Ad

0 , where Ad is the set of d-cells on M . This identifies

det(C•(M ;F )) ∼= det(F0)
χ(M) = k

which gives the trivialization defined in theorem 1.7. But this is precisely the description of the refined
torsion from [FT99, Section 1.5]. □

We may also use the section ∆ to define a volume form on the character stack LocG(M). Before we
introduce it, let us consider the following construction. Suppose λ : G → GL1 is a character of G and
h ∈ H1(M ;Z). Then there is a natural function ⟨h, λ⟩ on LocG(M) obtained by taking the holonomy of the
rank 1 local system determined by λ along h. For instance, we may apply this construction to the modular
character ∆G of G, i.e. the character of the G-representation det(g).

Proposition 3.23. Suppose M is a finite CW complex equipped with a homology orientation and G an
algebraic group. Choose either of the following pieces of data:

• A G-invariant volume form on the Lie algebra g of G.
• An Euler structure on M .

Then LocG(M) carries a canonical torsion volume form volLocG and

dimLocG(M) = −χ(M) dim(G).

Changing the Euler structure by h ∈ H1(M ;Z) changes the volume form by

volLocG 7→ ⟨h,∆G⟩volLocG
and multiplying the volume form on g by a scalar A ∈ k∗ changes the volume form by

volLocG 7→ Aχ(M)volLocG .

Proof. The classifying stack BG has pure dimension dim(BG) = −dim(G). A G-invariant volume form on g
is the same as a volume form on the stack BG. An Euler structure together with a homology orientation on
M gives rise to an Euler structure on MB by proposition 3.16. So, the result follows from theorem 2.8. □

Remark 3.24. Note that there is a G-invariant volume form on g if, and only if, G is unimodular, i.e. ∆G = 1.
An Euler structure on M exists if, and only if, χ(M) = 0.

Let us now describe some examples of computation of the volume form volLocG on LocG(M). Suppose G
carries a G-invariant volume form on the Lie algebra g of G. Then there is a volume form volG on G which
is uniquely determined by the property that it is bi-invariant and which coincides with the chosen volume
form on g = TeG at the unit. It induces a volume form on Gn and a quotient volume form vol[Gn/G] on
[Gn/G] by example 2.6.
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Example 3.25. Consider a wedge of n circles

Vn = (S1)∨n.

It has a standard CW structure with one 0-cell p and n 1-cells. Choose paths from each 1-cell to the 0-cell
given anticlockwise with respect to the standard orientation of S1 (see fig. 2). This gives a model of the
cellular chain complex C•(Vn;L) of a local system L as

L⊕n
p −→ Lp,

where the differential is given by the sum of monodromies. A choice of ordering of the circles induces a
homology orientation on Vn. We have

LocG(Vn) ∼= [Gn/G],

where G acts on Gn by a simultaneous conjugation. We claim that the torsion volume form volLocG is given
by the quotient volume form on [Gn/G].

Indeed, let f : Gn → [Gn/G] be the projection. The torsion volume form on LocG(V
n) has the following

description. First, we may identify

f∗LLocG(Vn)
∼=
(
(OGn ⊗ g∗)⊕n → OGn ⊗ g∗

)
,

where we use the left-invariant trivialization of LG (see section 5.1 for more details). The torsion volume form
volLocG is obtained by trivializing the determinant of LLocG(Vn) using the trivialization of the determinant
of g∗ given by the chosen volume G-invariant volume form on g which is precisely the description of the
quotient volume form vol[Gn/G] on [Gn/G].

Example 3.26. Consider a closed oriented surface Σ of genus g. Consider a decomposition Σ = Σ◦ ∪S1 D
obtained by removing a disk from Σ. Then Σ◦ is homotopy equivalent to V2g. This equivalence is compatible
with simple structures as the Whitehead group of the free group π1(V2g) is zero. Moreover, by proposition 3.10
the simple structure on ΣB (coming from its structure as a finite CW complex) is glued from the simple
structures on Σ◦

B and DB along S1
B. By proposition 2.10 we obtain that the torsion volume form on LocG(Σ)

is glued from the torsion volume forms on LocG(Σ
◦) and LocG(D). Namely, we have

LocG(Σ) ∼= [G2g/G]×[G/G] BG

and we have shown that the volume from on LocG(Σ) is glued from vol[G2g/G], volBG and vol[G/G].

Example 3.27. Consider a closed oriented 3-manifold M together with a Heegaard splitting M = N1 ∪Σ N2,
where N1 and N2 and handlebodies and where Σ has genus g. Then Ni are homotopy equivalent to Vg and
so by proposition 2.10 the torsion volume form on

LocG(M) ∼= [Gg/G]×LocG(Σ) [G
g/G]

is glued from vol[Gg/G] and volLocG(Σ) (which was described in example 3.26).

3.5. Symplectic volume forms on mapping stacks of surfaces. Assume 2 is invertible in k throughout
this section. Let Σ be a closed oriented surface; the fundamental class [Σ] ∈ H2(Σ;Z) endows ΣB with an
O-orientation of degree 2 by proposition 1.22. In this section we consider the following two closely related
settings:

• (Y, ωY ) an n-shifted symplectic stack for n ≡ 2 (mod 4). By the AKSZ construction from [Pan+13,
Theorem 2.5] there is a natural (n − 2)-shifted symplectic structure on Map(ΣB, Y ). As (n − 2)
is divisible by 4 by assumption, we obtain the symplectic volume form volMap on Map(ΣB, Y ) as
explained in section 2.4.

• R is a (discrete) commutative k-algebra with S = SpecR. V ∈ Perf+(S×ΣB)
C2 is a local system of

perfect complexes of R-modules over Σ equipped with a nondegenerate symmetric bilinear pairing.
By section 2.4 we obtain a symplectic volume form, which is an invertible element volp♯V ∈ det(p♯V ).
We will say V is unimodular if it comes with a trivialization of det(V ) squaring to the canonical
one provided by the nondegenerate pairing on det(V ).

The two settings are connected by considering a morphism f : S → Map(ΣB, Y ) classifying a map
f̃ : S × ΣB → Y and setting V = f̃∗TY [−n/2] with the symmetric bilinear pairing induced by the sym-
plectic structure ωY .
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Next, let us construct a torsion volume form in the two settings. We consider the following data that goes
into its construction using theorem 2.8:

• The intersection pairing gives a symplectic structure on H•(Σ;Z)[−1] and hence the symplectic
volume form gives a homology orientation o.

• The mod 2 Euler class e(Σ) ∈ C•(Σ;Z/2) is the second Stiefel–Whitney class w2(Σ). As any oriented
surface Σ admits a spin structure, w2(X) = 0 ∈ H2(Σ;Z/2). A trivialization of e(X) on the chain
level is the same as a spin structure s on Σ.

• Using the n-shifted symplectic structure on Y (where we recall that n is assumed to be even) we
get an isomorphism TY → LY [n] whose determinant defines a squared volume form on Y , i.e. a
trivialization of det(LY )

⊗2, as described in section 2.3.
By theorem 2.8 we obtain a torsion volume form τs(Y ) on Map(ΣB, Y ), where we emphasize the depen-

dence on the spin structure s. Similarly, we obtain an invertible element τS(V ) ∈ det(p♯V ).

Example 3.28. Kasteleyn orientations give a convenient method to describe spin structures on a surface
combinatorially as explained in [CR07] (we refer to that paper for details on dimer configurations and
Kasteleyn orientations). Consider a finite CW structure on Σ and let the graph Γ ⊂ Σ be the corresponding
1-skeleton. Then the Euler class is

e(Σ) =
∑
v∈V

xv −
∑
e∈E

xe +
∑
f∈F

xf ∈ C0(Σ;Z),

where V,E, F are the sets of 0-, 1- and 2-cells and x... are some points in the interiors of the corresponding
cells (as the cells are contractible, the precise location is irrelevant).

Choose a dimer configuration D on Γ, i.e. a collection of edges in Γ such that each vertex of Γ is adjacent
to exactly one edge in D. (There are combinatorial obstructions to the existence of dimer configurations; for
instance, the number of 0-cells has to be even.) Next, choose a Kasteleyn orientation K on Γ. We are now
going to define a class e1/2(Σ) ∈ C0(Σ;Z) such that 2e1/2(Σ)−e(Σ) ∈ C0(Σ;Z) is the boundary of a 1-chain.
Split the set of vertices V = V +

∐
V − into even ones and odd ones as follows: given an edge e ∈ D which

flows towards a vertex v ∈ V (with respect to the orientation K) we say v is even; otherwise, v is odd. Each
edge e borders two faces f1, f2 which are distinguished using the Kasteleyn orientation: ϵKf1(e) = −ϵKf2(e).
Let nf be the number of edges e ∈ ∂f such that ϵKf (e) = −1 (this number is odd since the orientation is
Kasteleyn). Let

e1/2(X) =
∑

v∈V +

xv +
∑
f∈F

1− nf

2
xf .

The 1-chain whose boundary is 2e1/2(X)− e(X) is given by the sum of oriented edges in e ∈ D (which flows
odd vertices to even vertices) and the paths from xe for each e ∈ E into the face f ∈ F that it borders with
ϵKf (e) = −1. This combinatorial description of a spin structure gives a canonical element in detC•(Σ;V ) for
any orthogonal local system V over Σ and hence it allows one to describe the torsion volume form.

Consider the ratio
σs(Y ) =

volMap

τs(Y )
,

which is an invertible function on Map(ΣB , Y ). Pulling back this function to a derived affine scheme S along
f : S → Map(ΣB, Y ), corresponding to f̃ : S × ΣB → Y , we obtain

σs(V ) =
volp♯V

τs(V )
,

where v = f̃∗TY [−n/2]. The goal of this section is to describe this ratio.

Remark 3.29. Note that we make a simplifying assumption that R is discrete. So, we will describe the
restriction of the function σs(Y ) to the underlying classical stack t0(Map(ΣB, Y )).

We begin by establishing elementary properties of the function σs(V ). The determinant line of W carries
a nondegenerate pairing and hence it defines an element

det(V ) ∈ H1(Σ;µ2(R)).
34



Consider the natural pairing

⟨−,−⟩ : H1(Σ;µ2(R))⊗Z H1(Σ;Z/2) −→ µ2(R)⊗Z Z/2→ µ2(R),

where the first map is the pairing between cohomology and homology and the second map is given by
σ ∈ µ2(R), n ∈ Z/2 7→ σn ∈ µ2(R).

Proposition 3.30. Consider a local system V ∈ Perf+(S × ΣB)
C2 as above.

(1) σs(V ) ∈ µ2(R).
(2) Given two spin structures s1, s2 on Σ whose difference is an element h ∈ H1(Σ;Z/2) we have

σs2(V ) = ⟨det(V ), h⟩σs1(V ).

(3) For a pair of local systems V1, V2 as above

σs(V1 ⊕ V2) = σs(V1)σs(V2).

(4) Consider the constant local system R⊕n of rank n with the symmetric bilinear pairing (ei, ej) = δij.
Then

σs(V ⊕R⊕n) = σs(V ).

Proof. To show that σs(V )2 = 1, we have to show that the squared volume forms (volp♯V )
2 and τs(V )2

coincide. For this we have to prove that

(τs(V ), τs(V )) = 1,

where (−,−) : det(p♯V ) ⊗ det(p♯V ) → R is the nondegenerate pairing induced on det(p♯V ) from the sym-
plectic structure on p♯V . The left-hand side was computed in theorem 2.14 to be

⟨o, o⟩χ(V )
[Σ] .

But since the homology orientation o was chosen to be given by the symplectic volume form, ⟨o, o⟩[Σ] = 1.
This proves the first claim.

To show that σs2(V ) = ⟨det(V ), h⟩σs1(V ) we have to show that

τs2(V ) = ⟨det(V ), h⟩τs1(V ).

A trivialization of the mod 2 Euler class (i.e. a spin structure s) is the same as a 0-chain es1/2(Σ) ∈ C0(Σ;Z)

and a 1-chain hs ∈ C1(Σ;Z) which satisfy 2es1/2(Σ)− e(Σ) = ∂hs. In this case h = hs1 − hs2 ∈ H1(Σ;Z/2).
The volume form τs(V ) ∈ det(p♯V ) is constructed using the isomorphism

det(p♯V ) ∼= ⟨det(V ), e(X)⟩ ⊗ det(p♯OX)⊗χ(V ) ∼= ⟨det(V )⊗2, es1/2(X)⟩ ⊗ det(p♯OX)⊗χ(V ),

where the first isomorphism is the canonical isomorphism depending on the simple structure constructed
using theorem 1.12 and the second isomorphism is constructed from the 1-chain hs. Thus, the two volume
forms constructed using the two spin structures s1, s2 differ by a factor of ⟨det(V ), hs1 − hs2⟩. This proves
the second claim.

By theorem 2.15 we have volp♯V1 ⊗ volp♯V2 7→ volp♯(V1⊕V2) under the natural isomorphism

det(p♯V1)⊗ det(p♯V2) ∼= det(p♯(V1 ⊕ V2)).

Thus, we have to show that under the same isomorphism τs(V1)⊗τs(V2) 7→ τs(V1⊕V2). I.e. the construction
of the torsion volume form τs(−) is additive in V . This follows by analyzing each step of the construction:

• By theorem 1.12 we have a homotopy [π♯W ] ∼ ⟨ϵ([V ]), eK(X)⟩ which is additive in V as all maps in
the claim are maps of spectra.

• By theorem 2.2 the determinant is an E∞ ring map detgr : K→ PicZ which shows that the isomor-
phism det(p♯V ) ∼= ⟨V, e(X)⟩ ⊗ det(p♯OX)χ(V ) is additive in V .

This proves the third claim.
To simplify the notation, denote by M = R⊕n the free R-module with the symmetric bilinear pairing

(ei, ej) = δij and let M be the corresponding constant local system over Σ. By the third claim to show the
fourth claim it is enough to prove that σs(M) = 1. We have p♯(M) ∼= M ⊗k C•(Σ; k), where the symplectic
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structure is the product of the symplectic structure on C•(Σ; k) and the symmetric pairing on M . By
proposition 2.16 under the natural isomorphism

det(M)χ(Σ) ⊗k det(C•(Σ; k))
n −→ det(M ⊗k det(C•(Σ; k))) ∼= det(p♯M)

we have
(e1 ∧ · · · ∧ en)

χ(Σ) ⊗ on 7→ volp♯M .

But the torsion volume form τs(M), by definition, is the image of the same element under this isomorphism.
□

By the previous claim, if V is unimodular, then σs(V ) is independent of the spin structure; in this case
we denote it by σ(V ).

v v

vv

a

b

a

b

Figure 1. Torus with a chosen Euler structure.

Example 3.31. Consider the 2-torus Σ = T 2 with the CW structure with a unique 0-cell v, two 1-cells a, b
and a unique 2-cell f . We orient them in the standard way as shown in the fig. 1. With this orientation
f ∈ H2(Σ;Z) represents the fundamental class and the intersection pairing is a · b = 1. Thus, the symplectic
volume form for C•(Σ; k) provides a homology orientation which is

v ⊗ (a ∧ b)−1 ⊗ f ∈ detH•(Σ;Z).

The Euler structure (shown in the picture by squiggly lines) allows us to identify the chain complex C•(M̃ ;Z)
of chains on the universal cover, as an R = k[π1(T

2)] = k[x±1, y±1]-module, with the free graded R-module
on generators v, a, b, f and with the differential

∂f = (1− y)a+ (x− 1)b

∂a = (x− 1)v

∂b = (y − 1)v

The chosen Euler structure induces a spin structure on T 2 that we denote by s. A rank 1 local system
equipped with a nondegenerate symmetric bilinear pairing is equivalently a µ2-local system L = Lϵxϵy over
T 2 which is specified by a pair of signs ϵx, ϵy ∈ µ2 given by the monodromies around the a and b cycle. By
construction

σs(L++) = 1.

Let us now show that
σs(L+−) = σs(L−+) = σs(L−−) = −1.

All these local systems are acyclic. In this case it is convenient to use the isomorphism (2) to identify

ϕ : detC•(Σ;L) −→ k.

Under this isomorphism volp♯L goes to 1 (the symplectic volume form of the zero vector space). Therefore,

σs(L) = ϕ(τs(L)).
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Assume for simplicity that ϵx ̸= 1 (i.e. we consider the case L−+ or L−−). We will use the formulas and the
notation from [FT00, Section 2.2] to compute ϕ(τs(L)). Choose b1 = {a} and b2 = {f}. We have

[∂(b1)/v] = x− 1, [∂(b2), b1/a, b] = det

(
1− y x− 1
1 0

)
= 1− x, [b2/f ] = 1.

Therefore,
ϕ(τs(L)) = −1.

Remark 3.32. For the surface Σ the sign σs(V ) is diffeomorphism-invariant, i.e. for any diffeomorphism
f : Σ→ Σ we have

σf∗s(f
∗V ) = σs(V ).

By proposition 3.30 we get
σs(f

∗W ) = ⟨det(V ), f∗s− s⟩σs(V ).

There is a unique (odd) diffeomorphism-invariant spin structure on T 2 and this equality as well as the
computation of the sign σs(Lϵxϵy ) performed in example 3.31 shows that the chosen spin structure s is
diffeomorphism-invariant.

As explained in [Bas74] (where GW+
n (R) is denoted by KOn(R)) there is a canonical homomorphism

w2 : GW+
2 (R) −→ µ2(R)

which is constructed by stabilizing the spin extension of the special orthogonal group. Equivalently we may
think about it as a morphism of group prestacks

w2 : τ≥2GW+ −→ B2µ2.

We can apply this construction to define the second Stiefel–Whitney class in the two settings we consider:
• Let (Y, ωY ) be an n-shifted symplectic stack with n ≡ 2 (mod 4). Assume dim(Y ) = 0 and suppose
Y is equipped with a volume form volY such that (volY , volY )ωY

= 1. The shifted tangent complex
defines a morphism [TY [−n/2]] : Y → τ≥0GW+. Let sh(−) be the étale sheafification of a prestack.
Then the tangent complex defines a morphism

[TY [−n/2]] : Y −→ sh(τ≥0GW+).

By proposition 2.12 the morphism of derived stacks

detgr : sh(τ≥0GW+) −→ PicZ,+,C2

is an equivalence on 1-truncations, so using the volume form we lift the tangent complex to a
morphism

[TY [−n/2]] : Y −→ sh(τ≥2GW+).

We define
w2(Y ) = w2(TY [−n/2]) : Y −→ B2µ2.

• Let V ∈ Perf+(S×ΣB)
C2 be a unimodular local system with χ(V ) = 0, where S = SpecR. We have

ϵ([V ]) ∈ Ω∞C•(Σ; τ≥0GW+(R)). Again working étale locally on R and using that R 7→ H2(Σ;µ2(R))
is an étale sheaf, we get a class

w2(V ) = w2(ϵ([V ])) ∈ H2(Σ;µ2(R)).

Remark 3.33. More generally, if Y is of pure dimension dim(Y ) or V has a constant rank χ(V ), we define
the second Stiefel–Whitney class by w2(V ) = w2(V ⊕ O−χ(V )), where O−χ(V ) is the (virtual) trivial local
system of rank −χ(V ).

Example 3.34. Let G be a connected algebraic group over a field k whose Lie algebra g is equipped with a
nondegenerate G-invariant symmetric bilinear pairing. Then the classifying stack Y = BG has a 2-shifted
symplectic structure. The adjoint representation defines a homomorphism ρ : G → SO(g). The pullback of
the spin extension of SO(g) to G defines a homomorphism π1(G) → µ2 and, correspondingly, a morphism
w2 : BG→ B2µ2. For instance, for G = PGL2 the homomorphism π1(PGL2)→ µ2 is nontrivial.
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We are ready to state the main result of this section comparing the symplectic volume form and the
torsion volume form.

Theorem 3.35. Let Σ be a closed oriented surface.
(1) Let Y be an n-shifted symplectic stack for n ≡ 2 (mod 4), volMap the symplectic volume form

on Map(ΣB, Y ) and τ(Y ) the torsion volume form. Choose a volume form volY on Y such that
(volY , volY )ωY

= 1 and assume that Y is of pure dimension dim(Y ). Then, after restriction to the
classical truncation t0(Map(ΣB, Y )), we have

volMap =

(∫
Σ

ev∗w2(Y )

)
τ(Y ).

(2) Let V ∈ Perf+(S × ΣB)
C2 be a unimodular local system, where S = SpecR, and assume that χ(V )

is constant. Then

volp♯V =

(∫
Σ

w2(V )

)
τ(V ).

We begin with a lemma.

Lemma 3.36. Suppose R = F is an algebraically closed field. Then

w2 : GW+
2 (F )/2 −→ µ2(F )

is an isomorphism.

Proof. When F is a field of characteristic different from 2, the group GW+
2 (F ) is computed in [RØ16,

Theorem 1.2] to be the kernel of a homomorphism

K2(F )⊕ µ2(F ) −→ 2Br(F ),

where 2Br(F ) is the 2-torsion subgroup of the Brauer group which vanishes when F is algebraically closed.
Moreover, in this case K2(F )/2 also vanishes (e.g. by the norm residue isomorphism). □

Proof of theorem 3.35. The first statement follows from the second statement by pulling back to the affine
scheme S along a map S → Map(ΣB, Y ), so it is enough to prove the second statement, i.e. that

σ(V ) =

∫
Σ

w2(V ).

Let us explicate the construction of σs : GW+(ΣB)→ µ2. Consider the map

p♯[−1] : GW+(ΣB) −→ GW−.

Consider the commutative diagram

τ≥0GW+(ΣB)

p♯[−1]

--

ϵ⊗eGW(Σ)

��
C•(Σ; τ≥0GW+)⊗ τ≥0C•(Σ;GW−(k))

⟨−,−⟩ //

detgr⊗detgr

��

τ≥0(GW+ ⊗GW−(k))

detgr⊗detgr

��

// τ≥0GW−

detgr

��
C•(Σ; PicZ,+,C2)⊗ C•(Σ; Pic

Z/2,−,C2(k))
⟨−,−⟩ // PicZ,+,C2 ⊗ PicZ,−,C2(k) // PicZ,−,C2

Here the top triangle commutes by theorem 1.25 and the rightmost square commutes by proposition 2.11. The
rightmost vertical map detgr : τ≥0GW− → PicZ,−,C2 is nullhomotopic using the symplectic volume form. The
element detgr(eGW(Σ)) ∈ Ω∞C•(Σ; Pic

Z/2,−,C2(k)) admits a nullhomotopy using the spin structure and the
canonical homology orientation on Σ provided by the symplectic volume form on H•(Σ;Z)[−1]. Comparison
of the two nullhomotopies provides the morphism σs : GW+

0 (ΣB)→ π1Pic
Z,−,C2 .

Considering just the bottom part of the diagram we obtain a morphism

π0(C
•(Σ; τ≥2GW+)⊗ τ≥0C•(Σ;GW−(k))) = H2(Σ;GW+

2 )⊗Z H0(Σ;GW−(k)) −→ µ2
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under which ϵ([V ]) ⊗ eGW(Σ) is sent to σ(V ). Observe that by proposition 2.16 this morphism is trivial
when restricted to H2(Σ;GW+

2 )⊗Z H0(Σ; τ≥0GW−(k)). Due to the exact sequence

H0(Σ, τ≥0GW−(k)) −→ H0(Σ,GW−(k)) −→ H0(Σ, τ≤−1GW−(k)) −→ 0

it factors through
H2(Σ;GW+

2 )⊗Z H0(Σ; τ≤−1GW−(k)) −→ µ2.

As we are comparing elements of µ2(R), it is enough to prove the claim when R = F is an algebraically
closed field in which case we obtain a morphism

H2(Σ;GW+
2 (F ))⊗Z H0(Σ; τ≤−1GW−(F )) −→ µ2(F ).

There is a natural morphism GW−(F ) → L(F )[−2] of spectra which induces an isomorphism on negative
homotopy groups (see e.g. [Cal+20, Main Theorem]). As L1(F ) = 0 and L0(F ) = W (F ) ∼= Z/2 is the Witt
group, we obtain a morphism

H2(Σ;GW+
2 (F ))⊗Z H2(Σ;Z/2) −→ GW+

2 (F )⊗Z Z/2 −→ µ2(F ),

where the first morphism is given by the natural pairing of chains and cochains. By lemma 3.36 the second
Stiefel–Whitney class provides an isomorphism w2 : GW+

2 (F )/2 → µ2(F ), so the claim boils down to the
fact that the homomorphism we have constructed is nontrivial (and, therefore, coincides with w2). For this
it is enough to exhibit an example of a local system V where the sign σ(V ) is nontrivial.

To prove this claim, consider Σ = T 2 and the local systems Lϵ1ϵ2 from example 3.31. Consider the element

[V ] = ([L+−]− [O])([L−+]− [O]) ∈ Ω∞GW+(SpecF × ΣB).

As [L±∓]−[O] has (virtual) rank zero, detgr(ϵ([V ])) is trivial. Let us then compute the sign σs([V ]) = σ([V ]),
where s is the spin structure on T 2 from example 3.31. We have [V ] = [L−−] + [L++] − [L+−] − [L−+].
Therefore,

σs([V ]) = σs(L−−)σs(L++)σs(L+−)
−1σs(L−+)

−1 = −1
using the computation from example 3.31. This finishes the proof. □

Example 3.37. Let G be a connected simply-connected algebraic group over a field k whose Lie algebra g
is equipped with a nondegenerate G-invariant symmetric bilinear pairing. As π1(G) is trivial, w2(BG) is
trivial. Therefore, by theorem 3.35 we get that the torsion volume form on the character stack LocG(Σ)
coincides with the symplectic volume form.

In example 3.31 we have computed σs(V ) for all rank 1 orthogonal local systems over T 2. In that case
the sign σs defines a function

σs : H
1(Σ;µ2) −→ µ2.

However, examining the precise values for Σ = T 2 we see that this map is not linear. Let us explain the
precise behavior.

Recall that Johnson [Joh80] has defined a quadratic function

qs : H
1(Σ;µ2) −→ µ2

for a closed oriented surface Σ and any spin structure s. Its underlying symmetric bilinear form is the
intersection pairing

qs(αβ)

qs(α)qs(β)
=

∫
Σ

α ∪ β.

Moreover, for two spin structures s1, s2 differing by h ∈ H1(Σ;Z/2) it satisfies

(4) qs2(α) = ⟨α, h⟩qs1(α).

There is a canonical homomorphism
w1 : GW+

1 −→ µ2

given by the stabilizing the determinant map on the orthogonal group. Equivalently, it is obtained by taking
π1 of the determinant morphism detgr : GW+ → PicZ,+,C2 . It allows us to identify orthogonal rank 1 local
systems L over Σ with classes w1(L) ∈ H1(Σ;µ2).
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Proposition 3.38. Let Σ be a closed oriented surface and s a spin structure on Σ. Consider a function

σs : H
1(Σ;µ2) −→ µ2

given by L 7→ σs(L), where we identify classes in H1(Σ;µ2) with orthogonal rank 1 local systems L using w1.
Then σs coincides with Johnson’s quadratic refinement of the intersection pairing qs.

Proof. We begin by showing that σs is, indeed, a quadratic refinement of the intersection pairing. Consider
orthogonal rank 1 local systems L1,L2 on Σ. Let O be the trivial rank 1 local system and consider

[V ] = ([L1]− [O])([L2]− [O]) = [L1 ⊗ L2] + [O]− [L1]− [L2] ∈ Ω∞GW+(ΣB).

As in the proof of theorem 3.35, detgr(ϵ([V ])) is canonically trivial. Therefore, by theorem 3.35
σs(L1 ⊗ L2)

σs(L1)σs(L2)
= σs([V ]) =

∫
Σ

w2([V ]).

We want to prove that
w2([V ]) = w1(L1) ∪ w1(L2) ∈ H2(Σ;µ2).

This is equivalent to showing the commutativity of the square

GW+
1 ⊗Z GW+

1
//

w1⊗w1

��

GW+
2

w2

��
µ2 ⊗Z µ2

// µ2.

Using that w1 : GW+
1 → µ2 is an isomorphism étale locally (by proposition 2.12) we are reduced to

checking that the multiplication

GW+
1 (F )⊗GW+

1 (F ) −→ GW+
2 (F )

is a nontrivial map for F an algebraically closed field. For this we can compute w2([V ]) for some Σ, e.g.
Σ = T 2. But this was done in theorem 3.35 where it was shown that w2([V ]) defines a nontrivial element of
H2(T 2;µ2) for L1 = L+− and L2 = L−+. This finishes the proof that σs is a quadratic refinement of the
intersection pairing.

The difference ratio σs/qs defines a homomorphism

σs/qs : H
1(Σ;µ2) −→ µ2.

Using the formula for the dependence of σs on the spin structure from proposition 3.30 and the for-
mula (4) for the dependence of qs on the spin structure we see that the ratio defines a homomorphism
σs/qs : H

1(Σ;µ2) → µ2 independent of the spin structure. Both σs and qs are invariant under orientation-
preserving diffeomorphisms, but no nontrivial elements of H1(Σ;Z/2) are stable under all orientation-
preserving diffeomorphisms. So, σs/qs = 1. □

Example 3.39. Using that σs = qs is Johnson’s quadratic refinement of the intersection pairing for rank 1
local systems we can compute the Arf invariant of the spin structure on T 2 from example 3.31. We have

Arf(σs) =
1

2
(σs(L++) + σs(L−−) + σs(L+−) + σs(L−+)) = −1.

So, the spin structure s from example 3.31 is odd. As there is a unique odd spin structure on T 2 and the Arf
invariant is preserved under diffeomorphisms, we get another proof of the assertion from remark 3.32 that
the spin structure s is diffeomorphism-invariant.

3.6. Cohomological DT invariants of 3-manifolds. Let M be an oriented 3-dimensional Poincaré com-
plex, i.e. a finitely dominated space equipped with a fundamental class [M ] ∈ H3(M ;Z) satisfying Poincaré
duality. By proposition 1.22 the stack MB carries an O-orientation of degree 3.

Let G be a connected algebraic group whose Lie algebra g is equipped with a nondegenerate G-invariant
symmetric bilinear pairing. Then the classifying stack BG has a 2-shifted symplectic structure. Therefore,
by the AKSZ construction [Pan+13, Theorem 2.5] the character stack

LocG(M) = Map(MB,BG)

carries a (−1)-shifted symplectic structure. Recall the following notion from [Ben+15].
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Definition 3.40. Let X be a (−1)-shifted symplectic stack. Orientation data on X is a choice of a line
bundle K

1/2
X together with an isomorphism (K

1/2
X )⊗2 ∼= det(LX), i.e. a square root of det(LX).

Proposition 3.41. Let M and G be as before. Moreover, suppose M is a finite CW complex (for instance,
M is a closed oriented 3-manifold). Then LocG(M) has a canonical orientation data.

Proof. The assumptions on G imply that g has a G-invariant volume form. Therefore, BG carries a volume
form. Since dim(M) = 3, there is a canonical homology orientation on M coming from Poincaré duality (see
remark 3.15). Consider the torsion volume form volLocG on LocG(M) from theorem 2.8. Then we may choose
K

1/2
LocG(M) = OLocG(M) and the isomorphism OLocG(M) = (K

1/2
X )⊗2 ∼= det(LX) given by 1 7→ volLocG . □

Until the end of this section assume k = C is the field of complex numbers. By [Ben+15], if X is a (−1)-
shifted symplectic stack equipped with orientation data, then its underlying classical stack t0(X) carries a
canonical perverse sheaf ϕ of Q-vector spaces globalizing the sheaf of vanishing cycles. Therefore, for any
closed oriented 3-manifold M and a group G as above we may consider the cohomology

H•(t0(LocG(M)), ϕLocG(M)),

which is a cohomological DT invariant of M .
Now suppose that G is a split connected reductive group, P ⊂ G a parabolic subgroup and L the Levi

factor. Let g, p, l be the corresponding Lie algebras. Let ∆P : P → GL1 be the modular character of P , i.e.
the character of det(p).

We will be interested when ∆P admits a square root. For this, choose a Borel subgroup B ⊂ G and
suppose P is a standard parabolic as in [Bor91, Proposition 14.18] associated to a subset I ⊂ ∆ of simple
roots. Let Φ+ be the set of positive roots with respect to B, [I] is the root subsystem generated by I and
Φ(I)+ = Φ+ \ [I] the set of positive roots not lying in [I]. Consider the integral weight

2ρI =
∑

α∈Φ(I)+

α.

The modular character of P restricted to the maximal torus has weight 2ρI . So, it admits a square root if,
and only if, ρI is an integral weight.

Example 3.42. The whole group G ⊂ G is a parabolic subgroup; in this case ∆G = 1 admits a square root.

Example 3.43. For the Borel subgroup B ⊂ SL2 the modular character ∆B admits a square root, but for
the Borel subgroup B ⊂ PGL2 the modular character ∆B does not admit a square root.

The nondegenerate pairing on G restricts to one on L, so that BL has a 2-shifted symplectic structure
and

BP

|| ""
BL BG

is a 2-shifted Lagrangian correspondence, see [Saf17, Lemma 3.4]. Therefore,

(5) LocP (M)

πL

xx

πG

&&
LocL(M) LocG(M)

is a (−1)-shifted Lagrangian correspondence. In this setting there is a relative notion of orientation data
introduced in [AB17, Definition 5.3] which we now review. Suppose f : L→ X is a Lagrangian morphism to
a (−1)-shifted symplectic stack. Then there is a fiber sequence

TL −→ f∗TX −→ LL[−1]
and hence, after taking determinants, there is a canonical isomorphism

(6) f∗ det(LX) ∼= det(LL)
⊗2.
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Definition 3.44. Let X be a (−1)-shifted symplectic stack equipped with orientation data K
1/2
X . An

orientation data on a Lagrangian morphism f : L→ X is the data of an isomorphism det(LL) ∼= f∗K
1/2
X

whose square coincides with the canonical isomorphism f∗ det(LX) ∼= det(LL)
⊗2 defined above.

We can construct orientation data on the Lagrangian correspondence (5) as follows.

Theorem 3.45. Let M , G, P and L be as before. Suppose that M is a closed oriented PL 3-manifold and
one of the following holds:

(1) M is equipped with a spin structure.
(2) The modular character ∆P admits a square root.

Then the Lagrangian correspondence

LocP (M)

xx &&
LocL(M) LocG(M)

has canonical orientation data.

Proof. By assumptions M has trivial Euler characteristic, so we may choose an Euler structure ξ on M .
In fact, since the second Stiefel–Whitney class w2(M) ∈ H2(M ;Z/2Z) vanishes, we may choose a canon-
ical Euler structure in the sense of [FT99, Section 3.2], i.e. an Euler structure with characteristic class
c(ξ) = 0 ∈ H1(M ;Z). Consider the torsion volume forms volLocG , volLocL and volLocP on the corresponding
moduli spaces defined in proposition 3.23. In particular, volLocG and volLocL define orientation data on the
(−1)-shifted symplectic stacks LocG(M) and LocL(M). The volume form volLocP defines an isomorphism
det(LLocP (M)) ∼= OLocP (M). To check that this gives an orientation data on the Lagrangian correspondence
we have to show that

volLocGvolLocL = vol2LocP
under the isomorphism (6).

Fix a P -local system Q→M and consider the adjoint bundles

adP Q = Q×P p, adG Q = Q×P g, adL Q = Q×P l.

The isomorphism (6) at Q ∈ LocP (M) boils down to an isomorphism

(7) det(H•(M ; adG Q⊕ adL Q)) ∼= det(H•(M ; adP Q))⊗2

constructed as a combination of the following two isomorphisms (8) and (9). First, we have an exact sequence
of P -representations

0 −→ p −→ g⊕ l −→ p∗ −→ 0.

Taking the adjoint bundles and using multiplicativity of the determinant we obtain an isomorphism

(8) det(H•(M ; adG Q⊕ adL Q)) ∼= det(H•(M ; adP Q))⊗ det(H•(M ; (adP Q)∗)).

Second, using Poincaré duality on M we obtain an isomorphism

(9) det(H•(M ; adP Q))
∼−→ det(H•(M ; (adP Q)∗)).

By proposition 3.22 the value of volLocP at Q ∈ LocP (M) coincides with the Reidemeister–Turaev torsion
τ(M ; adP Q) and similarly for the other groups. So, we have to show that under (7) we have

τ(M ; adG Q)τ(M ; adL Q) = τ(M ; adP Q).

By the multiplicativity of torsions (see [FT00, Theorem 7.1]) we have

τ(M ; adG Q)τ(M ; adL Q) = τ(M ; adP Q)τ(M ; (adP Q)∗).

By the duality of torsions (see [FT00, Theorem 7.2]) we have

τ(M ; (adP Q)∗) = τ(M ; adP Q).

Note that the characteristic class of ξ vanishes since we have assumed that ξ is canonical. This proves that
the volume forms volLocP , volLocG , volLocL define orientation data on the Lagrangian correspondence.
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We have defined the orientation data on the Lagrangian correspondence depending on the choice of a
canonical Euler structure. Let us now consider the two possible assumptions:

(1) If M is equipped with a spin structure, it also carries a Spinc-structure with trivial first Chern class.
Therefore, by proposition 3.13 it carries a canonical Euler structure.

(2) Suppose the modular character ∆P admits a square root ∆1/2
P . Two canonical Euler structures ξ1, ξ2

on M differ by a 2-torsion element h ∈ H1(M ;Z). By proposition 3.23 the volume form volLocP
changes as follows:

volLocP ,ξ2 = ⟨h,∆P ⟩volLocP ,ξ1 ,

while volLocG and volLocL do not change since G and L are unimodular. Using the square root of
∆P we have

⟨h,∆P ⟩ = ⟨h,∆1/2
P ⟩

2 = ⟨2h,∆1/2
P ⟩ = 1.

In other words, in this case volLocP is independent of the choice of a canonical Euler structure.
□

The above result has the following application. Let us recall the following conjecture of Joyce (see [AB17,
Conjecture 5.18]).

Conjecture 3.46. Let X be a (−1)-shifted symplectic stack and f : L→ X a Lagrangian morphism, where
both X and L→ X are equipped with orientation data. Then there is a natural morphism

µL : Qt0(L)[dimL] −→ f !ϕX .

Let us now apply the conjecture to the Lagrangian correspondence (5) which carries orientation data
according to theorem 3.45.

Theorem 3.47. Suppose conjecture 3.46 holds. Suppose either M is equipped with a spin structure or the
modular character ∆P admits a square root. Then there is a natural parabolic induction map

H•(t0(LocL(M)), ϕLocL(M)) −→ H•(t0(LocG(M)), ϕLocG(M))

between the cohomological DT invariants of M .

Proof. Let us first show that the morphism πG is representable and proper (as a morphism of underived
stacks). Without loss of generality we may assume that M is connected. The fundamental group of M is
finitely generated which gives a closed immersion LocG(M) ⊂ [Gn/G]. Now consider a closed G-equivariant
subscheme X ⊂ Gn×G/P consisting of elements (g1, . . . , gn, [h]) satisfying the equations gi[h] = [h] ∈ G/P .
Then we have a pullback diagram

LocP (M) //

πG

��

[X/G]

��
LocG(M) // [Gn/G]

The G-equivariant morphism X → Gn is obtained as a composition of a closed immersion X ⊂ Gn ×G/P
and a projection on the first factor, both of which are proper. Since proper morphisms are stable un-
der base change, πG : LocP (M) → LocG(M) is proper as well. Moreover, by proposition 3.23 we have
dim(LocP (M)) = 0 since χ(M) = 0.

Using the orientation data on the Lagrangian correspondence (5) constructed in theorem 3.45 and con-
jecture 3.46 we get a morphism

Qt0(LocP (M)) −→ (πL × πG)
!(ϕLocL(M) ⊠ ϕLocG(M)).

Applying Verdier duality we get

π∗
LϕLocL(M) ⊗ π∗

GϕLocG(M) −→ ωt0(LocP (M))

and, applying adjunctions,
ϕLocL(M) −→ (πL)∗π

!
GϕLocG(M).
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Let pL : t0(LocL(M))→ pt be the projection. Applying (pL)∗ to the above morphism we get

H•(t0(LocL(M)), ϕLocL(M)) −→ H•(t0(LocG(M)), (πG)∗π
!
GϕLocG(M)) −→ H•(t0(LocG(M)), ϕLocG(M)),

where the second map uses the counit (πG)∗π
!
G → id of the adjunction which exists since πG is proper. □

4. Dolbeault and de Rham setting

In this section we explain how to apply the results of section 2 in the case of de Rham stacks.

4.1. Setting. Let M be a smooth scheme. In this section we will be interested in the following stacks:
• The de Rham stack X = MdR is defined by the functor of points

(MdR)(R) = M(H0(R)red).

Let M̂ ×M be the formal completion of M×M along the diagonal. The two projections M̂ ×M ⇒ M
form a groupoid and one may identify

MdR
∼= [M/M̂ ×M ]

with the groupoid quotient. One may identify QCoh(MdR) with the derived ∞-category of D-
modules on M [GR14a].

• The Dolbeault stack X = MDol is defined to be the quotient

MDol = [M/T̂M ]

of M by the formal group scheme T̂M → M given by the formal completion of the tangent bundle
along the zero section with the group structure given by addition along the fibers. The pullback
QCoh(MDol) → QCoh(M) under the projection M → MDol is monadic and identifies QCoh(MDol)
with ModSym(TM )(QCoh(M)) ∼= QCoh(T∗M).

Proposition 4.1. Suppose M is a smooth and proper scheme. Then X = MdR and X = MDol satisfy
assumption 1.15.

Proof. Denote as usual p : X → pt.
The claim for X = MdR follows from the usual functoriality of D-modules and we omit the proof.
Let us now consider the case X = MDol. Let s : M ↪→ T∗M be the inclusion of the zero section, p̃ : M → pt

and f : M →MDol and π̃ : T∗M →M . Then under the identification QCoh(MDol) ∼= QCoh(T∗M) we have

p∗ = s∗p̃
∗, f∗ = π̃∗.

Since p̃ is smooth and proper, p̃∗ admits colimit-preserving left and right adjoints. Moreover, since s is
a regular immersion, s∗ admits colimit-preserving left and right adjoints. Therefore, p∗ admits colimit-
preserving left and right adjoints.

The pullback under the composite
pt

i−→M
π−→MDol,

where i is an inclusion of a point, is

i∗π̃∗ : QCoh(T∗M) −→ Modk.

It has a left adjoint satisfying the projection formula as i∗ does.
Finally, under the identification QCoh(MDol) ∼= QCoh(T∗M) the functor

∆∗ : QCoh(MDol ×MDol)→ QCoh(MDol)

goes to the integral transform along the correspondence

T∗X ×X T∗X

m

&&vv
T∗X × T∗X T∗X

where m : T∗X ×X T∗X → T∗X is given by the addition along the fibers. So, ∆∗ admits a left adjoint
satisfying the projection formula precisely because the pullback along ∆X : X → X×X admits a left adjoint
satisfying the projection formula. □
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4.2. Lifts along the assembly map. We begin by describing the K-theory of MDol. Using the equivalence
QCoh(MDol) ∼= QCoh(T∗M) we have Kω(MDol) ∼= K(T∗M). Under this equivalence OMDol

∈ QCoh(MDol)
is sent to OT∗

MM ∈ QCoh(T∗M), the structure sheaf of the zero section T∗
MM ⊂ T∗M . Using the Koszul

resolution we obtain the following result.

Proposition 4.2. Under the isomorphism Kω(MDol) ∼= K(M) the class [OMDol
] ∈ Ω∞Kω(MDol) is sent to

the K-theoretic Euler class

eK(T∗
M ) =

∞∑
k=0

(−1)k
[

k∧
TM

]
∈ Ω∞K(M)

of the cotangent bundle T∗
M . For instance, if M is of pure dimension d, this is the top Chern class cd(T

∗
M ).

Next, let us describe the K-theory of MdR. Recall that QCoh(MdR) is the derived ∞-category of D-
modules on M . It is compactly generated: QCoh(MdR) = IndQCoh(MdR)

ω. For a conic subset S ⊂ T∗M
we denote by QCohS(MdR)

ω ⊂ QCoh(MdR)
ω the subcategory of D-modules with singular support in S.

For instance, for S = T∗
MM the zero section we get QCohT∗

MM (MdR)
ω = Perf(MdR). Let Kω

S(MdR) be the
K-theory of QCohS(MdR)

ω.
For a smooth scheme X and a subset S ⊂ X we denote by KS(X) the K-theory of X with support on S.

The following is shown in [Qui73, Chapter 6, Theorem 7] and [Pat12, Corollary 3.1.16].

Proposition 4.3. There is a commutative diagram

Kω
S(MdR) //

��

Kω(MdR)

∼
��

KS(T
∗M) // K(T∗M).

Under these morphisms [OMdR
] ∈ Ω∞Kω

T∗
MM (MdR) goes to the class of the structure sheaf of the zero section

T∗
MM ⊂ T∗M .

Remark 4.4. Given a coherent D-module F with a good filtration, the class [F] ∈ Ω∞Kω(MdR) goes to
[grF] ∈ Ω∞K(T∗M).

Using proposition 4.3 and the isomorphism K(T∗M) ∼= K(M) we see that the assembly map for MdR and
MDol coincides with the assembly map for M itself:

C•(M(k); K(k)) −→ K(M).

To construct a lift of eK(T∗
M ) ∈ K(M) we will use the construction of de Rham ϵ-factors from [Gro18].

Suppose M is of pure dimension d. Consider the setting of [Gro18, Situation 3.1]:
• Z ⊂M is a closed subset of dimension 0. U = M \ Z is the complement.
• Consider an open covering U = ∪di=1Ui and regular one-forms νi on Ui for each i.
• The one-forms {νi} satisfy the following condition. For each ordered subset {i1 < · · · < il} ⊂ {1, . . . , d}

we require that
∑l

j=1 λjνij nowhere vanishes on Ui1...il = ∩lj=1Uij for any λ1, . . . , λj ∈ k satisfying∑l
j=1 λj = 1.

Example 4.5. Consider M = P2 with homogeneous coordinates [x : y : z]. Let Z = [1 : 0 : 0] ∪ [0 : 0 : 1]
and consider the open sets U1 = {x ̸= 0, z ̸= 0} and U2 = {y ̸= 0} covering the complement of Z. Then the
one-forms

ν1 = d(x/z), ν2 = d(x/y)

satisfy the assumptions.

Proposition 4.6. Let M be a smooth and proper scheme of pure dimension d and {ν1, . . . , νd} a collection
of 1-forms satisfying the above conditions. Then there is a simple structure on MDol and MdR.
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Proof. By [Gro18, Section 3.1] there is a morphism ν∗ : K(T∗M\T∗
MM)→ K(U) determined by the collection

of one-forms {νi} which fits into a commutative diagram

K(T∗M) // K(T∗M \ T∗
MM)

��
K(M)

π̃∗ ∼

OO

// K(U)

Taking the fibers of the horizontal maps we obtain a morphism

ϕν : KT∗
MM (T∗M) −→ KZ(M).

We have
KZ(M) =

⊕
z∈Z

K(k)

and so the above commutative square constructs a lift of [OMDol
] (equivalently, [OMdR

]) under the assembly
map. □

Example 4.7. Suppose M is a smooth and proper curve. Let ν be a nonzero rational one-form on M and
v = ν−1 the corresponding rational vector field with divisor

∑
i nixi for some points xi ∈ M . The vector

field v identifies TM
∼= O(

∑
i nixi). Let{

[JnOx] =
∑n

j=1[T
j
M,x] ∈ K0(M), if n > 0

[JnOx] = −
∑−n

j=1[T
1−j
M,x] ∈ K0(M) if n < 0

where Tn
M,x is the skyscraper sheaf at x ∈ M with fiber the n-th power of the tangent space. Using the

exact sequences
0 −→ O −→ O(x) −→ TM,x −→ 0

and
0 −→ O(−x) −→ O −→ Ox −→ 0

we may identify [
O

(∑
i

nixi

)]
= O+

∑
i

[Jni
Oxi

] ∈ K0(M).

Therefore, using ν we identify
e(T∗

M ) = −
∑
i

[Jni
Oxi

] ∈ K0(M)

and the right-hand side lies in the source of the assembly map.

5. Circle and the exponential map

In this section we describe the behavior of the torsion volume form on the derived loop space under the
exponential map. In this section Y is a derived prestack which admits a deformation theory with a perfect
cotangent complex.

5.1. Circle. Consider M = S1 with the standard cell structure with a 0-cell p ∈ S1 and a 1-cell γ as shown
in fig. 2. Choose a clockwise orientation of γ which induces a homology orientation. Equivalently, it is the
canonical homology orientation induced using remark 3.15 from the clockwise orientation of S1. As the Euler
structure ξ we take the one given by an anticlockwise path from γ to p. With this Euler structure and a
homology orientation on S1 we obtain a nullhomotopy

hS1
B
: [OS1

B
] ∼ 0 ∈ Ω∞Kω(S1

B)

by proposition 3.16.
Let us unpack this nullhomotopy. First, let us identify the ∞-category QCoh(S1

B).

Proposition 5.1. Let S = SpecR be a derived affine scheme. Then we have equivalences
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Figure 2. Circle with a chosen Euler structure.

• QCoh(S × S1
B)
∼= Modk[z,z−1](QCoh(S)) = ModR[z,z−1], the ∞-category of quasi-coherent complexes

F on S together with an automorphism z : F → F. Under this equivalence OS×S1
B

goes to OS equipped
with the identity automorphism.
• QCohω(S × S1

B)
∼= Perf(R[z, z−1]).

• Perf(S × S1
B)
∼= Modk[z,z−1](Perf(S)), the ∞-category of perfect complexes on S together with an

automorphism z : F → F.

Proof. As QCoh(S) is dualizable, ⊠ : QCoh(S) ⊗ QCoh(S1
B) → QCoh(S × S1

B) is an equivalence. We have
QCoh(S1

B) = LocSys(S1) = Modk[z,z−1], the ∞-category of modules over the group algebra of S1. Thus,

QCoh(S)⊗QCoh(S1
B)
∼= ModR ⊗Modk[z,z−1]

∼= ModR[z,z−1].

Compact objects in the∞-category of modules are given by perfect modules which proves the claim about
QCohω(S × S1

B).
Finally, a quasi-coherent complex on S × S1

B is perfect, if, and only if, it is perfect when pulled back to
S × {p} which proves the claim about Perf(S × S1

B). □

Under the equivalence QCoh(S1
B)
∼= Modk[z,z−1] the structure sheaf OS1

B
goes to the augmentation module

k = k[z, z−1]/(z−1). The nullhomotopy [k] ∼ 0 is provided by choosing a resolution of k by the chain complex
C•(S̃

1; k) of free based k[z, z−1]-modules of chains on the universal cover of S1, which is

C•(S̃
1; k) = (k[z, z−1]

z−1−−→ k[z, z−1]).

Remark 5.2. Two nullhomotopies of [k] ∈ K(k[z, z−1]) differ by an element of K1(k[z, z
−1]) which can be

identified with k[z, z−1]× using the determinant map on K1 as k[z, z−1] is a Euclidean domain. The different
nullhomotopies correspond to different choices of the generator of the free k[z, z−1]-module ker(k[z, z−1]→ k).

Consider the derived loop stack
LY = Map(S1

B, Y )

with p : LY → Y given by evaluation at p ∈ S1. By theorem 2.8 we obtain a torsion volume form volLY on
LY . The goal of this section is to give a more explicit description of this volume form. We begin with the
following observation.

Proposition 5.3. Consider the isomorphism

detLLY
∼= p∗ det(LY )⊗ detLLY/Y ,

induced by the fiber sequence
p∗LY −→ LLY −→ LLY/Y .

The pullback diagram

LY
p //

p

��

Y

∆

��
Y

∆ // Y × Y

induces an isomorphism
p∗LY/Y×Y

∼= LLY/Y
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and a fiber sequence
LY ⊕ LY −→ LY −→ LY/Y×Y

inducing an isomorphism
detLY/Y×Y

∼= det(LY )
−1.

The torsion volume form volLY is obtained by a sequence of the above isomorphisms:

detLLY
∼= p∗ detLY ⊗ detLLY/Y

∼= p∗ detLY ⊗ p∗ detLY/Y×Y
∼= p∗ detLY ⊗ p∗ det(LY )

−1 ∼= OLY .

Proof. The presentation of S1 as a CW complex gives a pushout diagram

pt
∐

pt //

��

D

γ

��
pt

p // S1

Let ev : S1
B × LY → Y be the evaluation map. The volume form ω is constructed using the following

steps:
(1) Consider the fiber sequence

C•(pt; p
∗LY ) −→ C•(S

1; ev∗LY ) −→ C•(S
1,pt; ev∗LY )

which corresponds to the fiber sequence

p∗LY −→ LLY −→ LLY/Y

via proposition 1.5.
(2) Use the above pushout diagram to identify

C•(S
1,pt; ev∗LY ) ∼= C•(D,pt

∐
pt; ev∗LY |D)

which corresponds to the isomorphism

LLY/Y
∼= p∗LY/Y×Y .

(3) Identify
C•(D,pt

∐
pt; ev∗LY |D) ∼= p∗LY [1]

using the Euler structure and an orientation of the 1-cell D which corresponds to the isomorphism

LY/Y×Y
∼= LY [1].

(4) Take determinants of the above isomorphisms and fiber sequences to obtain a trivialization of
det(LLY ).

These are precisely the isomorphisms described in the statement of the proposition. □

Remark 5.4. The sequence of isomorphisms above defines the “canonical orientation” of LY in the sense of
[KP21, Construction 3.2.1].

Let us now give a more geometric interpretation of the volume form volLY . Let Y → Z be a morphism in
an∞-category with finite limits. Its Čech nerve is an augmented simplicial object Y• with Yn = Y ×Z · · ·×ZY
(the product taken n times). In this case Y• is a groupoid object, see [Lur09, Proposition 6.1.2.11]. Con-
cretely, the pullback diagram

Y2
d2 //

d0

��

Y1

d0

��
Y1

d1 // Y0

identifies Y2
∼= Y1 ×Y0

Y1 and the multiplication is given by d1 : Y1 ×Y0
Y1 → Y1.

Remark 5.5. If Y0 = Y is the final object, Y1 = Y ×Z Y is a group object.
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Definition 5.6. Let Y → Z be a morphism of derived stacks, where both of them admit a cotangent
complex, and let Y• be its Čech nerve. Consider the pullback diagram

Y1
d1 //

d0

��

Y

d0

��
Y

d0 // Z

The induced isomorphism
LY1/Y0

∼= d∗1LY/Z

is the left-invariant trivialization of the relative cotangent complex.

Remark 5.7. Reflecting the above diagram along the diagonal we obtain a right-invariant trivialization.

For instance, consider the diagonal map Y → Y × Y in the ∞-category of derived stacks over Y , where
we consider the projection on the first factor Y × Y → Y on the right. Its Čech nerve gives the simplicial
object

Y LYoooo LY ×Y LYoo oo
oo

. . .oooo
oooo

which induces a group structure on LY relative to Y given by the loop composition.

Example 5.8. Consider Y = BG, the classifying stack of an algebraic group G. The product G×G→ G is
conjugation-invariant, so it defines a group structure on LY = [G/G] relative to Y = BG.

The isomorphism
LLY/Y

∼= p∗LY/Y×Y

provided by proposition 5.3 is given by the left-invariant trivialization of the relative cotangent complex
using the group structure on LY → Y .

5.2. Formal circle. In this section we assume k is a field of characteristic zero. Consider the classifying
stack X = BĜa of the formal additive group Ĝa. It has a natural Gm-action coming from the Gm-action
on Ĝa.

Proposition 5.9. Let S = SpecR be a derived affine scheme. Then we have equivalences
• QCoh(S×BĜa) ∼= Modk[x](QCoh(S)) = ModR[x], the ∞-category of quasi-coherent complexes F on

S together with an endomorphism x : F → F. Under this equivalence OS×BĜa
is sent to OS equipped

with the zero endomorphism.
• QCohω(S × BĜa) ∼= Perf(R[x]).
• Perf(S × BĜa) ∼= Modk[x](Perf(S)), the ∞-category of perfect complexes on S together with an

endomorphism x : F → F.

Proof. As in the proof of proposition 5.1, the functor QCoh(S) ⊗ QCoh(BĜa) → QCoh(S × BĜa) is an
equivalence.

Since Ĝa is a formally smooth indscheme, by [GR14b, Theorem 10.1.1] the functor

Υ: QCoh(BĜa) −→ IndCoh(BĜa)

is an equivalence. Under this functor OBĜa
is sent to ωBĜa

.
If g is a Lie algebra and Ĝ the corresponding formal group, by [GR17, Chapter 7, Corollary 5.2.4] there

is an identification
IndCoh(BĜ) ∼= ModUg

under which ωBĜ is sent to the augmentation module k. Applying this result to Ĝ = Ĝa we get

IndCoh(BĜa) ∼= Modk[x]

and hence QCoh(BĜa) ∼= Modk[x]. □

Proposition 5.10. The derived prestack BĜa satisfies assumption 1.1.
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Proof. The fact that the functor p∗ from assumption 1.1 admits a left adjoint follows from [GR17, Chapter
3, Proposition 2.1.2]. The object k ∈ Modk[x] is compact, so p∗ also admits a right adjoint p∗. □

We define a nullhomotopy
hBĜa

: [OBĜa
] ∼ 0 ∈ Ω∞Kω(BĜa)

as follows. By proposition 5.9 we may identify this class with [k] ∈ Ω∞K(k[x]). Consider the resolution of k
by the chain complex of free based k[x]-modules

k ∼= (k[x]
x−→ k[x])

concentrated in degrees −1 and 0. This provides a homotopy [k] ∼ [k[x]]− [k[x]] = 0.

Proposition 5.11. There is a pushout square of derived stacks equipped with Gm-actions

Spec k[x]/x2 //

��

pt

��
pt // BĜa

where Gm acts on x with weight 1.

Proof. Recall from [GR17, Chapter 5] that a formal moduli problem over pt is a derived stack X satisfying
the following conditions: X is locally almost of finite type, X admits a deformation theory and Xred = pt.
An equivalence due to Lurie and Pridham (see loc. cit.) asserts that the ∞-category of formal moduli
problems over pt are equivalent to the ∞-category of dg Lie algebras.

The stacks Spec k[x]/x2,pt,BĜa are all formal moduli problems over pt which correspond to the following
Lie algebras:

• The Lie algebra corresponding to Spec k[x]/x2 is two-dimensional with generators a, b of degrees
deg(a) = 1,deg(b) = 2 and the bracket [a, a] = b. Equivalently, it is the free Lie algebra lie(a) on a
generator a of degree 1.

• The Lie algebra corresponding to pt is 0.
• The Lie algebra corresponding to BĜa is k in degree 0. Equivalently, it is the free Lie algebra lie(x)

on a generator x of degree 0.
Thus, using the equivalence between formal moduli problems and Lie algebras, we have to construct a

pushout square
lie(a) //

��

0

��
0 // lie(x)

But such a square is obtained by applying the functor lie (as it is a left adjoint, it preserves colimits) to
the pushout square

k[−1] //

��

0

��
0 // k

of chain complexes. □

Consider the derived mapping prestack Map(BĜa, Y ) together with a projection p : Map(BĜa, Y ) → Y

given by evaluation at the basepoint p ∈ BĜa. We also have the shifted tangent bundle T[−1]Y which is an
example of a linear stack in the sense of [Mon21].

Proposition 5.12. There is an equivalence of derived prestacks Map(BĜa, Y ) ∼= T[−1]Y compatible with
the Gm-action under which p corresponds to the projection map p : T[−1]Y → Y .

50



Proof. Applying Map(−, Y ) to the pushout square from proposition 5.11 we obtain a pullback square

Map(BĜa, Y ) //

��

Y

��
Y // Map(Spec k[x]/x2, Y )

By [TV08, Proposition 1.4.1.9] we may identify Map(Spec k[x]/x2, Y ) ∼= TY , so that inclusion of Y is given
by the zero section. The claim then follows from the fact that

TY [−1] //

��

0

��
0 // TY

is a pullback diagram in QCoh(Y ). □

Using proposition 5.9 we obtain a natural forgetful functor

QCoh(BĜa × T[−1]Y ) −→ Modk[x](QCoh(T[−1]Y )),

i.e. a quasi-coherent complex on BĜa×T[−1]Y gives rise to a quasi-coherent complex on T[−1]Y equipped
with an endomorphism. This construction is equivariant for the natural Gm-action on BĜa, so that the
endomorphism has weight 1. Now suppose E ∈ QCoh(Y ) is a quasi-coherent complex. Then under this
functor ev∗E corresponds to the quasi-coherent complex p∗E equipped with an endomorphism p∗E → p∗E
of weight 1, i.e. a map E → p∗p

∗E of weight 1. If we further assume that E ∈ QCoh(X)− is bounded above,
by [Mon21, Theorem 2.5] it is the same as a map

atE : E −→ E ⊗ LY [1].

Definition 5.13. Let E ∈ QCoh(Y )− be a bounded above quasi-coherent complex. The Atiyah class of
E is the map atE : E → E⊗LY [1] defined above (equivalently, a weight 1 endomorphism atE : p∗E → p∗E).

Consider the map Y → TY given by the inclusion of the zero section. Its Čech nerve gives the simplicial
object

Y T[−1]Yoo oo T[−1]Y ×Y T[−1]Yoo oo
oo

. . .oooo
oooo

which induces an abelian group structure on T[−1]Y relative to Y given by addition in the fiber coordinate.

Example 5.14. Consider Y = BG, the classifying stack of an algebraic group G and let g be the Lie algebra
of G. The addition map g × g → g is conjugation-invariant, so it defines an abelian group structure on
T[−1]Y = [g/G] relative to BG.

Given the nullhomotopy [OBĜa
] ∼ 0 in Ω∞Kω(BĜa) constructed above, by theorem 2.8 we obtain a

torsion volume form volT[−1]Y on T[−1]Y . Our goal is to give a geometric description of this volume form
similar to the description of the volume form ωLY on LY given in the previous section.

Proposition 5.15. The pullback π∗ : QCoh(pt) → QCoh(Spec k[x]/x2) along Spec k[x]/x2 → pt admits
a left adjoint π♯, such that π♯OSpec k[x]/x2 ∼= (k[x]/x2)∗ and the counit is dual to the inclusion of the unit
k → k[x]/x2.

Proof. Spec k[x]/x2 is a proper lci scheme. Therefore, π∗ is colimit-preserving and it admits a right adjoint
π! differing from π∗ by tensoring by a line bundle [Gai13, Proposition 7.3.8]. Therefore, π∗ admits a left
adjoint π♯.

We have
Hom(π♯OSpec k[x]/x2 , k) ∼= Hom(OSpec k[x]/x2 ,OSpec k[x]/x2) = k[x]/x2,

so we may canonically identify π♯OSpec k[x]/x2 ∼= (k[x]/x2)∗. □
51



Let s : Y → TY be the inclusion of the zero section. Using proposition 1.5 we identify the fiber sequence

s∗LTY −→ LY −→ LY/TY

with
(k[x]/x2)∗ ⊗ LY −→ LY −→ LY/TY ,

where the first map is induced by (k[x]/x2)∗ → k. Thus, there is a canonical identification

LY/TY
∼= LY [1].

The following statement is proven analogously to proposition 5.3.

Proposition 5.16. Consider the fiber sequence

p∗LY −→ LT[−1]Y −→ LT[−1]Y/Y

inducing an isomorphism
detLT[−1]Y

∼= p∗ det(LY )⊗ detLT[−1]Y/Y

and the left-invariant trivialization (see definition 5.6)

LT[−1]Y/Y
∼= p∗LY [1]

of the relative cotangent complex. The torsion volume form volT[−1]Y is obtained by a sequence of the above
isomorphisms

detLT[−1]Y
∼= p∗ detLY ⊗ detLT[−1]Y/Y

∼= p∗ detLY ⊗ p∗ det(LY )
−1 ∼= OT[−1]Y .

5.3. Exponential. The goal of this section is to compare the Euler structures on S1
B and BĜa constructed

in the previous two sections. For this, consider the stack BGa. It carries natural maps

BGa

S1
B

im
==

BĜa

ia
bb

obtained by taking classifying stacks of the inclusions Z→ Ga and Ĝa → Ga. We denote by

πu : BGa −→ pt, πm : S1
B −→ pt, πa : BĜa −→ pt

the natural projections.
We begin by describing the ∞-category QCoh(BGa). We denote by

Mod0k[x] = colim
n

Modk[x]/xn

the ∞-category of x-nilpotent k[x]-modules.

Proposition 5.17. Let S = SpecR be a derived affine scheme. Then we have equivalences
• QCoh(S×BGa) ∼= Mod0k[x](QCoh(S)) = Mod0R[x], the ∞-category of quasi-coherent complexes F on
S together with a nilpotent endomorphism x : F → F. Under this equivalence OS×BGa is sent to OS

equipped with the zero endomorphism.
• Perf(S ×BGa) ∼= Modk[x](Perf(S)), the ∞-category of perfect complexes on S together with a nilpo-

tent endomorphism x : F → F.

Proof. The pullback along p : S → S × BGa defines a comonadic functor f∗ : QCoh(S × BGa)→ QCoh(S)
which identifies

QCoh(S × BGa) ∼= coModO(Ga)(QCoh(S)).

We may identify O(Ga) ∼= colimn k[t]/t
n as coalgebras. Thus,

coModO(Ga)(QCoh(S)) ∼= colim
n

coModk[t]/tn(QCoh(S)).

Identifying (k[t]/tn)∗ ∼= k[x]/xn as algebras, we get

coModO(Ga)(QCoh(S)) ∼= colim
n

Modk[x]/xn(QCoh(S)) = Mod0k[x](QCoh(S)).

□
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For BGa perfect and compact quasi-coherent complexes coincide:

Perf(BGa) ∼= QCohω(BGa),

see [BFN10, Corollary 3.22]. Our next goal is to define the integration map πu
♯ : Perf(S × BGa)→ Perf(S).

We begin with the following lemma.

Lemma 5.18. Let C be a presentable k-linear ∞-category and i : D ↪→ C a full subcategory. Let x ∈ D be an
object and consider the colimit-preserving functors FD : Modk → D and FC : Modk → C given by V 7→ V ⊗x.
Suppose FC has a left adjoint FL

C : C→ Modk. Then FD has a left adjoint given by the composite

D
i−→ C

FL
C−−→ Modk.

Proof. For M ∈ D and V ∈ Modk we have a sequence of equivalences

HomModk
(FL

C i(M), V ) ∼= HomC(i(M), i(FD(V ))) ∼= HomD(M,FD(V )),

where the first equivalence uses that FL
C is a left adjoint and the second equivalence uses that i is fully

faithful. □

By proposition 5.17 the pullback functors

(ia)∗ : QCoh(S × BGa) −→ QCoh(S × BĜa), (im)∗ : QCoh(S × BGa) −→ QCoh(S × S1
B)

are fully faithful. Therefore, by lemma 5.18 we obtain a functor πu
♯ : Perf(S×BGa)→ Perf(S), left adjoint to

the pullback functor (πu)∗ : Perf(S)→ Perf(S×BGa), which is compatible with the corresponding functors
πa
♯ and πm

♯ on BĜa and S1
B using the diagram

Perf∨(S1
B) −→ Perf∨(BGa)←− Perf∨(BĜa)

To obtain a volume form on the mapping stack from BGa, we have to trivialize the pushforward functor
πu
♯ for BGa in K-theory. For this, consider a commutative diagram

(10) Perf(BGa) ∼= QCohω(BGa)

(im)∗

tt

(ia)∗

))
Perf(k[z, z−1])

z=exp(x)
// Perf(k[[x]]) Perf(k[x])oo

of stable ∞-categories, where the two bottom functors denote induction functors along the inclusions
k[z, z−1] ↪→ k[[x]] and k[x] ↪→ k[[x]].

Let S = SpecR be a derived affine scheme. Recall that for any X satisfying assumption 1.1 we have the
functor

tensX : QCohω(X) −→ Funex(Perf(S ×X),Perf(S)).

Let us unpack this functor for X = BĜa. By proposition 5.9 the functor tensX is equivalent to a functor

Modk[x](Perf(R))⊗ Perf(k[x]) −→ Perf(R)

which sends M ∈ Modk[x](Perf(R)) and N ∈ Perf(k[x]) to M ⊗k[x] N .
We will now define a functor

(11) Perf(k[[x]]) −→ Perf∨(BGa)

analogous to tensBĜa
. For S = SpecR a derived affine scheme we define it to be

Mod0k[x](Perf(R))⊗ Perf(k[[x]]) −→ Perf(R)

which sends M ∈ Mod0k[x](Perf(R)) and N ∈ Perf(k[[x]]) to M ⊗k[[x]] N .
Let us make several observations about this construction:
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• The functors tensBĜa
and (11) fit into a commutative diagram

Perf(BGa) ∼= QCohω(BGa)

tt **
Perf(k[z, z−1])

z=exp(x)
//

��

Perf(k[[x]])

��

Perf(k[x])oo

tens
BĜa

��
Perf∨(S1

B)
// Perf∨(BGa) Perf∨(BĜa)oo

• Under Perf(k[[x]])→ Perf∨(BGa) the module N = k[[x]] is sent to the functor

Perf(S × BGa) ∼= Mod0k[x](Perf(R))→ Perf(R)

given by forgetting the x-module structure. The module N = k[[x]]/(x) = k is sent to the functor
π♯ : Perf(S × BGa)→ Perf(S).

Applying K-theory to the commutative diagram (10) of stable∞-categories we get a commutative diagram

K(BGa) ∼= Kω(BGa)

(im)∗

vv

(ia)∗

((
Kω(S1

B)
// K(k[[x]]) Kω(BĜa)oo

We have the following data:
• There is a class [OBGa

] ∈ Ω∞K(BGa) which maps to [OS1
B
] ∈ Ω∞Kω(S1

B), [OBĜa
] ∈ Ω∞Kω(BĜa)

and [k] ∈ Ω∞K(k[[x]]).
• There is a nullhomotopy hS1

B
: [OS1

B
] ∼ 0 ∈ Ω∞Kω(S1

B) constructed in section 5.1.
• There is a nullhomotopy hBĜa

: [OBĜa
] ∼ 0 ∈ Ω∞Kω(BĜa) constructed in section 5.2.

So, we can take the difference hS1
B
− hBĜa

of the two nullhomotopies in Ω∞K(k[[x]]) to obtain an element
of K1(k[[x]]).

Remark 5.19. As opposed to the other examples we have considered previously, the class [OBGa ] ∈ Ω∞Kω(BGa)
is nontrivial. Indeed, by devissage pullback along pt → BGa induces an equivalence K(BGa) → K(pt) and
under this equivalence [OBGa

] ∈ Ω∞K(BGa) goes to [k] ∈ Ω∞K(k).

Proposition 5.20. The images of the nullhomotopies hS1
B

and hBĜa
in Ω∞K(k[[x]]) differ by J(x), where

J(x) =
x

exp(x)− 1
∈ k[[x]]× ∼= K1(k[[x]]).

Proof. The nullhomotopy hBĜa
is represented by the free based complex k[x]

x−→ k[x] (in degrees −1, 0)
of k[x]-modules with a quasi-isomorphism to k. Similarly, the nullhomotopy hS1

B
is represented by the

free based complex k[z, z−1]
z−1−−→ k[z, z−1] of k[z, z−1]-modules with a quasi-isomorphism to k. Thus, the

corresponding loop is given by

0 ∼
(
k[[x]]

exp(x)−1−−−−−−→ k[[x]]

)
∼ k ∼

(
k[[x]]

x−→ k[[x]]
)
∼ 0

Note that the middle two paths can be composed (by lifting the identity on k to the resolutions) to

k[[x]]
exp(x)−1 //

J−1

��

k[[x]]

id

��
k[[x]]

x // k[[x]].
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Thus, the total loop is represented by the free based acyclic complex of k[[x]]-modules

k[[x]]
(exp(x)−1)⊕J−1

−−−−−−−−−−−→ k[[x]]⊕2 −id⊕x−−−−→ k[[x]]

in degrees −1, 0, 1. It is contractible with the nullhomotopy h given by

k[[x]]
id⊕J(2−exp(x))←−−−−−−−−−− k[[x]]⊕2 (exp(x)−2)⊕J−1

←−−−−−−−−−−− k[[x]]

This contractible complex gives rise to an invertible matrix d+ h from the even part to the odd part given
by (

1 J(x)(2− exp(x))
−1 x

)
whose determinant is J .

Since k[[x]] is a Euclidean domain, the determinant map K1(k[[x]]) → k[[x]]× is an isomorphism splitting
the obvious inclusion k[[x]]× → K1(k[[x]]). □

Now consider the unipotent loop space

LuY = Map(BGa, Y )

which carries maps
LuY

qm

||

qa

$$
LY T[−1]Y

By proposition 1.5 it admits a perfect cotangent complex given by

LLuY = πu
♯ ev

∗LY .

Example 5.21. Consider Y = BG, the classifying stack of an algebraic group G with Lie algebra g. Let
U ⊂ G be the variety of unipotent elements and N ⊂ g the variety of nilpotent elements. Then

LuY ∼= [ĜU/G] ∼= [ĝN/G],

where ĜU is the formal completion of G along the unipotent cone and similarly for ĝN [Che20, Proposition
2.1.25].

Proposition 5.22. The maps qm : LuY → LY and qa : LuY → T[−1]Y are formally étale.

Proof. The statements for LY and T[−1]Y are proven in the same way, so we only consider the second case.
Consider the commutative diagram

BGa × LuY

evu

&&
BĜa × LuY

ia×id

66

id×qa ((

Y

BĜa × T[−1]Y
eva

99

induced by the map ia : BĜa → BGa. We have

LLuY
∼= πu

♯ (ev
u)∗LY , LT[−1]Y

∼= πa
♯ (ev

a)∗LY .

Using the above commutative diagram the map (qa)∗LT[−1]Y → LLY can be identified with

πa
♯ (i

a)∗(evu)∗LY −→ πu
♯ (ev

u)∗LY ,

but πa
♯ (i

a)∗ → πu
♯ is an equivalence by lemma 5.18. □
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Using the previous proposition we obtain two volume forms (qa)∗ωT[−1]Y and (qm)∗ωLY on LuY . We can
relate them as follows. Let p : LuY → Y be the projection. For a bounded above quasi-coherent complex
E ∈ QCoh(Y )−, the restriction of the Atiyah class to LuY defines a nilpotent endomorphism

atE : p∗E −→ p∗E.

For any invertible power series f(x) ∈ k[[x]] we obtain an automorphism

f(atE) : p
∗E −→ p∗E.

If E is a perfect complex, we may take the determinant of this automorphism to obtain an invertible function

det f(atE) ∈ O(LuY )×.

Theorem 5.23. There is an equality

(qm)∗volLY = (qa)∗volT[−1]Y det

(
atLY

exp(atLY
)− 1

)
of volume forms on LuY .

Proof. Consider a morphism f : S × BGa → Y corresponding to an S-point f̃ : S → LuY .
Consider the composite

F : Perf(k[[x]]) −→ Perf(S × BGa)⊗ Perf(k[[x]]) −→ Perf(S),

where the first functor is given by the inclusion of f∗LY and the second functor is (11). Note that
F (k) ∼= π♯(f

∗LY ) and F (k[[x]]) = f̃∗p∗LY . Let

[F ] : K(k[[x]]) −→ K(S)

be the induced map on K-theory. Consider the element [F ](hS1 − hBĜa
) ∈ K1(S) and its determinant

det([F ](hS1 − hBĜa
)) ∈ O(S)×. Unpacking the definitions, we have

f̃∗ (qm)∗volLY

(qa)∗volT[−1]Y
= det([F ](hS1 − hBĜa

)).

Consider the commutative diagram

k[[x]]× = AutPerf(k[[x]])(k[[x]])
F //

∼
��

AutPerf(S)(f̃
∗p∗LY )

��
K1(k[[x]])

[F ] // K1(S)

det

��
O(S)×

Using proposition 5.20 we obtain

det([F ](hS1 − hBĜa
)) = f̃∗ det(J(atLY

)),

which proves the claim. □

Remark 5.24. We have

det

(
atLY

exp(atLY
)− 1

)
= det

(
atTY

1− exp(−atTY
)

)
∈ O(LuY )×.

If Y is a smooth scheme, the map qa : LuY → T[−1]Y is an isomorphism. Then

det

(
atTY

1− exp(−atTY
)

)
∈ O(T[−1]Y ) ∼=

dimY⊕
p=0

Hp(Y,Ωp
Y )

is the Todd class of Y . Thus, theorem 5.23 shows that the torsion volume forms volLY on LY and volT[−1]Y

on T[−1]Y differ by the Todd class. We refer to [KP21, Corollary 4.4.3] for a related statement.
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