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Abstract

Firm disclosures about future prospects are crucial for corporate valuation and compliance
with global regulations, such as the EU’s MAR and the US’s SEC Rule 10b-5 and RegFD.
To comply with disclosure obligations, issuers must identify nonpublic information with
potential material impact on security prices as only new, relevant and unexpected informa-
tion materially affects prices in efficient markets. Financial analysts, assumed to represent
public knowledge on firms’ earnings prospects, face limitations in offering comprehensive
coverage and unbiased estimates. This study develops a neural network to forecast fu-
ture firm earnings, using four decades of financial data, addressing analysts’ coverage gaps
and potentially revealing hidden insights. The model avoids selectivity and survivorship
biases as it allows for missing data. Furthermore, the model is able to produce both
fiscal-year-end and quarterly earnings predictions. Its performance surpasses benchmark
models from the academic literature by a wide margin and outperforms analysts’ forecasts
for fiscal-year-end earnings predictions.
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1. Introduction

Firm disclosures regarding future prospects are critical for determining corporate val-
uation, necessitating global regulations such as the European Union’s Market Abuse
Regulation (MAR) and the United States’ Securities and Exchange Commission’s
Rule 10b-5 and Regulation Fair Disclosure (RegFD). These regulations mandate the
accurate and timely disclosure of material nonpublic information. However, issuers
encounter difficulties in identifying nonpublic information that could impact security
prices, as only new, relevant and unexpected information causes price fluctuations in
efficient markets. Consequently, a benchmark for "new" news is essential for issuers
to comply with disclosure obligations.

In this context, financial analysts are often assumed to represent public knowledge
concerning firms’ earnings prospects. The German security markets supervisory
authority (BaFin) recently even designated analysts’ predictions as their regulatory
measure for capital market expectations on firms’ earnings. Given financial analysts’
important role in advising investors and providing insights into earnings prospects
through the publication of estimates on future earnings and related key ratios, such
a "benchmark" initially appears reasonable.

However, reliance on analysts has certain limitations. Firstly, their estimates may
be subject to biases arising from conflicts of interest and existing research shows
limited predictive power in explaining stock price reactions to earnings disclosures
(see Abarbanell, 1991; O’brien, 1988; Bradshaw, Drake, Myers, and Myers, 2012).
Secondly, analyst coverage is limited, particularly outside the US.1 Moreover, recent
regulatory compliance burdens have prompted analyst firms and financial intermedi-
aries to further reduce coverage, especially for smaller, less prominent companies.

In this study, we develop a neural network to forecast future firm earnings, uti-
lizing approximately four decades of financial data. Machine learning models can
effectively process and analyze large amounts of data to predict corporate earn-
ings. By employing advanced algorithms, these models can quickly sift through
historical data, financial statements and market trends to generate accurate fore-
casts. This automation potentially addresses the gaps in analysts’ coverage and the
model may even reveal hidden insights by decoding complex patterns in the input
data. Consequently, such an earnings prediction model provides a more compre-
hensive benchmark for the capital market’s expectation concerning firms’ earnings

1 For example, in Germany in the period from 1998 to 2022, less than 50% of CDAX companies
received coverage for fiscal-year-end earnings and less than 20% for quarterly earnings.
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prospects, thereby assisting issuers in better adhering to disclosure regulations and
improving guidance for investors’ investment decisions.

Key features that differentiate our model from previous statistical approaches in the
literature are that we avoid selectivity biases through high input data demand, as
we strive for a parsimonious specification and explicitly allow for missing data in
the time-series of accounting data used as predictors. This approach ensures that
our model is not biased towards firms with more complete or longer available data,
thus avoiding survivorship biases, which is a common issue in previous studies. Also
different from most of the academic literature, we provide forecast results not just for
fiscal-year-end predictions but also for quarterly earnings. This allows us to capture
and study the dynamics of earnings over shorter time periods and is particularly
useful for issuers and investors, as quarterly earnings announcements are the most
important source of information that determines stock prices.

The structure of our study is organized as follows. In Section 2, we provide a brief
overview of the existing literature on earnings prediction and discuss how our study
contributes to this field. Section 3 describes the design of the neural network used
for earnings prediction, the training procedure and the benchmarks used to validate
the model’s predictive power. We emphasize that the model’s performance is always
measured using out-of-sample data not used in the model’s training. In Section 4, we
describe the data used in our study, including its selection and provide descriptive
statistics.

Section 5 contains the empirical results. We report the performance of our model as
well as benchmark models, including a random walk as a time-series model, a cross-
sectional model by Hess and Lorsbach (2019) and analysts’ forecasts. We report
performance results for both end-of-fiscal-year and quarterly earnings predictions,
for the overall period of analysis as well as subsamples. These subsamples differen-
tiate between predictive performance for different firm sizes, industry roots of firms
and the time-period before, during and after the COVID-19 pandemic. This last
conditioned subsample allows us to test model performance during a period char-
acterized by a severe and unexpected (i.e., exogenous) shock to firm operations, as
the COVID-19 pandemic led to shutdowns with regard to operations, the rise of
home-office-work, associated changes in consumer demand and temporary financial
squeezes. Lastly, we report results for a matched-firm approach that allows us to
test model performance while controlling for the selectivity introduced by running all
previous tests on the subsample of firms with analyst coverage. Section 6 concludes
our study.
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In terms of results, our predictive model is at least at par with analysts’ forecasts,
but performance quite generally is higher for fiscal-year-end forecasts, also when
conditioning on industries, firm size and the time-period of the COVID-19 pandemic.
Used benchmark models are consistently outperformed by both our model as well
as analysts’ forecasts by a wide margin.

2. Literature Review

We broadly divide the stream of literature that compares the accuracy2 of model-
based forecasts and analysts’ forecasts by the used methodology, i.e. cross-sectional
and time-series models and discuss cross-sectional predictive models first.

The literature stream of cross-sectional models starts with Fama and French (2000),
where the authors predict future annual profitability and earnings using year-by-
year cross-sectional regressions between 1964 and 1996. They use the last annual
earnings result, a firm’s market value, total dividends as well as a dividend dummy to
predict the next years earnings. Hou, Van Dijk, and Zhang (2012) extend the idea
of Fama and French (2000) by regressing future annual earnings on total assets,
dividends, earnings and accruals. Li and Mohanram (2014) use in addition past
earnings and book values instead of dividends as predictors. Despite the fact that
all these modelling steps lead to improvements in terms of accuracy and earnings
response coefficients3, none of these models is able to outperform the predictive
performance of analysts.

Hess and Lorsbach (2019) contend that the enhanced performance of analysts rel-
ative to cross-sectional models can be attributed to their informational advantage,
particularly as these studies often overlook quarterly data that analysts routinely
utilize. Hess and Lorsbach (2019) use the information of already reported quarterly
results to predict the sum of all quarters that are not reported yet. Hence, the au-
thors annual earnings prediction is the sum of reported and predicted quarters. By
incorporating quarterly earnings results, Hess and Lorsbach (2019) strongly improve

2 Accuracy in this context measures the difference between the predicted and actual earnings.
We will use the Median Percentage Difference (MPD) and Median Absolute Percentage Dif-
ference (MAPD) in our analyses. See Section 3.4.

3 The Earnings Response Coefficient (ERC) is one measure of predictive model performance
which we will also rely upon in our analyses. The ERC is calculated by regressing the stock
price’s abnormal return (the return that exceeds the expected return) on the unexpected earn-
ings (the difference between actual earnings and expected earnings). The predictive model’s
earnings prediction is then used as the expected earning. A model performs better, all else
equal, when it explains more of the abnormal returns on average.
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forecast accuracy over short- and long-term horizons. However, analyst forecasts are
still superior in terms of accuracy.4

There is rich literature on time-series models for earnings prediction between 1978
and 1995.5 The main conclusion of that literature is that analysts are better at
predicting future earnings than time-series models (Bradshaw et al., 2012). In addi-
tion, the studies were criticized due to relying on only small sample sizes, comprising
only large, established companies and due to their data intensity, see e.g. Kothari
(2001).

To identify a time-series model for benchmarking purposes, we discuss three recent
studies. Bradshaw et al. (2012) use a random walk model to predict annual earnings
per share (EPS) of US companies between 1983 and 2008. They find that the EPS
forecasts of the simple random walk model are more accurate than analysts’ forecasts
over longer horizons, for smaller or younger firms, when analysts forecast are negative
or if there were large changes in EPS.

Ball and Ghysels (2018) augment classical quarterly accounting variables with high-
frequent market information as stock returns, stock volatility or oil prices. The
authors find that their time-series forecasts are more accurate than analysts’ and that
combining time-series forecasts with analysts’ forecasts systematically outperforms
analysts alone.

Similar to our analysis, Elend, Tideman, Lopatta, and Kramer (2020) use a machine
learning model to predict future, quarterly earnings. More precisely, they use a long
short-term memory neural network (Hochreiter and Schmidhuber, 1997) processing
a time-series of 20 periods with 19 accounting predictors from Compustat and 11
stock market predictors from CRSP.

Ball and Ghysels (2018) and Elend et al. (2020) are two of the few studies which
predict quarterly instead of annual earnings results. However, due to the large
number of predictors required in both approaches, the samples contain mostly large
and established firms, thereby likely inducing survivorship bias.

In summary, the previous literature on predicting firm earnings statistically is char-
acterized by using a large number of predictor variables (both cross-sectionally and

4 Azevedo, Bielstein, and Gerhart (2021) use an annual cross-sectional model with analyst
forecasts as predictors. Their model outperforms the above discussed benchmarks from the
literature in terms of forecast accuracy, but relying on analyst forecast prohibits the model to
serve as an alternative to coMPDnsate for low and further reducing coverage by analysts.

5 See Bradshaw et al. (2012) for a detailed summary of time-series literature comparing time-
series and analyst forecasts.

5



in the time-series), which is likely to introduce selection biases in the results. Also,
most studies focus on predicting fiscal-year-end results, ignoring quarterly earnings
(both as an input as well as the predicted variable). Our study addresses both is-
sues by relying on cross-sectional and time-series data but allowing for missing data
and heterogeneous time-series’ length. The model thus mitigates selectivity and
survivorship bias. In addition, our neural network will be trained to predict both
quarterly and fiscal-year-end earnings.

3. Methodology

3.1. Model

We think that various types of variables contribute to the prediction of a company’s
future earnings. These range from accounting data available at a quarterly frequency
to daily market data, as well as time-invariant factors such as the company’s industry
or the quarter in which an earnings announcement is MPDe. Classical models like
cross-sectional regressions or time series models are not able to handle different input
types or they suffer from survivorship or success biases. We aim to create a model
which is able to handle time-series inputs as well as time invariant variables at the
same time.

Our model is a combination of a recurrent neural network (RNN) and three feed-
forward layers. The recurrent neural network consists of two layers of gated recurrent
units (GRUs), introduced by Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares,
Schwenk, and Bengio (2014). The layers have 76 and 38 hidden neurons, respectively.
We design the RNN to process five years of quarterly accounting data, resulting in a
time series of 20 quarters. The RNN outputs a time series of 38 dimensional arrays
of which we use only the last one, since this array contains all the information of
its predecessors. For market data input, we avoid using its time series structure by
considering only the changes in the corresponding variable within the most recent
quarter. We also test a design which preserves the time series structure of the market
data using a second RNN. However, this model is more complex and data intensive
without outperforming the approach using the reduced market data.

We combine the RNN output with the market data and pass it through the feed-
forward layers. The model output consists of two values, a quarterly and a yearly
earnings prediction. We add dropout and batch normalization between each layer
to reduce the likelihood of overfitting. We zero pad each time dependent accounting
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Figure 1: Visualization Model Architecture

input to avoid survivorship biases. To allow for non linear relationships, we add
hyperbolic tangent activation functions between the layers. We select 5 years of ac-
counting data to ensure that the model is able to recognize time dependent patterns
like seasonal businesses, market cycles or company crises; without harming perfor-
mance with data which is too old or irrelevant for the actual business. However, we
also test other choices for the time series length without changing the results. The
same holds for other design choices, like using long short-term memory cells (LSTM,
Hochreiter and Schmidhuber (1997)) or different number of hidden neurons. Figure
1 illustrates the model architecture. In the following, we will denote our model with
RNN.

3.2. Training

We use the adaptive moment estimation method of Kingma and Ba (2014), called
Adam, to train the base model with a batch size of 512, a learning rate of 0.0075,
exponential decay rates for moment estimation of 0.9 and 0.999 and a dropout rate
of 0.001. We evaluate and track the model performance after every epoch on the
validation set. An exponential moving average with smoothing factor 0.2 measures
the general trend of the validation score. As soon as the moving average increases
from one epoch to another, the training stops. In that way, we prevent the model
from overfitting on the training set. We train five models with the same setup,
but with different random initial model weights. Our final model prediction is the
mean of all trained models, as this design reduces the likelihood of a model that
performs above or below average just by chance. The loss function is the mean
absolute error. We also test a mean squared error loss, but that choice leads the
model to fit unusual, extreme earnings better during training, with the drawback of
fitting the common and usual earnings less precisely. As our aim is to train a model
which is able to predict market expectations of future earnings, we are interested in
estimating ordinary earnings results more precisely at the expense of decreasing the
forecasting performance of rather unusual results.
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3.3. Benchmarks

We test our model against three benchmarks. First, we compare our model to
quarterly and annual analyst forecasts. For quarterly forecasts, we use the most
recent mean analysts forecast prior to the reporting date of the actual quarterly
earnings results of a specific company. This approach yields at most four quarterly
analyst forecasts per company and year, one for every quarter. Regarding the annual
analyst forecasts, we operate the same way. Note that this approach leads to at
most four different annual analyst forecasts per year and company, too. All of these
annual forecasts refer to the same annual earnings report, but with different levels
of information. In that way, we ensure that neither our model nor the analysts have
some informational advantage.

The second benchmark is the augmented residual income model of Hess and Lors-
bach (2019). We only choose the residual income model, since the results are very
similar across all models that were considered in the study. As we have seen in sec-
tion 2, the study of Hess and Lorsbach (2019) is the most recent and best performing
model within the whole literature stream using cross-section panel regression mod-
els, at least if we require no dependency on analyst data. Hess and Lorsbach (2019)
use all available information up to the most recent, quarterly or annual, earnings
result to predict the cumulative quarterly earnings of the coming quarters until the
next annual earnings result. Their annual earnings forecast is the sum of the already
known quarterly results and the following, predicted quarterly results. We divide
the predicted cumulative earnings for future quarters by the number of the future
quarters to get a prediction for the next quarterly earnings result. In that way, we
also get a benchmark for the quarterly predictions. We know the model of Hess and
Lorsbach (2019) is not designed for quarterly predictions, but as there is no other
literature using cross-sectional models that covers quarterly earnings predictions,
we assume this approach to be the best proxy for quarterly earnings predictions of
cross-sectional models. We will denote this benchmark with Regression.

Lastly, we choose the naive random walk model of Bradshaw et al. (2012) as time-
series model benchmark, since the authors find strong results despite its simplicity.
The other two mentioned models of Ball and Ghysels (2018) and Elend et al. (2020)
would have been possible benchmarks too, but their high data requirements compli-
cate an objective comparison in this study. We denote this benchmark with Random
Walk.

8



3.4. Performance Measures

We compute all of our performance measures using relative or percentage errors,
which means that we divide the difference between true earnings result and model
forecast by the true earnings result. The same logic is applied to all benchmarks.
The reason for this step is that the difference between the actual and the predicted
EPS number alone is not an indication of how much the predicted value has been
exceeded. For one company, a difference of one dollar could be very high, while
the same difference for another company could be negligible. We assume that the
percentage estimation error is more meaningful and enables the comparison of com-
panies with different absolute earnings numbers and different numbers of shares
outstanding.

3.4.1. Median Percentage Difference & Median Absolute Percentage Difference

Most of the studies mentioned in section 2 use the forecast bias and accuracy as
performance measures for their models. We will use these measures too, but with
different names, since bias and accuracy have other meanings in the machine learn-
ing literature (Sokolova and Lapalme, 2009). We apply accuracy and bias with their
machine learning interpretation in one of our empirical analyses, which would result
in a naming conflict. Therefore, we define the forecast bias as the Median Per-
centage Difference (MPD). It indicates whether a prediction systematically over- or
underestimates a ground truth. Accordingly, we define forecast accuracy as Median
Absolute Percentage Difference (MAPD), which measures how precise a model is
able to predict future earnings.

3.4.2. Sign Prediction

The sign prediction tests the models performance in a scenario where we are only
interested in the direction of the change of the earnings results within one year. For
quarterly results, this approach implies that we compare changes between the same
quarters of subsequent years, so that we account for seasonal businesses. The target
is a categorical variable representing either a negative change, no change or a positive
change in the true earnings results. We define that no change occurs if the absolute
value of the relative earnings change is smaller than 5%, e.g. |EP St−EP St−1

EP St−1
| < 0.05.

In the same way, we define the categorical earnings change predictions for our model
and the benchmarks.
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We compute average accuracy, macro precision, macro recall and macro F1 as defined
in Sokolova and Lapalme (2009) for our model and all benchmarks. We think that
the ability of a model to predict the direction of an earnings change is a key feature
since the direction of an earnings change is an important proxy of whether a fiscal
year was successful or not.

3.4.3. Earnings Response Coefficient

According to the efficient market hypothesis of Fama (1970), stock prices should
react quickly to surprising earnings announcements. We define an earnings surprise
as a situation where the market expectation of an earnings results is different to
the realized earnings. Therefore, if the market reacts accordingly to high deviations
between model prediction and realized earnings, we conclude that the model pre-
diction is a suitable proxy for the market expectation. To do so, we first estimate
the abnormal returns at the earnings announcement dates with a three day event
window using the market model:

ri
t − rf

t = α0 + α1(rm
t − rf

t ) +
∑

j

αi,j
2 Di,j

t + ϵi
t, (1)

where ri is the return of company i, rf is the risk-free rate (3 months LIBOR), rm

is the return of the S&P 500 index and Di,j is the event dummy of company i at
earnings announcement j. Accordingly, αi,j

2 is the cumulative abnormal return of
company i and earnings announcement j.

Finally, we estimate a year- and firm-fixed effects model with clustered standard
errors, specified as follows:

αi,j
2 =β0surprisei,j

+ β1ln(TotalAssetsi,j) + β2ln(TotalAssetsi,j) × surprisei,j

+ β3TobinsQi,j + β4TobinsQi,j × surprisei,j

+
∑

y

Dy
i,j + ϵi,j,

(2)

where the earnings surprise is defined as EP Si,j−ÊP Si,j

ÊP Si,j
with EPSi,j being the realized

earnings per share of company i and earnings announcement j, whereas ÊPSi,j is its
prediction. Coefficient β0 is the so called Earnings Response Coefficient (ERC). The
higher the ERC, the stronger is the relationship between the estimated earnings sur-
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prise and the market reaction. Dy
i,j is the year dummy of year y and announcement

j of company i. For quarterly results, we also add quarterly dummies.

4. Data

4.1. Data Selection

Our sample includes all NYSE, Amex and Nasdaq listed securities with stock code 10
or 11 that are in the intersection of the CRSP annual returns file and the Compustat
fundamentals annual file between 1990 and 2021. The analyst data originates from
the I/B/E/S summary file.

In order to be comparable with other studies, we adapt the accounting data selection
from the literature stream using cross-sectional models as Fama and French (2000),
Hou et al. (2012), Li and Mohanram (2014), Hess and Lorsbach (2019) or Azevedo
et al. (2021). Accordingly, our earnings number is the earnings before extraordinary
items, but after dividends paid on preferred stock. As explanatory variable we use
lagged earnings as former studies find evidence that this variable has a high explana-
tory power for future earnings (Bradshaw et al. (2012)). We measure a companies
financial stability using the equity ratio, defined as stockholders equity divided by
Compustat’s total assets. Since Lewellen and Resutek (2019) find a negative rela-
tionship between accruals and subsequent earnings, we also add accruals, defined as
by Hou et al. (2012). We add total cash dividends as input to our model. Finally,
we use total assets as a proxy for size. We scale earnings, dividends and accruals by
the weighted average common shares outstanding. The accounting input is a time
series of the last 20 quarters for which all of the mentioned variables are available.
We use zero padding in cases without sufficient data. The minimum requirement is
one observation, to ensure the model to be minimal data intensive. Since occasional
quarters can be missing, we add a time variable that indicates how many quarters
have passed, expressed as a fraction of a year. In that way we ensure that the model
is still able to learn seasonal and economic cycles.

Our company specific market variables are the individual stock returns, volume per
share and Tobins’s q. The former two variables are proxies for the companies general
development and the markets interest in the company. Tobin’s q is defined as:

Tobin′s q = Market V alue of Equity + Book V alue of Liabilities

Book V alue of Equity + Book V alue of Liabilities
(3)
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It is a proxy for the change in market expectations on future earnings of the company.
In addition, we incorporate market wide variables as the S&P 500 Index to cover
market wide developments and the CBOE Volatility Index to cover market stress.
We observe these variables over the last quarter (63 days) prior to the earnings
announcement we like to predict.

We compress all stock and market variables as follows: We compute quarterly log
returns of the companies’ stock price and the market index. We cumulate the
companies’ volume per share. Tobin’s q and the Volatility index are captured as
the absolute difference between the start and end of the quarter. If there are less
than 63 days of information available, we work with the maximum period length
for which data is available. As the period length might have an influence on all the
mentioned market variables, we express these market variables on a per-day basis.
We add a time variable which denotes the length of the time period.

Finally, we add quarter dummies to make sure that the model is able to learn sea-
sonal effects. We log transform total assets, total cash dividends and the absolute
changes in the Volatility Index and Tobins’q to reduce the skewness in these vari-
ables. We winsorize all variables at the 1st and 99th percentile to minimize the effect
of outliers. Tables 11 through 14 in the Appendix offer definitions and the winsoriza-
tion thresholds6 for the accounting and market variables utilized, in addition to the
corresponding Compustat and CRSP variables.

Additionally, we studentize all non-binary inputs as:

x̃i = xi − x̄√
1
n

∑
i(xi − x̄)2

, (4)

where x̄ is the mean of xi.

4.2. Data Preparation

Table 1 lists all data preparation steps. The upper half of the table describes general
steps that we apply to the raw Compustat data. We start with 1,826,340 earnings
observations, which contain both annual and quarterly earnings results. After con-
ducting essential cleaning steps, as coverage in CRSP, filtering missing information
about the year or quarter of the observation or filtering observations with missing
total assets, shares outstanding, earnings or book value of equity, we end up with
669,637 observations.
6 We use rounded valued close the the respective 1st and 99th percentiles to simplify replications.
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Table 1: Data Preparation
This table presents the data preparation steps for the RNN model and the regression model as defined in
section 3. The upper half of the table consists of cleaning steps that belong to both models. The lower
half of the table represents steps that are necessary to the specific models.

Preparation Step Num. Obs. Num. Obs. Removed

Raw Compustat Data 1,826,340
No CRSP Match 899,662 -926,678

Missing Year Or Quarter 899,379 -283
Missing Total Assets Or Weighted

Average Common Shares 701,786 -197,593

Missing EPS Or BVE 669,637 -32,149

RNN Regression

Step Num. Obs. Num. Obs.
Removed Step Num. Obs. Num. Obs.

Removed

Remove
Yearly Data 533,430 -136,207

Remove
Incomplete

Years
651,595 -18,042

Remove
Duplicate
Quarters

533,219 -211 Remove Q4 521,276 -130,319

Require >1
Obs. Per
Comp.

533,065 -154 Remove Year
Gaps 459,656 -61,620

Remove
Comp. First

Obs.
518,713 -14,352

Remove NaN
Or Inf. Obs. 395,681 -123,032
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As firm coverage is a key point in our analysis, we emphasize the data intensity of our
model and compare it with the benchmark regression model. Therefore, the lower
half of Table 1 compares all cleaning steps for both models separately. Regarding
the RNN, we first remove annual observations as we only consider quarterly results
for our earnings forecasts.7 We minimize the data requirements by allowing inputs
with only one historical observation. This implies that we remove companies that
only have one observation in the sample. We also remove the first observation of
each company since these observations have no predecessors which can serve as
predictors. Finally, we remove duplicates and missing observations.

Regarding the cross-sectional approach of Hess and Lorsbach (2019), we have to
remove all Q4 observations by design of their model. This step is comparable to
our removal of annual observations. As the authors use all the earnings data of one
year to predict the next year, they have to remove incomplete or missing years out
of their sample.

We end up with a sample size of 395,681 for our model compared to a sample
size of 459,656 for the benchmark model, which indicates that the data intensity
of our model is comparable to the one of the benchmark. This is in contrast to
prior time-series models, which have in general higher data requirements than cross-
sectional models. Table 2 presents the summary statistics of the accounting and
market data.

We split the data set in a training set, a test set and a validation set. The training
set contains the oldest 70% of the earnings results, based on the report date, which
results in 277,035 observations between 1990 and 2010. This is the data on which
we train our model to adjust the models’ weights. The test set contains the latest
20% of all earnings results, which implies 79,049 observations between 2014 and
2021. We use the test set to evaluate the performance of the final model and all
benchmarks. Accordingly, the validation set contains the remaining 10% of the data,
so that this set contains 39,597 observations between 2010 and 2014. The purpose
of the validation set is to find the best hyperparameter setup for our model. The
reason why we do not use a random split of the data is that through the use of
market wide predictors like the S&P 500 or the volatility index, the model might
be able to learn patterns in market wide events like the Covid pandemic and may
7 We employ historical quarterly earnings data to forecast both future quarterly and annual

earnings outcomes. To ensure accurate annual predictions based on quarterly results, we make
the fundamental assumption that the summation of quarterly diluted earnings per share is
equivalent to the annual diluted earnings per share. Notably, our findings reveal that the
absolute limits of the 90% confidence interval for the disparity between annual EPS and the
sum of quarterly EPS are below 0.2.
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Table 2: Summary Statistics
This table presents the summary statistics of the accounting data (upper half) und market data (lower
half) as defined in section 4.1. We compute selected percentiles as well as mean, standard deviation and
number of observations. The accounting data is given to our model as time-series of the length of 20,
which is why we get more than 395,681, as stated in Table 1. The market variables contain compressed
information about the last quarter before earnings announcement, defined as follows: We cumulate daily
stock returns, market index returns and daily volume. We calculate the absolute change of volatility
index and tobins q. The period length, expressed as a fraction of a year, is the minimum of 63 days and
the number of days for which information is available. Since some periods are shorter than 63 days, we
normalize all market variables (except the period length) on a daily basis. We report the market
variables as percentage numbers, except for the period length.

Count Mean Std 1% 25% 50% 75% 99%

Accounting Data

Earnings Per Share 416,585 0.05 1.59 -3.88 -0.07 0.07 0.28 2.59
Total Assets
(Billions) 416,585 2.86 14.13 0.00 0.05 0.21 1.05 49.18

Equity Ratio 416,585 0.54 0.23 0.06 0.36 0.53 0.72 0.96
Dividend Dummy 416,585 0.34 0.47 0.00 0.00 0.00 1.00 1.00
Accruals Per Share 416,585 -0.54 2.11 -9.61 -0.65 -0.12 0.05 3.68
Time To
Announcement 6,325,744 2.44 1.52 0.21 1.17 2.27 3.64 5.19

Market Data

Average Daily Stock
Return (%) 395,681 0.09 0.53 -1.17 -0.14 0.07 0.30 1.65

Average Daily
Volume Per Share
(%)

395,681 0.72 0.83 0.02 0.21 0.47 0.92 4.04

Average Daily
Market Return (%) 395,681 0.04 0.13 -0.33 -0.00 0.06 0.12 0.26

Average Daily
Change Volatility
Index (%)

395,681 0.15 12.00 -35.00 -4.38 -0.59 3.38 36.95

Average Daily
Change Tobins q (%) 395,681 -0.08 2.38 -7.83 -0.32 0.00 0.30 5.62

Period Length 395,681 0.25 0.02 0.24 0.25 0.25 0.26 0.27
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apply this knowledge to out-of-sample earnings results within the time frame of the
market wide event.
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5. Empirical Results

This section summarizes our study’s empirical results. Sections 5.1 and 5.2 compare
the model with all benchmarks with respect to the median absolute percentage dif-
ference and the median percentage difference. The former section yields the results
for the whole test set, the latter splits them on a quarterly basis. Section 5.3 lists
the results per firm sizes, measures by total assets, whereas Section 5.4 compares
the performance between different industries. Section 5.5 covers the sign predic-
tion performance. Sections 5.6 and 5.7 each compare the models and benchmarks
performance in two contrastive scenarios: Section 5.6 compares the performance
results for firms with analyst coverage with firms without analyst coverage. Section
5.7 contrasts the performance measures before the Covid crisis with the measures
during the crisis. Finally, section 5.8 contains the results for the earnings response
coefficient of all models.

To make the models as comparable as possible, we filter all observations where some
data is missing for one or more models. Furthermore, we remove penny stocks,
which are observations for which the respective company has a stock price smaller
than 5 $. Finally, as we use percentage errors, we reduce the test set by the 5%
smallest and largest prediction errors, since in cases where the predicted earnings
result is very small or even zero, the percentage error gets extraordinary high.

5.1. Overall Performance

Table 3 contains the overall performance with respect to MAPD and MPD (see
section 3.4.1) of our model and the benchmarks on the test set. Regarding the
median absolute percentage error, we see that our model outperforms all benchmarks
by at least 4 percentage points for the annual predictions. Additionally, our model is
with a median percentage difference of 0.82% less biased than the analyst forecasts
with -12.24% and the other benchmarks with 9.76% and 7.55%, respectively. Note
that the negative bias in analyst forecasts implies an overly optimistic expectation
of future earnings, which is in line with the prior literature (see Abarbanell, 1991;
O’brien, 1988; Bradshaw et al., 2012).

For quarterly predictions, we see that the RNN model is less precise than the an-
alysts. However, both the random walk model and the cross-sectional regression
are outperformed by more than 8 and 22 percentage points, respectively. Analyst
forecasts are, with a median percentage difference of -6.82%, more biased than our
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Table 3: Overall performance
This table presents the median absolute percentage difference (MAPD) and the median percentage
difference (MPD) between realised and predicted earnings per share, as defined in section 3.4.1, for the
RNN model (section 3.1) and all benchmarks. The benchmarks are analysts forecasts, the cross-sectional
regression model of Hess and Lorsbach (2019) and the random walk model (Bradshaw et al., 2012), see
section 3.3. We report the results for annual and quarterly predictions. We test for every benchmark
whether its median value is significantly different to the median value of the RNN model using the
Wilcoxon rank test (Wilcoxon, 1992).

Annual Quarterly
Median Absolute

Percentage Difference
Median Percentage

Difference
Median Absolute

Percentage Difference
Median Percentage

Difference

RNN 21.34 % 0.82 % 30.04 % 0.01 %
Analyst 25.21 % -12.24 % 26.27 % -6.82 %
Regression 29.11 % 9.76 % 52.72 % 14.67 %
Random Walk 35.48 % 7.55 % 38.24 % 2.83 %
Wilcoxon Rank P-
Val. RNN-Analyst 0.00 % 0.00 % 0.00 % 0.00 %

Wilcoxon Rank
P-Val. RNN-
Regression

0.00 % 0.00 % 0.00 % 0.00 %

Wilcoxon Rank P-
Val. RNN-RW 0.00 % 0.00 % 0.00 % 0.00 %

Num. Obs. 48,192 47,863

model with 0.01%. The other models are also more biased. To test whether the
mentioned differences are statistically significant, we perform Wilcoxon signed-rank
tests (Wilcoxon, 1992). Wee see that all differences are statistically significant at
the 1% level.

5.2. Performance Per Quarter

Table 4 presents the overall performance results, separated per quarter. For annual
predictions, we recognize that the median absolute percentage errors of the RNN,
the regression model and the analysts forecasts decrease with increasing quarter.
This seems intuitive since the amount of information increases during a fiscal year,
leading to more precise predictions. In the same vein, it is plausible that the ran-
dom walk models is not improving its performance with increasing quarters, as this
model makes no use of additional information. However, we see that the analysts
performance improvement is not as large as our models improvement with increasing
quarters. Between quarter one and four, our model improves its performance about
19 percentage points, whereas the analysts only improve about 11 percentage points.
This indicates that our model is more efficient in processing new information during
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Table 4: Performance per Quarter
This table presents the median absolute percentage difference (MAPD) and the median percentage
difference (MPD) between realised and predicted earnings per share, as defined in section 3.4.1,
partitioned by fiscal quarter. We compare the RNN model (section 3.1) with analysts forecasts, the
cross-sectional regression model of Hess and Lorsbach (2019) and the random walk model (Bradshaw
et al., 2012), see section 3.3. We report the results for annual and quarterly predictions. For annual
predictions, we test for all models whether their median value in quarter 4 is significantly different to the
median value of quarter 1 using the Mann-Whitney U test (Mann and Whitney, 1947).

Quarter 1 Quarter 2 Quarter 3 Quarter 4 P Val. 1-4
MAPD MPD MAPD MPD MAPD MPD MAPD MPD MAPD MPD

Panel A: Annual

RNN (%) 33.0 1.4 24.2 1.0 18.2 0.6 14.4 0.7 0.0 42.1
Analyst (%) 30.4 -15.2 27.2 -13.4 23.4 -11.7 19.6 -9.6 0.0 6.6

Regression (%) 40.6 6.6 34.4 10.6 28.1 11.9 18.6 9.1 0.0 0.0
Random Walk (%) 34.9 7.1 35.1 7.3 35.8 7.9 36.4 8.0 0.2 20.2

Num. Obs. 11,574 11,940 12,151 12,527

Panel B: Quarterly

RNN (%) 32.2 -3.1 27.5 -0.2 25.5 1.4 35.5 1.3
Analyst (%) 25.5 -6.2 25.0 -6.4 23.5 -5.4 32.5 -10.2

Regression (%) 42.4 -6.1 44.7 11.0 52.5 25.8 65.6 39.0
Random Walk (%) 46.6 -5.4 34.8 10.6 31.4 4.5 42.9 -2.5

Num. Obs. 11,382 12,003 12,165 12,313

a fiscal year than the analysts. Looking at the bias of the annual forecasts, we see
an improvement with increasing quarters too, from 1.4% in the first quarter to 0.7%
in the fourth quarter. The analyst forecasts also show less bias in the later quarters,
although the absolute level of bias remains strictly higher in all quarters compared
to the RNN forecasts. The other benchmark models do not decrease their forecast
bias at all. To test if there is a statistically significant improvement between quarter
one and four, we conduct a Mann-Whitney U test (Mann and Whitney, 1947). For
the accuracy of the predictions, we see that the differences between the first and the
last quarter of all models are statistically significant at the 1% level. Regarding the
bias of the predictions, there is no statistically significant difference for the RNN
model, which is likely due to the already low bias in the first quarter.

Looking at the quarterly predictions, we observe for all but the regression model the
general trend that quarters one and four seem to be harder to predict than quarters
two and three, since the median absolute percentage errors are higher for quarter
one and four. We also observe that the weaker performance on quarterly results of
our model compared to analysts stems mostly from the first quarter. Although the
precision of RNN predictions is slightly lower than that of the analyst forecasts in
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Table 5: Annual Performance On Different Firm Sizes (Median Absolute Percentage
Difference)

This table presents the median absolute percentage difference (MAPD) between realised and predicted
annual earnings per share, as defined in section 3.4.1, partitioned by firm size. We define size deciles
using total assets. We compare the RNN model (section 3.1) with analysts forecasts, the cross-sectional
regression model of Hess and Lorsbach (2019) and the random walk model (Bradshaw et al., 2012), see
section 3.3.

Size Decile RNN Analyst Regression Random
Walk Num. Obs.

1 20.34 % 20.70 % 29.00 % 36.67 % 4,820
2 22.13 % 25.36 % 30.66 % 39.66 % 4,819
3 23.16 % 28.63 % 30.12 % 39.53 % 4,819
4 23.43 % 32.21 % 32.12 % 37.84 % 4,819
5 21.33 % 28.03 % 28.45 % 36.52 % 4,819
6 22.18 % 29.06 % 30.33 % 36.47 % 4,819
7 21.22 % 25.18 % 29.03 % 33.24 % 4,819
8 21.04 % 23.72 % 28.07 % 32.53 % 4,819
9 20.70 % 24.07 % 27.43 % 31.19 % 4,819
10 19.12 % 18.77 % 26.64 % 29.99 % 4,820

quarters two, three and four, the results demonstrate a substantial gap of 6.7 per-
centage points during the first quarter. Looking at the median percentage difference,
we see that our model is in all quarters less biased than all other benchmarks.

For the following analyses, we move the quarterly results to the appendix, since
similar patterns emerge as on an annual basis.

5.3. Performance Per Firm Size

Next, we investigate the performance of all models with respect to different firm
sizes, measured by total assets. To do so, we split the test set in size deciles and we
compute the median absolute percentage error per decile and model. Table 5 shows
the results. As a general pattern, the models tend to exhibit a decline in perfor-
mance in the first three to four deciles, depending on the specific model. However,
performance subsequently improves in the following deciles. Our model outperforms
all benchmarks for all deciles, with the only exception being the analyst forecasts
in the last decile (19.12% vs. 18.77%). It should be noted that the performance
difference between the RNN model and the analyst forecasts ranges between 3 and
9 percentage points for deciles 2-6, indicating that our model surpasses the analyst
forecasts particularly for small to medium-sized companies.
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Table 6: Annual Performance On Different Industries (Median Absolute Percentage
Difference)

This table presents the median absolute percentage difference (MAPD) between realised and predicted
annual earnings per share, as defined in section 3.4.1, partitioned by industry. We use the economic
sector class of The Refinitiv Business Classifications (TRBC) for industry classification. We compare the
RNN model (section 3.1) with analysts forecasts, the cross-sectional regression model of Hess and
Lorsbach (2019) and the random walk model (Bradshaw et al., 2012), see section 3.3.

Industry RNN Analyst Regression Random
Walk

Num.
Obs.

Academic & Educational Services 25.35 % 28.05 % 27.52 % 29.61 % 246
Basic Materials 26.86 % 28.00 % 34.18 % 47.44 % 2,950

Consumer Cyclicals 22.42 % 23.77 % 28.91 % 36.35 % 8,556
Consumer Non-Cyclicals 17.18 % 20.00 % 23.36 % 26.59 % 2,822

Energy 50.32 % 49.17 % 50.46 % 89.29 % 2,399
Financials 18.34 % 20.89 % 26.02 % 26.12 % 745
Healthcare 18.44 % 17.41 % 27.99 % 32.37 % 9,468
Industrials 19.24 % 20.60 % 27.25 % 30.56 % 8,832

Other 29.09 % 22.70 % 35.46 % 22.89 % 30
Real Estate 32.02 % 22.87 % 32.64 % 44.37 % 314
Technology 24.15 % 51.96 % 31.80 % 42.50 % 9,850

Utilities 11.99 % 7.30 % 20.75 % 14.80 % 1,980

5.4. Performance Per Industry

Table 6 contains the MAPD results for different industries. For industry classi-
fication, we use the economic sector class of The Refinitiv Business Classifications
(TRBC). If there is no class label for a given observation, we assign it to the "Other"
class. The results of the previous analyses confirm in a way that the RNN model
outperforms all benchmarks for seven out of twelve industries. The five exceptions
are the energy, healthcare, real estate and the utilities sector as well as the others
category. For energy, healthcare and utilities, the differences are all smaller than 5
percentage points. For the real estate and the others class, the difference is higher,
but these classes are rather small. It is noticeable that the median absolute percent-
age errors in the energy sector are clearly higher compared to all other industries.
This effect holds for all models.

5.5. Sign Prediction

Table 7 shows the results of the sign prediction analysis, as explained in section 3.4.2.
We see that our model outperforms all other benchmarks with respect to accuracy,
precision, recall and F1. Our model outperforms the analysts by 1-2 percentage
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Table 7: Sign prediction (Annual)
This table presents the results for the sign prediction analysis for annual data, as defined in section 3.4.2,
for the RNN model (section 3.1) and all benchmarks. This analysis examines the models ability to predict
the direction of an earnings change from the previous to the actual period. We define three classes:
nositive (percentage change > 5%), negative (percentage change < -5%) and neutral (abs(percentage
change) < 5%). The benchmarks are analysts forecasts, the cross-sectional regression model of Hess and
Lorsbach (2019) and the random walk model (Bradshaw et al., 2012), see section 3.3. We calculate macro
accuracy, precision, recall and F1 for all models, as defined in Sokolova and Lapalme (2009).

RNN Analyst Random Walk Regression

Accuracy 78.90 % 77.88 % 38.97 % 73.37 %
Precision 56.78 % 55.81 % 8.45 % 49.06 %

Recall 57.80 % 55.84 % 33.33 % 48.03 %
F1 56.79 % 55.60 % 15.58 % 46.98 %

Num. Obs. 40,739

points for all measures. The difference becomes even clearer compared to the other
two benchmarks.

5.6. Performance Covered vs. Uncovered Firms

We have already seen that our model performs better than analyst forecasts if we
consider annual earnings forecasts. However, all of the previous results are evaluated
on a sample for which observations for every model are available. A natural ques-
tion is whether our model performs equally well for observations without analyst
coverage. As a first approach, we investigate the difference in performance of our
model and the remaining benchmarks in both cases, analyst coverage and no analyst
coverage. Table 18 in the appendix shows the results. For annual predictions, we see
that the MAPD of our model increases about 9 percentage points if we consider data
that is not covered by analysts. A similar decrease in performance can be observed
for the benchmarks, too. Regarding the MPD, we observe the opposite pattern. For
all models, the predictions get less biased if the data is not covered by analysts. All
of these effects are statistically significant on the 5% level.

A drawback of the approach of Table 18 is that both samples, i.e. the covered and
uncovered firms, are structurally different. As Li and Mohanram (2014) argue in
their study and which is in line with our findings, analyst forecasts are available
only for a subset of firms, with almost half of all firms not having analyst coverage
in most years. Most of the firms without analyst coverage are typically small and
young firms. Therefore, in a second step we try to reduce the structural difference
between covered and uncovered firms, so that we end up with a clean comparison
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Table 8: Performance Analyst Coverage vs. Similar No Analyst Coverage (Annual)
This table presents the median absolute percentage difference (MAPD), as defined in section 3.4.1, of the
annual RNN model EPS predictions (see section 3.1) and realised EPS values for not analyst-covered
firms and similar analyst-covered firms. Two firms are similar if they are in the same industry and if the
eucledian distance between their arrays consisting of standarized values of total assets and tobins q is
smaller than 0.01. The sample consists of all non-covered firm observations for which there is at least one
similar covered firm observation. If there are more than one similar firm observations, we take the most
similar one. We test whether the median value for non-covered firms is significantly different to the
median value for similar covered firms using the Wilcoxon rank test (Wilcoxon, 1992).

Count MAPD
Covered

MAPD
Uncovered P Value

Academic &
Educational
Services

68 27.5 % 21.7 % 40.3 %

Basic Materi-
als 704 29.9 % 26.6 % 6.2 %

Consumer
Cyclicals 3,846 28.0 % 37.1 % 0.0 %

Consumer
Non-Cyclicals 471 30.2 % 19.6 % 0.2 %

Energy 743 55.4 % 63.1 % 0.8 %
Financials 114 41.6 % 39.7 % 54.0 %
Healthcare 6,369 17.6 % 20.8 % 0.0 %
Industrials 3,939 23.0 % 27.0 % 35.4 %
Other 4 89.1 % 158.1 % 37.5 %
Real Estate 37 50.1 % 24.7 % 0.1 %
Technology 4,401 29.5 % 33.5 % 0.0 %
Utilities 125 11.6 % 9.8 % 54.7 %

Total 20,821 23.8 % 28.0 % 0.0 %
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of the performance of our model in both situations. The idea is to only compare
covered with uncovered firms that are similar with respect to industry, total assets
and Tobin’s q. To achieve this, both companies must belong to the same industry. In
addition, the Euclidean distance between the vectors consisting of the standardized
values of total assets and Tobin’s q must be smaller than a certain limit, which we
set to 0.01. Within all the uncovered companies that fulfill that property, we take
the one with the minimal distance. If there is no uncovered company that fulfills
this property, the covered observation will be removed from the analysis.

Table 8 shows the results of that analysis. To keep things well arranged, we only
report the MAPD results for our RNN model. We see that for annual predictions
the increase in the median absolute percentage difference is now only 4.2 percentage
points instead of 10 percentage points as in Table 18. Even if the differences between
covered and uncovered firms are still statistically significant at the 1% level, we
see that considering similar firms increases the models performance on uncovered
data strongly. Looking at the specific industries, we see that only for four out of
twelve industries, the RNN performs statistically significantly worse (at the 10%
level) if a firm is not covered by analysts. For all other industries, the difference
is either insignificant, or, in case of the industries Basic Materials, Consumer Non-
Cyclicals and Real Estate the predictive performance of the RNN is even statistically
significantly better for uncovered firms. This indicates that our model yields robust
results even for firms not covered by analysts.

5.7. Performance Pre vs. During Covid

Another question we would like to answer is how robust our model predictions are
during a crisis. The only crisis that occurred during our test data period is the Covid
pandemic. Even though other events as the dot-com bubble in 2001, the subprime
crisis in 2007/2008 or the European debt crisis in 2009/2010 are contained in our
data, the fact that these events are already seen by our model during training would
distort the comparison to the benchmark models. We divide the test set in a time
prior the Covid pandemic and in a time during the Covid pandemic. We do not
include a period that covers the time after the Covid pandemic, since it is not clear
whether the pandemic was already over until the end of 2021. We set the 18th of
February 2020 as the starting point for the pandemic.

Looking at Table 9, we observe a performance drop with respect to MAPD of 3
percentage points for the annual predictions of our model when we focus on ob-

24



Table 9: Performance Pre VS. During COVID 19 (Annual)
This table compares the median absolute percentage difference (MAPD) and the median percentage
difference (MPD), as defined in section 3.4.1, for annual earnings reports before and during the Covid
pandemic. We compute these measures for the RNN model (section 3.1), analysts forecasts, the
cross-sectional regression model of Hess and Lorsbach (2019) and the random walk model (Bradshaw
et al., 2012), see section 3.3. We set February 18, 2020 as the starting point for the pandemic. For all
models, we test whether their median value for observations prior to the pandemic is significantly
different to their median value for observations during the pandemic using the Mann-Whitney U test
(Mann and Whitney, 1947).

Pre-Covid During-Covid P Value
MAPD MPD MAPD MPD MAPD MPD

RNN 20.44 % 0.26 % 23.88 % 2.67 % 0.00 % 0.00 %
Analyst 24.59 % -13.21 % 26.82 % -9.54 % 0.06 % 0.00 %

Regression 29.38 % 10.53 % 28.35 % 7.40 % 1.08 % 0.06 %
Random Walk 32.48 % 6.89 % 42.94 % 10.07 % 0.00 % 0.00 %

Num. Obs. 35,918 12,274

servations during the pandemic, indicating that the RNN predictions are robust in
times of a crises. The drop in performance is comparable to the analysts (more
than 2 percentage points) and better than the random walk model (10 percentage
points). However, the regression model even performs 1 percentage point better
during the crisis. Furthermore, our model is slightly more biased during the Covid
crisis (2.67%) than before (0.26%), but the absolute level is still small. However,
the MPD of the analysts and the regression model are even decreasing about 4 and
3 percentage points, respectively. We test the performance differences of the models
before and during Covid for statistical significance. All differences are statistically
significant at the 5% level.

5.8. Earnings Response Coefficient

Our last analysis covers the earnings response coefficient, following the approach
from section 3.4.3. In contrast to the previous analyses, we only consider the most
recent prediction prior to the report date of an earnings report. Otherwise, it would
not be clear why to expect an announcement effect at the end of a fiscal year if the
proxy of market expectation was measured after, for example, quarter one. This
step roughly quarters the sample for annual predictions. Another necessary filtering
step is the requirement of the existence of the exact report date of an earnings result,
as we try to link earnings surprises to stock market effects. Therefore, we remove
all observations where the respective Compustat variable (rdq) is not available.
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Table 10: Earnings Response Coefficient (Annual)
This table presents the annual results for the earnings response regression of section 5.8. We fit a year-
and firm-fixed effects model with clustered standard errors. Earnings surprise is defined as EP S−ÊP S

ÊP S

with EP S being the realized earnings per share and ÊP S is its prediction.

RNN Analyst Regression Random Walk

surprise (%) 4.89*** 1.83** 4.71*** 0.65*
lnTA (%) -1.93*** -1.93*** -1.91*** -1.87***

lnAssets x surprise (%) -0.42*** -0.15* -0.40*** -0.05
tobinsQ (%) -0.53*** -0.55*** -0.53*** -0.50***

tobinsQ x surprise (%) -0.05 -0.10** -0.09 -0.05
2015 (%) 0.78** 0.79** 0.81** 0.75**
2016 (%) 1.32*** 1.32*** 1.36*** 1.25***
2017 (%) 0.63* 0.67** 0.69** 0.59*
2018 (%) 1.17*** 1.22*** 1.25*** 1.14***
2019 (%) 0.83* 0.92* 1.01** 0.83*
2020 (%) -0.52 -0.50 -0.40 -0.60
2021 (%) 1.04 0.99 0.94 0.89
2022 (%) 2.47*** 2.55*** 2.70*** 2.44***
R2 (%) 2.30 1.65 2.34 1.54

Num. Obs. 12,446 12,446 12,446 12,446

Table 10 covers the results of the earnings response analysis. For annual predic-
tions, we see that the earnings response coefficient (ERC), i.e. the coefficient of the
earnings surprise variable, is with 4.89% more than 3 percentage points higher than
the ERC of the analysts, almost 0.2 percentage points higher than the ERC of the
regression model and more than 4 percentage points higher than the random walk
model. All coefficients are statistically significant. The R2 of our model amounts to
2.3%, compared to 1.65% for the analysts, 2.34% for the regression model and 1.54%
for the random walk. Total assets and the interaction effect of total assets with the
surprise variable have both a significant negative effect on the abnormal return for
all models (except random walk), which implies that increasing firm size decreases
the impact of surprising earnings announcements on the abnormal return. Tobin’s q
has also a significant negative effect on the abnormal return for all models. However,
the interaction effect is not significant (except for the analysts). The results for the
year dummies are mixed: We get significant positive effects for the years 2015, 2016,
2017, 2018, 2019 and 2022 for all models.
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6. Conclusion

This study addresses the limitations associated with financial analysts’ representa-
tion of public knowledge regarding firms’ earnings prospects. Previous research has
revealed the existence of biases in analysts’ estimates due to conflicts of interest,
resulting in limited predictive power in explaining stock price reactions to earnings
disclosures. Furthermore, analyst coverage remains constrained, both inside and
particularly outside the United States. Several subsequent research studies have
endeavored to tackle the aforementioned issues, but they themselves exhibit certain
weaknesses. These studies employ models that either generate less accurate earnings
forecasts compared to financial analysts (Hou et al., 2012; Li and Mohanram, 2014;
Hess and Lorsbach, 2019), incorporate analyst forecasts in their estimations without
resolving the problem of uncovered firms (Azevedo et al., 2021; Ball and Ghysels,
2018), or rely heavily on data-intensive approaches, thereby introducing selection
biases (Bradshaw et al., 2012; Elend et al., 2020).

To overcome these challenges, this chapter introduces a novel approach by develop-
ing a recurrent neural network model for forecasting future firm earnings. Using four
decades of quarterly financial information allows the model to learn time dependent
patterns in earnings results, which reduces the informational advantage of analysts.
Additionally, we avoid the data intensity of previous time-series models where sur-
vivorship biases are commonly observed. Our study goes beyond the traditional
focus on fiscal-year-end predictions and extends its forecast capabilities to include
quarterly earnings, as these are recognized as a crucial source of information that
significantly influences stock prices.

The results of this study for annual earnings results indicate that our model surpasses
the considered benchmarks, including analyst forecasts, the best cross-sectional re-
gression model of Hess and Lorsbach (2019) and the random walk model, in terms
of both accuracy and bias. Furthermore, our results demonstrate that the strong
predictive power of our model extends to uncovered firms, effectively addressing the
issue of low analyst coverage for small or young firms and those operating outside
the United States. This outcome signifies the broader applicability and reliability
of our model in capturing and forecasting earnings for a diverse range of firms. In
addition, our model exhibits robustness in the face of crises, as indicated by our
analysis of the change in predictive power during the Covid-19 crisis. This resilience
further underscores the effectiveness and stability of our model in providing accu-
rate earnings predictions even during periods of economic uncertainty. Notably,
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when compared to the benchmarks, our model stands out by producing the highest
earnings response coefficient. This result signifies that our model’s earnings predic-
tions align more closely with market expectations, highlighting its ability to provide
precise and reliable insights into firms’ future earnings prospects.

Regarding quarterly earnings predictions, our RNN model exhibits lower bias com-
pared to all the benchmarks and more accurate predictions than the regression and
the random walk model, although its forecasts are slightly less precise than analyst
predictions. Nevertheless, the overall findings remain consistent with the outcomes
observed in annual predictions. Given the limited analyst coverage, particularly for
quarterly earnings data, the RNN model retains its value as a valuable tool for fore-
casting uncovered firms. This is especially important considering that the earnings
response coefficient of the RNN model is comparable to that of the analysts. Thus,
our RNN model serves as a reliable and effective means of generating forecasts for
firms that lack analyst coverage, ensuring comprehensive insights for investors and
decision-makers.
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Table 11: Definition Compustat Variables
This table presents the definitions of the used Compustat variables.

Abbreviation Name Compustat Item Nr. Unit of Measurement

che Cash & Short-Term
Investments 1 Millions

act Current Assets 4 Millions
lct Current Liabilities 5 Millions
ta Total Assets 6 Millions

dp Depreciation &
Amortization Expenses 14 Millions

spi Special Items 17 Millions

ib Income Before
Extraordinary Items 18 Millions

csho Common Shares
Outstanding 25 Millions

dlc Debt in Current
Liabilities 34 Millions

mib Minority Interest 38 Millions
txp Income Taxes Payable 71 Millions

ibc Income Before
Extraordinary Items 123 Millions

dv Total Cash Dividends 127 Millions
lt Total Liabilities 181 Millions

seq Stockholder’s Equity 216 Millions

oancf Cash Flow From
Operations 308 Millions

Appendix

Variable definitions

This section defines the used accounting and market variables. In a first step, we give
the definitions for the variables from the used databases. Table 11 yields definitions
for Compustat variables and Table 12 provides the definitions for CRSP variables.

Tables 13 and 14 outline the accounting and market variables employed in this
study. Furthermore, we delineate the lower and upper winsorization thresholds
for these variables to facilitate their straightforward application in future research
endeavors. Additionally, as we transition the aggregation of market variables from
daily to quarterly frequency, we specify the aggregation method for each market
variable.

8 No winsorization, but data removal
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Table 12: Definition CRSP Variables
This table presents the definitions of the used CRSP variables.

Abbreviation Name Unit of Measurement

RET Holding Period Total Return -
SHROUT Shares Outstanding Thousands
CFACSHR Split-adjustment factor (shares) -
CFACPR Split-adjustment factor (prices) -

VOL Volume Traded -
PRC Price or Bid/Ask Average -

Table 13: Definition Accounting Variables
This table presents the definitions of the used accounting variables in this study.

Name Definition Winsorization
Thresholds

Earnings per share ib−dvp
csho [−30, 30]

Equity ratio bv
ta [0, 1]8

Accruals per share
(Until 1988 )

∆act−∆che−∆lct−∆dlc−∆txp−dp
csho [−20, 6]

Accruals per share
(Since 1988 )

ib−oancf
csho [−20, 6]

Dividend dummy dv > 0 -

Total assets per share ln
(

at
csho

)
[0.28, 530]

Time between pre-
dicted and actual ob-
servation

tprediction−tobservation
365.25 -
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Table 14: Definition Market Variables
This table presents the definitions of the used market variables in this study. A period is 63 trading days
(approximately one quarter). If less than 63 trading days available, we take the maximum of available
days. Winsorization is applied before period aggregation.

Name Definition Period Aggregation Winsorization
Thresholds

Market value of eq-
uity (MV)

PRC
CFACPR × SHROUT - -

Stock return (log) RET Average [−1, 1]

Volume per Share VOL
SHROUT Average > 0.1

Market Index Return
(log) (S&P 500) marketIndex Average -

Volatility Index
(VIX) volatilityIndex Absolute Change

Period Length -

Tobin’s q MV +lct
seq+lct

Absolute Change
Period Length < 15

Length of period (af-
ter compression)

tperiod end−tperiod start
365.25 - -

Performance Per Firm Size On Quarterly Earnings

The analysis of the model performance with respect to quarterly earnings results
reveals similar patterns as the analysis of annual data from section 5.3, as we see
in Table 15. The general pattern of a declining performance in the first three to
four deciles and improving performance in the following deciles is still present for all
models. For all but the third decile, analyst forecasts outperform the RNN. However,
similar to the annual case, the RNN model performs best compared to the analyst
forecasts for the small to medium sized deciles two, three, four and five, where the
gap in performance is between 0 and 3 percentage points. For the remaining size
deciles, the disparity becomes increasingly pronounced, for decile one as well as the
higher deciles. Notably, the largest difference is observed in the 10th decile, nearing
a margin of approximately 6 percentage points. The RNN outperforms the other
benchmarks for every decile.

Performance Per Industry On Quarterly Earnings

Table 16 presents the performance evaluation for quarterly earnings predictions of
the RNN model and all benchmarks segmented by industry. We see that our model
outperforms the random walk and the regression model for almost every industry.
However, comparing to quarterly analyst forecasts, the results indicate that the
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Table 15: Quarterly Performance On Different Firm Sizes (Median Absolute Percentage
Difference)

This table presents the median absolute percentage difference (MAPD) between realised and predicted
quarterly earnings per share, as defined in section 3.4.1, partitioned by firm size. We define size deciles
using total assets. We compare the RNN model (section 3.1) with analysts forecasts, the cross-sectional
regression model of Hess and Lorsbach (2019) and the random walk model (Bradshaw et al., 2012), see
section 3.3.

Size Decile RNN Analyst Regression Random
Walk Num. Obs.

1 29.48 % 25.69 % 47.11 % 31.62 % 4,787
2 30.81 % 28.29 % 51.51 % 34.89 % 4,786
3 31.95 % 32.01 % 53.75 % 40.50 % 4,786
4 33.68 % 32.34 % 56.68 % 42.68 % 4,786
5 31.86 % 28.58 % 54.35 % 40.44 % 4,786
6 31.59 % 27.94 % 55.18 % 43.44 % 4,787
7 29.47 % 24.72 % 53.59 % 39.66 % 4,786
8 28.98 % 23.85 % 52.92 % 40.41 % 4,786
9 27.89 % 23.31 % 52.39 % 38.62 % 4,786
10 24.68 % 18.75 % 50.36 % 33.97 % 4,787

Table 16: Quarterly Performance On Different Industries (Median Absolute Percentage
Difference)

This table presents the median absolute percentage difference (MAPD) between realised and predicted
quarterly earnings per share, as defined in section 3.4.1, partitioned by industry. We use the economic
sector class of The Refinitiv Business Classifications (TRBC) for industry classification. We compare the
RNN model (section 3.1) with analysts forecasts, the cross-sectional regression model of Hess and
Lorsbach (2019) and the random walk model (Bradshaw et al., 2012), see section 3.3.

Industry RNN Analyst Regression Random
Walk

Num.
Obs.

Academic & Educational Services 30.05 % 22.04 % 49.55 % 49.75 % 228
Basic Materials 38.39 % 25.54 % 57.59 % 46.94 % 2,914

Consumer Cyclicals 32.10 % 24.80 % 54.87 % 50.01 % 8,467
Consumer Non-Cyclicals 24.86 % 20.73 % 46.82 % 35.49 % 2,796

Energy 68.44 % 49.67 % 83.11 % 68.64 % 2,394
Financials 25.41 % 18.37 % 54.06 % 34.33 % 756
Healthcare 24.91 % 21.15 % 48.30 % 25.31 % 9,524
Industrials 26.99 % 21.13 % 50.96 % 34.82 % 8,784

Other 21.03 % 24.06 % 44.54 % 33.16 % 29
Real Estate 39.79 % 24.50 % 57.42 % 47.64 % 288
Technology 32.52 % 47.30 % 54.48 % 36.78 % 9,742

Utilities 21.94 % 14.21 % 52.00 % 53.36 % 1,941
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Table 17: Sign prediction (Quarterly)
This table presents the results for the sign prediction analysis for quarterly data, as defined in section
3.4.2, for the RNN model (section 3.1) and all benchmarks. This analysis examines the models ability to
predict the direction of an earnings change from the previous to the actual period. We define three
classes: nositive (percentage change > 5%), negative (percentage change < -5%) and neutral
(abs(percentage change) < 5%). The benchmarks are analysts forecasts, the cross-sectional regression
model of Hess and Lorsbach (2019) and the random walk model (Bradshaw et al., 2012), see section 3.3.
We calculate macro accuracy, precision, recall and F1 for all models, as defined in Sokolova and Lapalme
(2009).

RNN Analyst Random Walk Regression

Accuracy 76.99 % 78.99 % 76.79 % 68.48 %
Precision 52.99 % 56.46 % 51.83 % 42.28 %

Recall 53.50 % 57.38 % 51.42 % 40.50 %
F1 52.94 % 56.79 % 51.35 % 38.75 %

Num. Obs. 40,478

analyst forecasts outperform the RNN model for all industries, with differences
varying between 19 percentage points for the energy sector and 3.8 percentage points
in the healthcare sector. The only exception are the technology and the others
sectors, where our model performs more than 14 and 3 percentage points better
than the analysts, respectively. The technology sector is the largest industry in the
sample with 9,742 observations.

Sign Prediction On Quarterly Earnings

Table 17 shows the results for the sign prediction for quarterly earning results of the
RNN model and all benchmarks. We see that the RNN model is outperformed by
the analyst forecasts with respect to accuracy, precision recall and F1. The RNN
model performs comparable at slightly better as the random walk model. Only the
regression model performs worse than the other models.

Performance Covered vs. Uncovered Firms

Table 18 investigates the difference in performance of our model and the remaining
benchmarks in both cases, analyst coverage and no analyst coverage. For annual
predictions, we see that the MAPD of our model increases about 9 percentage points
if we consider data that is not covered by analysts. A similar decrease in performance
can be observed for the benchmarks, too. Regarding the MPD, we observe the
opposite pattern. For all but our RNN model, the predictions get less biased if the
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Table 18: Performance Analyst Coverage vs. No Analyst Coverage
This table compares the median absolute percentage difference (MAPD) and the median percentage
difference (MPD), as defined in section 3.4.1, for analyst-covered and not analyst-covered firms. We
compute these measures for the RNN model (section 3.1), analysts forecasts, the cross-sectional
regression model of Hess and Lorsbach (2019) and the random walk model (Bradshaw et al., 2012), see
section 3.3. We report the results for annual (Panel A) and quarterly (Panel B) predictions. For all
models, we test whether their median value for covered firms is significantly different to their median
value for uncovered firms using the Mann-Whitney U test (Mann and Whitney, 1947).

Covered Uncovered P Value
MAPD MPD MAPD MPD MAPD MPD

Panel A: Annual

RNN 21.88 % 0.84 % 31.25 % -2.08 % 0.00 % 0.00 %
Regression 29.11 % 9.76 % 37.79 % 5.56 % 0.00 % 0.00 %

Random Walk 35.73 % 7.52 % 48.36 % 2.93 % 0.00 % 0.00 %
Num. Obs. 51,274 8,455

Panel B: Quarterly

RNN 30.79 % -0.33 % 45.16 % -2.59 % 0.00 % 1.86 %
Regression 52.72 % 14.67 % 61.68 % 10.72 % 0.00 % 8.59 %

Random Walk 38.54 % 2.42 % 53.88 % -0.00 % 0.00 % 0.39 %
Num. Obs. 50,949 8,416

data is not covered by analysts. All of these effects are statistically significant on
the15% level.

Looking at the quarterly predictions, we see the same pattern. The MAPD of all
models increases between 8 and 15 percentage points if the data is not covered. For
all but the RNN model, the bias decreases for uncovered data. All these effects are
statistically significant at the 10% level.

Table 19 presents the results of the comparison between the RNN’s predictive perfor-
mance for covered and similar uncovered firms, based on quarterly earnings results.
The exact procedure is described in section 5.6. We see that the RNN’s MAPD
of 38% for uncovered is comparable to the 34% for covered firms. Especially if
we compare this to the naive comparison of covered and uncovered firms, without
considering firm similarities. In this case, the difference in the models predictive
performance on covered and uncovered firms is more than 14 percentage points.
Regarding the results on industry level, we see that the model achieves compatible
results for similar uncovered firms from most of the considered industries.
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Table 19: Performance Analyst Coverage vs. Similar No Analyst Coverage (Quarterly)
This table presents the median absolute percentage difference (MAPD), as defined in section 3.4.1, of the
quarterly RNN model EPS predictions (see section 3.1) and realised EPS values for not analyst-covered
firms and similar analyst-covered firms. Two firms are similar if they are in the same industry and if the
eucledian distance between their arrays consisting of standarized values of total assets and tobins q is
smaller than 0.01. The sample consists of all non-covered firm observations for which there is at least one
similar covered firm observation. If there are more than one similar firm observations, we take the most
similar one. We test whether the median value for non-covered firms is significantly different to the
median value for similar covered firms using the Wilcoxon rank test (Wilcoxon, 1992).

Count MAPD
Covered

MAPD
Uncovered P Value

Academic &
Educational
Services

56 35.3 % 63.2 % 1.4 %

Basic Materi-
als 704 45.9 % 39.5 % 62.6 %

Consumer
Cyclicals 3,833 39.7 % 51.3 % 0.0 %

Consumer
Non-Cyclicals 470 52.6 % 35.0 % 0.0 %

Energy 746 73.5 % 84.0 % 1.1 %
Financials 111 48.1 % 54.9 % 37.6 %
Healthcare 6,425 24.3 % 31.5 % 0.0 %
Industrials 3,884 34.4 % 29.5 % 0.6 %
Other 3 71.5 % 57.1 % 75.0 %
Real Estate 31 52.4 % 53.7 % 88.5 %
Technology 4,321 41.0 % 46.1 % 0.0 %
Utilities 125 23.3 % 21.3 % 59.0 %

Total 20,709 34.0 % 38.0 % 0.0 %

Table 20: Performance Pre VS. During COVID 19 (Quarterly)
This table compares the median absolute percentage difference (MAPD) and the median percentage
difference (MPD), as defined in section 3.4.1, for quarterly earnings reports before and during the Covid
pandemic. We compute these measures for the RNN model (section 3.1), analysts forecasts, the
cross-sectional regression model of Hess and Lorsbach (2019) and the random walk model (Bradshaw
et al., 2012), see section 3.3. We set February 18, 2020 as the starting point for the pandemic. For all
models, we test whether their median value for observations prior to the pandemic is significantly
different to their median value for observations during the pandemic using the Mann-Whitney U test
(Mann and Whitney, 1947).

Pre-Covid During-Covid P Value
MAPD MPD MAPD MPD MAPD MPD

RNN 27.98 % -0.35 % 36.12 % 1.14 % 0.00 % 0.00 %
Analyst 24.79 % -7.44 % 30.51 % -5.21 % 0.00 % 0.00 %

Regression 52.02 % 16.39 % 54.64 % 8.54 % 0.00 % 0.00 %
Random Walk 37.85 % 3.04 % 39.39 % 2.14 % 1.27 % 45.52 %

Num. Obs. 35,494 12,369
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Table 21: Earnings Response Coefficient (Quarterly)
This table presents the quarterly results for the earnings response regression of section 5.8. We fit a year-
and firm-fixed effects model with clustered standard errors. Earnings surprise is defined as EP S−ÊP S

ÊP S

with EP S being the realized earnings per share and ÊP S is its prediction.

RNN Analyst Regression Random Walk

surprise (%) 5.81*** 5.52*** 2.06*** 2.51***
lnTA (%) -2.46*** -2.46*** -2.65*** -2.56***

lnAssets x surprise (%) -0.48*** -0.46*** -0.12*** -0.21***
tobinsQ (%) -0.68*** -0.68*** -0.69*** -0.65***

tobinsQ x surprise (%) -0.11*** -0.11*** -0.09*** -0.01
Q1 (%) -0.11 -0.41 0.12 -0.19
Q2 (%) 0.09 -0.07 0.29 -0.17
Q3 (%) 0.12 0.00 0.26 0.01

2015 (%) 0.33*** 0.29*** 0.32*** 0.27***
2016 (%) 0.66*** 0.66*** 0.65*** 0.55***
2017 (%) 0.17 0.15 0.24* 0.12
2018 (%) 1.30*** 1.32*** 1.46*** 1.34***
2019 (%) 1.10*** 1.11*** 1.25*** 1.04***
2020 (%) 1.49*** 1.30*** 1.61*** 1.27***
2021 (%) 1.45*** 1.40*** 1.69*** 1.58***
2022 (%) 2.55*** 2.43*** 3.00*** 2.64***
R2 (%) 4.19 3.64 2.63 2.70

Num. Obs. 47,776 47,776 47,776 47,776

Performance Pre vs. During Covid On Quarterly Earnings

Table 20 shows the results for the comparison of the predictive performance of RNN
and benchmarks before and during the Covid crisis for quarterly earnings results.
In contrast to results for annual earnings in section 5.7, the RNN model reacts more
sensitive to the Covid crisis, as the MAPD increases from 27.98% before Covid to
36.12% during Covid. The MAPD of the analyst forecasts only increases about 6
percentage points. The other benchmarks are even more robust to the Covid crisis.
The same holds for the bias of the RNN model. The MPD is increasing during Covid
for the RNN model, while it is decreasing for all benchmarks. These differences are
all statistically significant at the 1% level, except for the random walk model.

Earnings Response Coefficient On Quarterly Earnings

Table 21 contains the results of the earnings response analysis, as described in section
5.8, for quarterly earnings. We see that the results of the RNN model and the
analyst forecasts are quite similar. The analysts ERC is slightly dmaller compared
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Table 22: Performance Per Year
This table presents the median absolute percentage difference (MAPD) and the median percentage
difference (MPD) between realised and predicted earnings per share, as defined in section 3.4.1,
partitioned by fiscal year. We compare the RNN model (section 3.1) with analysts forecasts, the
cross-sectional regression model of Hess and Lorsbach (2019) and the random walk model (Bradshaw
et al., 2012), see section 3.3. We report the results for annual (Panel A) and quarterly (Panel B)
predictions.

RNN Analyst Regression Random Walk Num.
Year MAPD MPD MAPD MPD MAPD MPD MAPD MPD Obs.

Panel A: Annual

2014 17.2 % 0.9 % 21.8 % -12.2 % 25.6 % 13.8 % 27.6 % 7.9 % 5,775
2015 18.2 % -2.3 % 24.0 % -16.1 % 27.3 % 8.9 % 29.2 % 3.6 % 6,069
2016 17.6 % -0.7 % 21.3 % -14.2 % 28.4 % 11.5 % 29.0 % 6.6 % 5,838
2017 28.0 % 3.6 % 31.4 % -7.3 % 35.6 % 13.1 % 39.3 % 12.7 % 5,743
2018 22.8 % 3.4 % 23.9 % -11.0 % 32.1 % 9.8 % 39.4 % 12.6 % 5,984
2019 19.9 % -1.3 % 25.1 % -17.1 % 26.8 % 3.8 % 30.7 % 0.5 % 6,006
2020 26.0 % -0.7 % 31.6 % -13.7 % 29.3 % 6.8 % 41.2 % -4.6 % 5,933
2021 23.7 % 5.9 % 24.6 % -6.6 % 29.3 % 9.0 % 45.5 % 25.2 % 6,503

Panel B: Quarterly

2014 25.7 % 0.3 % 23.3 % -7.2 % 49.7 % 22.6 % 35.0 % 4.2 % 5,713
2015 25.9 % -3.5 % 23.9 % -9.1 % 51.0 % 14.5 % 35.7 % 0.2 % 5,955
2016 25.7 % -1.6 % 23.2 % -7.9 % 51.5 % 18.1 % 35.4 % 3.1 % 5,794
2017 32.0 % 1.0 % 28.4 % -5.3 % 56.0 % 17.4 % 42.5 % 5.8 % 5,765
2018 31.0 % 5.3 % 25.7 % -5.5 % 55.4 % 17.7 % 43.6 % 3.3 % 5,820
2019 28.8 % -3.1 % 25.9 % -10.6 % 50.6 % 5.1 % 37.5 % 0.4 % 5,935
2020 40.0 % -2.1 % 33.1 % -6.2 % 57.9 % 0.5 % 45.4 % 3.0 % 5,900
2021 33.0 % 5.2 % 27.4 % -3.2 % 50.5 % 15.5 % 33.7 % 3.0 % 6,639

to our model (5.81% and 5.52%, respectively). Also the R2 of the RNN is with
4.19% higher than the analysts’ R2 of 3.64%. The other benchmarks perform worse,
around 3 percentage points worse with respect to ERC and more than 1 percentage
point worse in terms of R2. The effects for total assets, Tobin’s q and the respective
interaction terms are similar to the annual case, with the only exception that the
interaction of Tobin’s q is statistically significant for all but the random walk model.
The quarter dummies are insignificant for all models. The dummies of every year
except 2017 are significant and positive for all models.

Performance Per Year

In Table 22 we investigate the predictive performance of the RNN model and the
benchmarks for each year in the test set separately. For annual predictions, we see
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that our model outperforms the analyst forecasts in every year with margins be-
tween 1 and 7 percentage points. The same holds, with even higher margins, for
the other benchmarks. There is a general trend of a slightly decreasing performance
with increasing years for the estimated models, i.e. the RNN and the regression
model. This observation signifies that the model acquires temporal patterns during
the training phase, which progressively diminish or undergo alterations in the test
set as the temporal distance between the observation and the training dataset in-
creases. Additionally, we see that for all years, the RNN model is less biased than
all benchmarks.

Repeating the same analysis for quarterly earnings results, we deduce that the RNN
performs worse than the analyst forecasts in all years with respect to MAPD. How-
ever, it outperforms all other benchmarks. The trend of a slightly decreasing per-
formance with respect to MAPD exists for quarterly earnings predictions too.
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