
MySQL Notes

MySQL
1. MySQL is a widely used relational database management system (RDBMS).
2. MySQL is free and open-source.
3. MySQL is ideal for both small and large applications.
4. MySQL is very fast, reliable, scalable, and easy to use
5. MySQL is cross-platform
6. MySQL is compliant with the ANSI SQL standard
7. MySQL was first released in 1995
8. MySQL is developed, distributed, and supported by Oracle Corporation
9. MySQL is named after co-founder Monty Widenius's daughter: My

Uses of MySQL
1. Huge websites like Facebook, Twitter, Airbnb, Booking.com, Uber, GitHub, YouTube, etc.
2. Content Management Systems like WordPress, Drupal, Joomla!, Contao, etc.
3. A very large number of web developers around the world

RDBMS
1. RDBMS stands for Relational Database Management System.
2. RDBMS is a program used to maintain a relational database.
3. RDBMS is the basis for all modern database systems such as MySQL, Microsoft SQL Server, Oracle, and Microsoft Access.
4. RDBMS uses SQL queries to access the data in the database.

Relational Database
A relational database defines database relationships in the form of tables. The tables are related to each other - based on data
common to each.

SQL
1. SQL is the standard language for dealing with Relational Databases.
2. SQL is used to insert, search, update, and delete database records.
3. SQL keywords are NOT case sensitive i.e. select is the same as SELECT

SQL Commands
SELECT -> extracts data from a database
UPDATE -> updates data in a database
DELETE -> deletes data from a database
INSERT INTO -> inserts new data into a database
CREATE DATABASE -> creates a new database
ALTER DATABASE -> modifies a database
CREATE TABLE -> creates a new table
ALTER TABLE -> modifies a table
DROP TABLE -> deletes a table
CREATE INDEX -> creates an index (search key)
DROP INDEX -> deletes an index

Create and Drop Database

CREATE DATABASE: "To create a new SQL database"
 CREATE DATABASE databasename;

DROP DATABASE: "To drop an existing SQL database"
 DROP DATABASE databasename;

Create and Drop Table

Create table Syntax: "To create a new table in a database"
 CREATE TABLE table_name (
 column1 datatype,
 column2 datatype,
 column3 datatype,

);

To create a new table using an existing table:
 CREATE TABLE new_table_name AS
 SELECT column1, column2,...
 FROM existing_table_name
 WHERE; // Optional

Drop table Syntax: "To drop an existing table in a database"
 DROP TABLE table_name;

To delete the data inside a table, but not the table itself:
 TRUNCATE TABLE table_name;

INSERT INTO
The INSERT INTO statement is used to insert new records in a table.

1. When Specify both the column names and the values:
 INSERT INTO table_name (column1,column2,column3, ...)
 VALUES (value1, value2, value3, ...);

2. When adding the values into all columns:
 INSERT INTO table_name
 VALUES (value1, value2, value3, ...);

Fetch Data From Database

SELECT
To select data from a database

1. When select data from any Column
 SELECT column1, column2, ...FROM table_name;

2. When select all the Columns
 SELECT * FROM table_name;

3. To return only distinct (different) values
 SELECT DISTINCT columnname FROM table_name

4. When we want to count the columndata
 SELECT COUNT(DISTINCT columnname) FROM table_name

WHERE
used to filter records

 SELECT column1, column2, ...
 FROM table_name
 WHERE condition;

Operators in Where
'=' -> Equal
'>' -> Greater than
'<' -> Less than
'>=' -> Greater than or equal
'<=' -> Less than or equal
'<>' -> Not equal. Note: In some versions of SQL this operator may be written as '!='
'BETWEEN' -> Between a certain range
'LIKE' -> Search for a pattern
'IN' -> To specify multiple possible values for a column

Where with AND,OR, and NOT operators:

AND Syntax: "If all the conditions separated by AND are TRUE"
 SELECT column1, column2, ...
 FROM table_name
 WHERE condition1 AND condition2 AND condition3 ...;

OR Syntax: "If any of the conditions separated by OR is TRUE"
 SELECT column1, column2, ...
 FROM table_name
 WHERE condition1 OR condition2 Ocondition3 ...;

NOT Syntax: "If the condition(s) is NOT TRUE"
 SELECT column1, column2, ...
 FROM table_name
 WHERE NOT condition;

ORDER BY
used to sort the result-set in ascending or descending order

Order By
 SELECT column1, column2, ...
 FROM table_name
 ORDER BY column1, column2, ... ASC|DESC;

Order By several columns
 SELECT * FROM table_name
 ORDER BY column1 ASC|DESC, column2 ASC|DESC, ...;

NULL Values
NULL value is a field with no value
A NULL value is different from a zero value or a field that contains spaces. A field with a NULL value is one that has been left blank
during record creation!

Is Null
 SELECT column_names
 FROM table_name
 WHERE column_name IS NULL;

Is Not Null
 SELECT column_names
 FROM table_name
 WHERE column_name IS NOT NULL;

UPDATE
used to modify the existing records in a table

Update record
 UPDATE table_name
 SET column1 = value1, column2 = value2, ...
 WHERE condition;

Update Multiple record
 UPDATE table_name
 SET columnname = condition
 WHERE columnname = condition;

Limit, Min(), Max(), Count(), Avg(), and Sum()

Limit: "To specify the number of records to return"
 SELECT column_name(s)
 FROM table_name
 WHERE condition
 LIMIT number;

Min(): "It returns the smallest value of the selected column"
 SELECT MIN(column_name)
 FROM table_name
 WHERE condition;

Max(): "It returns the largest value of the selected column"
 SELECT MAX(column_name)
 FROM table_name
 WHERE condition;

Count(): "It returns the number of rows that matches a specified
criterion"

 SELECT COUNT(column_name)
 FROM table_name
 WHERE condition;

Avg(): "It returns the average value of a numeric column"
 SELECT AVG(column_name)
 FROM table_name
 WHERE condition;

Sum(): "It returns the total sum of a numeric column"
 SELECT SUM(column_name)
 FROM table_name
 WHERE condition;

LIKE
used in a WHERE clause to search for a specified pattern in a column

There are two wildcards often used in conjunction with the LIKE operator:

The percent sign (%) represents zero, one, or multiple characters
The underscore sign (_) represents one, single character

LIKE Operator Description

WHERE CustomerName LIKE 'a%' Finds any values that start with "a"

WHERE CustomerName LIKE '%a' Finds any values that end with "a"

WHERE CustomerName LIKE '%or%' Finds any values that have "or" in any position

WHERE CustomerName LIKE '_r%' Finds any values that have "r" in the second position

WHERE CustomerName LIKE 'a_%' Finds any values that start with "a" and are at least 2 characters in length

WHERE CustomerName LIKE 'a__%' Finds any values that start with "a" and are at least 3 characters in length

WHERE CustomerName LIKE 'a_%_%' Finds any values that starts with "a" and are at least 3 characters in length

WHERE CustomerName LIKE 'a%o' Finds any values that start with "a" and ends with "o"

Like
 SELECT column1, column2, ...
 FROM table_name
 WHERE columnN LIKE pattern;

Not Like
 SELECT column1, column2, ...
 FROM table_name
 WHERE columnN NOT LIKE pattern;

IN
To specify multiple values in a WHERE clause
It's a shorthand for multiple OR conditions

In:
 SELECT column_name(s)
 FROM table_name
 WHERE column_name IN (value1, value2, ...);

Not In:
 SELECT column_name(s)
 FROM table_name
 WHERE column_name NOT IN (value1, value2, ...);

OR

In:
 SELECT column_name(s)
 FROM table_name
 WHERE column_name IN (SELECT STATEMENT);

Not In:
 SELECT column_name(s)
 FROM table_name
 WHERE column_name NOT IN (SELECT STATEMENT);

BETWEEN
It selects values within a given range
The values can be numbers, text, or dates
begin and end values are included

Between
 SELECT column_name(s)
 FROM table_name
 WHERE column_name BETWEEN value1 AND value2;

Not Between
 SELECT column_name(s)
 FROM table_name
 WHERE column_name NOT BETWEEN value1 AND value2;

Between with IN
 SELECT column_name(s)
 FROM table_name
 WHERE column_name BETWEEN value1 AND value2 And column_name NOT IN (value3,value4,...);

Between Text
 SELECT column_name(s)
 FROM table_name
 WHERE column_name BETWEEN textvalue1 AND textvalue2;

Not Between Text
 SELECT column_name(s)
 FROM table_name
 WHERE column_name NOT BETWEEN textvalue1 AND textvalue2;

Between Dates
 SELECT column_name(s)
 FROM table_name
 WHERE column_name BETWEEN date1 AND date2;

Aliases
used to give a table, or a column in a table, a temporary name
used to make column names more readable
only exists for the duration of that query
created with the AS keyword

Alisas Column
 SELECT column_name AS alias_name
 FROM table_name;

Alisas Table
 SELECT column_name(s)
 FROM table_name AS alias_name;

Joins
used to combine rows from two or more tables, based on a related column between them

Types of Joins
INNER JOIN: Returns records that have matching values in both tables
LEFT JOIN: Returns all records from the left table, and the matched records from the right table
RIGHT JOIN: Returns all records from the right table, and the matched records from the left table
CROSS JOIN: Returns all records from both tables

Inner Join: "Selects records that have matching values in both
tables"

 SELECT column_name(s)
 FROM table1
 INNER JOIN table2
 ON table1.column_name = table2.column_name;

LEFT JOIN: "Returns all records from the left table1, and the
matching records (if any) from the right table2"

 SELECT column_name(s)
 FROM table1
 LEFT JOIN table2
 ON table1.column_name = table2.column_name;

RIGHT JOIN: "Returns all records from the right table2, and the
matching records (if any) from the left table1"

 SELECT column_name(s)
 FROM table1
 RIGHT JOIN table2
 ON table1.column_name = table2.column_name;

CROSS JOIN: "Returns all records from both tables"
 SELECT column_name(s)
 FROM table1
 CROSS JOIN table2;

Self Join: "Table is joined with itself"
 SELECT column_name(s)
 FROM table1 T1, table1 T2
 WHERE condition;

UNION
used to combine the result-set of two or more SELECT statements
Every SELECT statement within UNION must have the same number of columns
The columns must also have similar data types
The columns in every SELECT statement must also be in the same order

Union:
 SELECT column_name(s) FROM table1
 UNION
 SELECT column_name(s) FROM table2;
 ORDER BY columan_name; //Optional

Union All:
 SELECT column_name(s) FROM table1
 UNION ALL
 SELECT column_name(s) FROM table2
 ORDER BY columan_name; //Optional

Union With Where:
 SELECT column_name(s) FROM table1
 WHERE column_name = 'value1'
 UNION
 SELECT column_name(s) FROM table2
 WHERE column_name = 'value1'
 ORDER BY columan_name; //Optional

Union All With Where:
 SELECT column_name(s) FROM table1
 WHERE column_name = 'value1'
 UNION All
 SELECT column_name(s) FROM table2
 WHERE column_name = 'value1'
 ORDER BY columan_name; //Optional

GROUP BY
The GROUP BY statement is often used with aggregate functions (COUNT(), MAX(), MIN(), SUM(), AVG()) to group the result-set by one
or more columns.

 SELECT column_name(s)
 FROM table_name
 WHERE condition
 GROUP BY column_name(s)
 ORDER BY column_name(s);

HAVING
The HAVING clause was added to SQL because the WHERE keyword cannot be used with aggregate functions

 SELECT column_name(s)
 FROM table_name
 WHERE condition
 GROUP BY column_name(s)
 HAVING condition
 ORDER BY column_name(s);

EXISTS
Used to test for the existence of any record in a subquery
Returns TRUE if the subquery returns one or more records

 SELECT column_name(s)
 FROM table_name
 WHERE EXISTS (SELECT column_name FROM table_name WHERE condition);

ANY and ALL
The ANY and ALL operators allow you to perform a comparison between a single column value and a range of other values

Any:
Returns a boolean value as a result
ANY means that the condition will be true if the operation is true for any of the values in the range.

 SELECT column_name(s)
 FROM table_name
 WHERE column_name operator ANY (SELECT column_name FROM table_name WHERE condition);

All:
Returns a boolean value as a result
Returns TRUE if ALL of the subquery values meet the condition

ALL Syntax With SELECT:
 SELECT ALL column_name(s)
 FROM table_name
 WHERE condition;

ALL Syntax With WHERE or HAVING:
 SELECT column_name(s)
 FROM table_name
 WHERE column_name operator ALL (SELECT column_name FROM table_name WHERE condition);

CASE
The CASE statement goes through conditions and returns a value when the first condition is met (like an if-then-else statement). So,
once a condition is true, it will stop reading and return the result. If no conditions are true, it returns the value in the ELSE clause.
If there is no ELSE part and no conditions are true, it returns NULL.

 SELECT column1, colummn2,
 CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 WHEN conditionN THEN resultN
 ELSE result
 END;
 FROM Database_name;

MySQL Operators

Arithmetic Operators
'+' -> Add
'-' -> Subtract
'*' -> Multiply
'/' -> Divide
'%' -> Modulo

Bitwise Operators
'&' Bitwise AND
'|' Bitwise OR
'^' Bitwise exclusive OR

Comparison Operators
'=' -> Equal to
'>' -> Greater than
'<' -> Less than
'>=' -> Greater than or equal to
'<=' -> Less than or equal to
'<>' -> Not equal to

Compound Operators
'+=' -> Add equals
'-=' -> Subtract equals
'*=' -> Multiply equals
'/=' -> Divide equals
'%=' -> Modulo equals
'&=' -> Bitwise AND equals
'^-=' -> Bitwise exclusive equals
'|*=' -> Bitwise OR equals

Logical Operators
'ALL' -> TRUE if all of the subquery values meet the condition
'AND' -> TRUE if all the conditions separated by AND is TRUE
'ANY' -> TRUE if any of the subquery values meet the condition
'BETWEEN' -> TRUE if the operand is within the range of comparisons
'EXISTS' -> TRUE if the subquery returns one or more records
'IN' -> TRUE if the operand is equal to one of a list of expressions
'LIKE' -> TRUE if the operand matches a pattern
'NOT' -> Displays a record if the condition(s) is NOT TRUE
'OR' -> TRUE if any of the conditions separated by OR is TRUE
'SOME' -> TRUE if any of the subquery values meet the condition

ALTER TABLE
used to add, delete, or modify columns in an existing table
And used to add and drop various constraints on an existing table

1. ADD Column: "To add a column in a table"
 ALTER TABLE table_name
 ADD column_name datatype;

2. DROP COLUMN: "To delete a column in a table"
 ALTER TABLE table_name
 DROP COLUMN column_name;

3. MODIFY COLUMN: "To change the data type of a column in a
table"

 ALTER TABLE table_name
 MODIFY COLUMN column_name datatype;

Constraints
used to specify rules for data in a table
used to limit the type of data that can go into a table

The following constraints are commonly used in SQL:

NOT NULL - Ensures that a column cannot have a NULL value
UNIQUE - Ensures that all values in a column are different
PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies each row in a table
FOREIGN KEY - Prevents actions that would destroy links between tables
CHECK - Ensures that the values in a column satisfies a specific condition
DEFAULT - Sets a default value for a column if no value is specified
CREATE INDEX - Used to create and retrieve data from the database very quickly

Syntax:

 CREATE TABLE table_name (
 column1 datatype constraint,
 column2 datatype constraint,
 column3 datatype constraint,

);

NOT NULL

NOT NULL on CREATE TABLE
 CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255) NOT NULL,
 Age int
);

NOT NULL on ALTER TABLE
 ALTER TABLE Persons
 MODIFY Age int NOT NULL;

UNIQUE

UNIQUE Constraint on CREATE TABLE
 CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 UNIQUE (ID)
);

UNIQUE Constraint on ALTER TABLE
 ALTER TABLE Persons
 ADD UNIQUE (ID);

DROP a UNIQUE Constraint
 ALTER TABLE Persons
 DROP INDEX UC_Person;

PRIMARY KEY

PRIMARY KEY on CREATE TABLE
 CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 PRIMARY KEY (ID)
);

PRIMARY KEY on ALTER TABLE
 ALTER TABLE Persons
 ADD PRIMARY KEY (ID);

DROP a PRIMARY KEY Constraint
 ALTER TABLE Persons
 DROP PRIMARY KEY;

FOREIGN KEY

FOREIGN KEY on CREATE TABLE
 CREATE TABLE Orders (
 OrderID int NOT NULL,
 OrderNumber int NOT NULL,
 PersonID int,
 PRIMARY KEY (OrderID),
 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)
);

FOREIGN KEY on ALTER TABLE
 ALTER TABLE Orders
 ADD FOREIGN KEY (PersonID) REFERENCES Persons(PersonID);

DROP a FOREIGN KEY Constraint
 ALTER TABLE Orders
 DROP FOREIGN KEY FK_PersonOrder;

CHECK

CHECK on CREATE TABLE
 CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 CHECK (Age>=18)
);

CHECK on ALTER TABLE
 ALTER TABLE Persons
 ADD CHECK (Age>=18);

DROP a CHECK Constraint
 ALTER TABLE Persons
 DROP CHECK CHK_PersonAge;

DEFAULT

DEFAULT on CREATE TABLE
 CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 City varchar(255) DEFAULT 'Sandnes'
);

DEFAULT on ALTER TABLE
 ALTER TABLE Persons
 ALTER City SET DEFAULT 'Sandnes';

DROP a DEFAULT Constraint
 ALTER TABLE Persons
 ALTER City DROP DEFAULT;

CREATE INDEX

CREATE INDEX
 CREATE INDEX index_name
 ON table_name (column1, column2, ...);

CREATE UNIQUE INDEX
 CREATE UNIQUE INDEX index_name
 ON table_name (column1, column2, ...);

DROP INDEX
 ALTER TABLE table_name
 DROP INDEX index_name;

AUTO INCREMENT
Auto-increment allows a unique number to be generated automatically when a new record is inserted into a table.

Often this is the primary key field that we would like to be created automatically every time a new record is inserted.

 CREATE TABLE Persons (
 Personid int NOT NULL AUTO_INCREMENT,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 PRIMARY KEY (Personid)
);

Working With Dates

MySQL Date Data Types
MySQL comes with the following data types for storing a date or a date/time value in the database:

DATE -> format YYYY-MM-DD
DATETIME -> format: YYYY-MM-DD HH:MI:SS
TIMESTAMP -> format: YYYY-MM-DD HH:MI:SS
YEAR -> format YYYY or YY

 SELECT * FROM Orders WHERE OrderDate='2008-11-11'

CREATE VIEW
A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real tables in the database.

Creating a View
 CREATE VIEW view_name AS
 SELECT column1, column2, ...
 FROM table_name
 WHERE condition;

Updating a View
 CREATE OR REPLACE VIEW view_name AS
 SELECT column1, column2, ...
 FROM table_name
 WHERE condition;

Dropping a View
 DROP VIEW view_name;

	MySQL Notes
	MySQL
	Uses of MySQL
	RDBMS
	Relational Database
	SQL
	SQL Commands
	Create and Drop Database
	CREATE DATABASE: "To create a new SQL database"
	DROP DATABASE: "To drop an existing SQL database"
	Create and Drop Table
	Create table Syntax: "To create a new table in a database"
	To create a new table using an existing table:
	Drop table Syntax: "To drop an existing table in a database"
	To delete the data inside a table, but not the table itself:
	INSERT INTO
	1. When Specify both the column names and the values:
	2. When adding the values into all columns:
	Fetch Data From Database
	SELECT
	1. When select data from any Column
	2. When select all the Columns
	3. To return only distinct (different) values
	4. When we want to count the columndata
	WHERE
	Operators in Where
	Where with AND,OR, and NOT operators:
	AND Syntax: "If all the conditions separated by AND are TRUE"
	OR Syntax: "If any of the conditions separated by OR is TRUE"
	NOT Syntax: "If the condition(s) is NOT TRUE"
	ORDER BY
	Order By
	Order By several columns
	NULL Values
	Is Null
	Is Not Null
	UPDATE
	Update record
	Update Multiple record
	Limit, Min(), Max(), Count(), Avg(), and Sum()
	Limit: "To specify the number of records to return"
	Min(): "It returns the smallest value of the selected column"
	Max(): "It returns the largest value of the selected column"
	Count(): "It returns the number of rows that matches a specified criterion"
	Avg(): "It returns the average value of a numeric column"
	Sum(): "It returns the total sum of a numeric column"
	LIKE
	Like
	Not Like
	IN
	In:
	Not In:
	In:
	Not In:
	BETWEEN
	Between
	Not Between
	Between with IN
	Between Text
	Not Between Text
	Between Dates
	Aliases
	Alisas Column
	Alisas Table
	Joins
	Types of Joins
	Inner Join: "Selects records that have matching values in both tables"
	LEFT JOIN: "Returns all records from the left table1, and the matching records (if any) from the right table2"
	RIGHT JOIN: "Returns all records from the right table2, and the matching records (if any) from the left table1"
	CROSS JOIN: "Returns all records from both tables"
	Self Join: "Table is joined with itself"
	UNION
	Union:
	Union All:
	Union With Where:
	Union All With Where:
	GROUP BY
	HAVING
	EXISTS
	ANY and ALL
	Any:
	All:
	ALL Syntax With SELECT:
	ALL Syntax With WHERE or HAVING:
	CASE
	MySQL Operators
	Arithmetic Operators
	Bitwise Operators
	Comparison Operators
	Compound Operators
	Logical Operators
	ALTER TABLE
	1. ADD Column: "To add a column in a table"
	2. DROP COLUMN: "To delete a column in a table"
	3. MODIFY COLUMN: "To change the data type of a column in a table"
	Constraints
	NOT NULL
	NOT NULL on CREATE TABLE
	NOT NULL on ALTER TABLE
	UNIQUE
	UNIQUE Constraint on CREATE TABLE
	UNIQUE Constraint on ALTER TABLE
	DROP a UNIQUE Constraint
	PRIMARY KEY
	PRIMARY KEY on CREATE TABLE
	PRIMARY KEY on ALTER TABLE
	DROP a PRIMARY KEY Constraint
	FOREIGN KEY
	FOREIGN KEY on CREATE TABLE
	FOREIGN KEY on ALTER TABLE
	DROP a FOREIGN KEY Constraint
	CHECK
	CHECK on CREATE TABLE
	CHECK on ALTER TABLE
	DROP a CHECK Constraint
	DEFAULT
	DEFAULT on CREATE TABLE
	DEFAULT on ALTER TABLE
	DROP a DEFAULT Constraint
	CREATE INDEX
	CREATE INDEX
	CREATE UNIQUE INDEX
	DROP INDEX
	AUTO INCREMENT
	Working With Dates
	MySQL Date Data Types
	CREATE VIEW
	Creating a View
	Updating a View
	Dropping a View

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# <center><u>MySQL Notes</u></center>"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# MySQL"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "1. MySQL is a widely used relational database management system (RDBMS).\n",
 "2. MySQL is free and open-source.\n",
 "3. MySQL is ideal for both small and large applications.\n",
 "4. MySQL is very fast, reliable, scalable, and easy to use\n",
 "5. MySQL is cross-platform\n",
 "6. MySQL is compliant with the ANSI SQL standard\n",
 "7. MySQL was first released in 1995\n",
 "8. MySQL is developed, distributed, and supported by Oracle Corporation\n",
 "9. MySQL is named after co-founder Monty Widenius's daughter: My"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Uses of MySQL"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "1. Huge websites like Facebook, Twitter, Airbnb, Booking.com, Uber, GitHub, YouTube, etc.\n",
 "2. Content Management Systems like WordPress, Drupal, Joomla!, Contao, etc.\n",
 "3. A very large number of web developers around the world"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# RDBMS"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "1. RDBMS stands for Relational Database Management System.\n",
 "2. RDBMS is a program used to maintain a relational database.\n",
 "3. RDBMS is the basis for all modern database systems such as MySQL, Microsoft SQL Server, Oracle, and Microsoft Access.\n",
 "4. RDBMS uses SQL queries to access the data in the database."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Relational Database"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "* A relational database defines database relationships in the form of tables. The tables are related to each other - based on data common to each."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# SQL"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "1. SQL is the standard language for dealing with Relational Databases.\n",
 "2. SQL is used to insert, search, update, and delete database records.\n",
 "3. SQL keywords are NOT case sensitive i.e. <mark style = 'color:#fff; background-color:#DC143C'>select</mark> is the same as <mark style = 'color:#fff; background-color:#DC143C'>SELECT</mark>"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# SQL Commands"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "* <u>SELECT</u> -> extracts data from a database\n",
 "* <u>UPDATE</u> -> updates data in a database\n",
 "* <u>DELETE</u> -> deletes data from a database\n",
 "* <u>INSERT INTO</u> -> inserts new data into a database\n",
 "* <u>CREATE DATABASE</u> -> creates a new database\n",
 "* <u>ALTER DATABASE</u> -> modifies a database\n",
 "* <u>CREATE TABLE</u> -> creates a new table\n",
 "* <u>ALTER TABLE</u> -> modifies a table\n",
 "* <u>DROP TABLE</u> -> deletes a table\n",
 "* <u>CREATE INDEX</u> -> creates an index (search key)\n",
 "* <u>DROP INDEX</u> -> deletes an index"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Create and Drop Database"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# CREATE DATABASE: \"To create a new SQL database\"\n",
 " CREATE DATABASE databasename;\n",
 "\n",
 "# DROP DATABASE: \"To drop an existing SQL database\"\n",
 " DROP DATABASE databasename;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Create and Drop Table"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Create table Syntax: \"To create a new table in a database\"\n",
 " CREATE TABLE table_name (\n",
 " column1 datatype,\n",
 " column2 datatype,\n",
 " column3 datatype,\n",
 " \n",
 ");\n",
 "# To create a new table using an existing table:\n",
 " CREATE TABLE new_table_name AS\n",
 " SELECT column1, column2,...\n",
 " FROM existing_table_name\n",
 " WHERE; // Optional"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Drop table Syntax: \"To drop an existing table in a database\"\n",
 " DROP TABLE table_name;\n",
 "# To delete the data inside a table, but not the table itself:\n",
 " TRUNCATE TABLE table_name;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# INSERT INTO\n",
 "* The INSERT INTO statement is used to insert new records in a table."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# 1. When Specify both the column names and the values:\n",
 " INSERT INTO table_name (column1,column2,column3, ...)\n",
 " VALUES (value1, value2, value3, ...);\n",
 "# 2. When adding the values into all columns:\n",
 " INSERT INTO table_name\n",
 " VALUES (value1, value2, value3, ...);"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# <center><u>Fetch Data From Database</u></center>"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# SELECT\n",
 "* To select data from a database"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# 1. When select data from any Column\n",
 " SELECT column1, column2, ...FROM table_name;\n",
 "# 2. When select all the Columns\n",
 " SELECT * FROM table_name;\n",
 "# 3. To return only distinct (different) values\n",
 " SELECT DISTINCT columnname FROM table_name\n",
 "# 4. When we want to count the columndata \n",
 " SELECT COUNT(DISTINCT columnname) FROM table_name"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# WHERE\n",
 "* used to filter records"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " WHERE condition;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Operators in Where\n",
 "* '=' -> Equal\t\n",
 "* '>' -> Greater than\t\n",
 "* '<' -> Less than\t\n",
 "* '>=' -> Greater than or equal\t\n",
 "* '<=' -> Less than or equal\t\n",
 "* '<>' -> Not equal. Note: In some versions of SQL this operator may be written as '!='\n",
 "* 'BETWEEN' -> Between a certain range\t\n",
 "* 'LIKE' -> Search for a pattern\t\n",
 "* 'IN' -> To specify multiple possible values for a column"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Where with AND,OR, and NOT operators:\n",
 "# AND Syntax: \"If all the conditions separated by AND are TRUE\"\n",
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " WHERE condition1 AND condition2 AND condition3 ...;\n",
 "# OR Syntax: \"If any of the conditions separated by OR is TRUE\"\n",
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " WHERE condition1 OR condition2 Ocondition3 ...;\n",
 "# NOT Syntax: \"If the condition(s) is NOT TRUE\"\n",
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " WHERE NOT condition;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# ORDER BY\n",
 "* used to sort the result-set in ascending or descending order"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Order By\n",
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " ORDER BY column1, column2, ... ASC|DESC;\n",
 "# Order By several columns\n",
 " SELECT * FROM table_name\n",
 " ORDER BY column1 ASC|DESC, column2 ASC|DESC, ...;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# NULL Values\n",
 "* NULL value is a field with no value\n",
 "* A NULL value is different from a zero value or a field that contains spaces. A field with a NULL value is one that has been left blank during record creation!"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Is Null\n",
 " SELECT column_names\n",
 " FROM table_name\n",
 " WHERE column_name IS NULL;\n",
 "# Is Not Null\n",
 " SELECT column_names\n",
 " FROM table_name\n",
 " WHERE column_name IS NOT NULL;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# UPDATE\n",
 "* used to modify the existing records in a table"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Update record\n",
 " UPDATE table_name\n",
 " SET column1 = value1, column2 = value2, ...\n",
 " WHERE condition;\n",
 "# Update Multiple record\n",
 " UPDATE table_name\n",
 " SET columnname = condition\n",
 " WHERE columnname = condition;\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Limit, Min(), Max(), Count(), Avg(), and Sum()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Limit: \"To specify the number of records to return\"\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE condition\n",
 " LIMIT number;\n",
 "# Min(): \"It returns the smallest value of the selected column\"\n",
 " SELECT MIN(column_name)\n",
 " FROM table_name\n",
 " WHERE condition;\n",
 "# Max(): \"It returns the largest value of the selected column\"\n",
 " SELECT MAX(column_name)\n",
 " FROM table_name\n",
 " WHERE condition;\n",
 "# Count(): \"It returns the number of rows that matches a specified criterion\"\n",
 " SELECT COUNT(column_name)\n",
 " FROM table_name\n",
 " WHERE condition;\n",
 "# Avg(): \"It returns the average value of a numeric column\"\n",
 " SELECT AVG(column_name)\n",
 " FROM table_name\n",
 " WHERE condition;\n",
 "# Sum(): \"It returns the total sum of a numeric column\"\n",
 " SELECT SUM(column_name)\n",
 " FROM table_name\n",
 " WHERE condition;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# LIKE\n",
 "* used in a WHERE clause to search for a specified pattern in a column\n",
 "\n",
 "There are two wildcards often used in conjunction with the LIKE operator:\n",
 "\n",
 "* The percent sign <mark style = 'color:#fff; background-color:#DC143C'>(%)</mark> represents zero, one, or multiple characters\n",
 "* The underscore sign <mark style = 'color:#fff; background-color:#DC143C'>(_)</mark> represents one, single character\n",
 "\n",
 "<center>\n",
 "<table>\n",
 "\n",
 "<tr style = 'color:#fff; background-color:#DC143C'>\n",
 "<th>LIKE Operator</th>\n",
 "<th>Description</th>\n",
 "</tr>\n",
 "\n",
 "<tr>\n",
 "<td>WHERE CustomerName LIKE 'a%'</td>\n",
 "<td>Finds any values that start with \"a\"</td>\n",
 "</tr>\n",
 "\n",
 "<tr>\n",
 "<td>WHERE CustomerName LIKE '%a'</td>\n",
 "<td>Finds any values that end with \"a\"</td>\n",
 "</tr>\n",
 "\n",
 "<tr>\n",
 "<td>WHERE CustomerName LIKE '%or%'</td>\n",
 "<td>Finds any values that have \"or\" in any position</td>\n",
 "</tr>\n",
 "\n",
 "<tr>\n",
 "<td>WHERE CustomerName LIKE '_r%'</td>\n",
 "<td>Finds any values that have \"r\" in the second position</td>\n",
 "</tr>\n",
 "\n",
 "<tr>\n",
 "<td>WHERE CustomerName LIKE 'a_%'</td>\n",
 "<td>Finds any values that start with \"a\" and are at least 2 characters in length</td>\n",
 "</tr>\n",
 "\n",
 "<tr>\n",
 "<td>WHERE CustomerName LIKE 'a__%'</td>\n",
 "<td>Finds any values that start with \"a\" and are at least 3 characters in length</td>\n",
 "</tr>\n",
 "\n",
 "<tr>\n",
 "<td>WHERE CustomerName LIKE 'a_%_%'</td>\n",
 "<td>Finds any values that starts with \"a\" and are at least 3 characters in length</td>\n",
 "</tr>\n",
 "\n",
 "<tr>\n",
 "<td>WHERE CustomerName LIKE 'a%o'</td>\n",
 "<td>Finds any values that start with \"a\" and ends with \"o\"</td>\n",
 "</tr>\n",
 "\n",
 "</table>\n",
 "</center>"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Like\n",
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " WHERE columnN LIKE pattern;\n",
 "# Not Like\n",
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " WHERE columnN NOT LIKE pattern;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# IN\n",
 "* To specify multiple values in a WHERE clause\n",
 "* It's a shorthand for multiple OR conditions"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# In:\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name IN (value1, value2, ...);\n",
 "# Not In:\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name NOT IN (value1, value2, ...);\n",
 "<u>OR</u>\n",
 "# In:\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name IN (SELECT STATEMENT);\n",
 "# Not In:\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name NOT IN (SELECT STATEMENT);"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# BETWEEN\n",
 "* It selects values within a given range\n",
 "* The values can be numbers, text, or dates\n",
 "* begin and end values are included"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Between\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name BETWEEN value1 AND value2;\n",
 "# Not Between\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name NOT BETWEEN value1 AND value2;\n",
 "# Between with IN\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name BETWEEN value1 AND value2 And column_name NOT IN (value3,value4,...);\n",
 "# Between Text\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name BETWEEN textvalue1 AND textvalue2;\n",
 "# Not Between Text\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name NOT BETWEEN textvalue1 AND textvalue2;\n",
 "# Between Dates\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name BETWEEN date1 AND date2;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Aliases\n",
 "* used to give a table, or a column in a table, a temporary name\n",
 "* used to make column names more readable\n",
 "* only exists for the duration of that query\n",
 "* created with the <mark style = 'color:#fff; background-color:#DC143C'>AS</mark> keyword"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Alisas Column\n",
 " SELECT column_name AS alias_name\n",
 " FROM table_name;\n",
 "# Alisas Table\n",
 " SELECT column_name(s)\n",
 " FROM table_name AS alias_name;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Joins\n",
 "* used to combine rows from two or more tables, based on a related column between them\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Types of Joins\n",
 "* <u>INNER JOIN</u>: Returns records that have matching values in both tables\n",
 "* <u>LEFT JOIN</u>: Returns all records from the left table, and the matched records from the right table\n",
 "* <u>RIGHT JOIN</u>: Returns all records from the right table, and the matched records from the left table\n",
 "* <u>CROSS JOIN</u>: Returns all records from both tables"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Inner Join: \"Selects records that have matching values in both tables\"\n",
 " SELECT column_name(s)\n",
 " FROM table1\n",
 " INNER JOIN table2\n",
 " ON table1.column_name = table2.column_name;\n",
 "# LEFT JOIN: \"Returns all records from the left table1, and the matching records (if any) from the right table2\"\n",
 " SELECT column_name(s)\n",
 " FROM table1\n",
 " LEFT JOIN table2\n",
 " ON table1.column_name = table2.column_name;\n",
 "# RIGHT JOIN: \"Returns all records from the right table2, and the matching records (if any) from the left table1\"\n",
 " SELECT column_name(s)\n",
 " FROM table1\n",
 " RIGHT JOIN table2\n",
 " ON table1.column_name = table2.column_name;\n",
 "# CROSS JOIN: \"Returns all records from both tables\"\n",
 " SELECT column_name(s)\n",
 " FROM table1\n",
 " CROSS JOIN table2;\n",
 "# Self Join: \"Table is joined with itself\"\n",
 " SELECT column_name(s)\n",
 " FROM table1 T1, table1 T2\n",
 " WHERE condition;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# UNION\n",
 "* used to combine the result-set of two or more SELECT statements\n",
 "* Every SELECT statement within UNION must have the same number of columns\n",
 "* The columns must also have similar data types\n",
 "* The columns in every SELECT statement must also be in the same order"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Union:\n",
 " SELECT column_name(s) FROM table1\n",
 " UNION\n",
 " SELECT column_name(s) FROM table2;\n",
 " ORDER BY columan_name; //Optional\n",
 "# Union All:\n",
 " SELECT column_name(s) FROM table1\n",
 " UNION ALL\n",
 " SELECT column_name(s) FROM table2\n",
 " ORDER BY columan_name; //Optional\n",
 "# Union With Where:\n",
 " SELECT column_name(s) FROM table1\n",
 " WHERE column_name = 'value1'\n",
 " UNION\n",
 " SELECT column_name(s) FROM table2\n",
 " WHERE column_name = 'value1'\n",
 " ORDER BY columan_name; //Optional\n",
 "# Union All With Where:\n",
 " SELECT column_name(s) FROM table1\n",
 " WHERE column_name = 'value1'\n",
 " UNION All\n",
 " SELECT column_name(s) FROM table2\n",
 " WHERE column_name = 'value1'\n",
 " ORDER BY columan_name; //Optional"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# GROUP BY\n",
 "* The GROUP BY statement is often used with aggregate functions (COUNT(), MAX(), MIN(), SUM(), AVG()) to group the result-set by one or more columns."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE condition\n",
 " GROUP BY column_name(s)\n",
 " ORDER BY column_name(s);"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# HAVING\n",
 "* The HAVING clause was added to SQL because the WHERE keyword cannot be used with aggregate functions"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE condition\n",
 " GROUP BY column_name(s)\n",
 " HAVING condition\n",
 " ORDER BY column_name(s);"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# EXISTS\n",
 "* Used to test for the existence of any record in a subquery\n",
 "* Returns TRUE if the subquery returns one or more records"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE EXISTS (SELECT column_name FROM table_name WHERE condition);"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# ANY and ALL\n",
 "* The ANY and ALL operators allow you to perform a comparison between a single column value and a range of other values"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Any:\n",
 "* Returns a boolean value as a result\n",
 "* ANY means that the condition will be true if the operation is true for any of the values in the range."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name operator ANY (SELECT column_name FROM table_name WHERE condition);\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# All:\n",
 "* Returns a boolean value as a result\n",
 "* Returns TRUE if ALL of the subquery values meet the condition"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# ALL Syntax With SELECT:\n",
 " SELECT ALL column_name(s)\n",
 " FROM table_name\n",
 " WHERE condition;\n",
 "# ALL Syntax With WHERE or HAVING:\n",
 " SELECT column_name(s)\n",
 " FROM table_name\n",
 " WHERE column_name operator ALL (SELECT column_name FROM table_name WHERE condition);"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# CASE\n",
 "* The CASE statement goes through conditions and returns a value when the first condition is met (like an if-then-else statement). So, once a condition is true, it will stop reading and return the result. If no conditions are true, it returns the value in the ELSE clause.\n",
 "* If there is no ELSE part and no conditions are true, it returns NULL."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " SELECT column1, colummn2,\n",
 " CASE\n",
 " WHEN condition1 THEN result1\n",
 " WHEN condition2 THEN result2\n",
 " WHEN conditionN THEN resultN\n",
 " ELSE result\n",
 " END;\n",
 " FROM Database_name;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# <center><u>MySQL Operators</u></center>"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Arithmetic Operators\n",
 "* '+' ->\tAdd\t\n",
 "* '-' ->\tSubtract\t\n",
 "* '*' ->\tMultiply\t\n",
 "* '/' ->\tDivide\t\n",
 "* '%' ->\tModulo"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Bitwise Operators\n",
 "* '&'\tBitwise AND\n",
 "* '|'\tBitwise OR\n",
 "* '^'\tBitwise exclusive OR"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Comparison Operators\n",
 "* '=' ->\tEqual to\t\n",
 "* '>' ->\tGreater than\t\n",
 "* '<' ->\tLess than\t\n",
 "* '>=' ->\tGreater than or equal to\t\n",
 "* '<=' ->\tLess than or equal to\t\n",
 "* '<>' ->\tNot equal to"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Compound Operators\n",
 "* '+=' ->\tAdd equals\n",
 "* '-=' ->\tSubtract equals\n",
 "* '*=' ->\tMultiply equals\n",
 "* '/=' ->\tDivide equals\n",
 "* '%=' ->\tModulo equals\n",
 "* '&=' ->\tBitwise AND equals\n",
 "* '^-=' ->\tBitwise exclusive equals\n",
 "* '|*=' ->\tBitwise OR equals"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Logical Operators\n",
 "* 'ALL' ->\tTRUE if all of the subquery values meet the condition\t\n",
 "* 'AND' ->\tTRUE if all the conditions separated by AND is TRUE\t\n",
 "* 'ANY' ->\tTRUE if any of the subquery values meet the condition\t\n",
 "* 'BETWEEN' ->\tTRUE if the operand is within the range of comparisons\t\n",
 "* 'EXISTS' ->\tTRUE if the subquery returns one or more records\t\n",
 "* 'IN' ->\tTRUE if the operand is equal to one of a list of expressions\t\n",
 "* 'LIKE' ->\tTRUE if the operand matches a pattern\t\n",
 "* 'NOT' ->\tDisplays a record if the condition(s) is NOT TRUE\t\n",
 "* 'OR' ->\tTRUE if any of the conditions separated by OR is TRUE\t\n",
 "* 'SOME' ->\tTRUE if any of the subquery values meet the condition"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# ALTER TABLE\n",
 "* used to add, delete, or modify columns in an existing table\n",
 "* And used to add and drop various constraints on an existing table"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# 1. ADD Column: \"To add a column in a table\"\n",
 " ALTER TABLE table_name\n",
 " ADD column_name datatype;\n",
 "# 2. DROP COLUMN: \"To delete a column in a table\"\n",
 " ALTER TABLE table_name\n",
 " DROP COLUMN column_name;\n",
 "# 3. MODIFY COLUMN: \"To change the data type of a column in a table\"\n",
 " ALTER TABLE table_name\n",
 " MODIFY COLUMN column_name datatype;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Constraints\n",
 "* used to specify rules for data in a table\n",
 "* used to limit the type of data that can go into a table\n",
 "\n",
 "The following constraints are commonly used in SQL:\n",
 "* <u>NOT NULL</u> - Ensures that a column cannot have a NULL value\n",
 "* <u>UNIQUE</u> - Ensures that all values in a column are different\n",
 "* <u>PRIMARY KEY</u> - A combination of a <mark style = 'color:#fff; background-color:#DC143C'>NOT NULL</mark> and <mark style = 'color:#fff; background-color:#DC143C'>UNIQUE</mark>. Uniquely identifies each row in a table\n",
 "* <u>FOREIGN KEY</u> - Prevents actions that would destroy links between tables\n",
 "* <u>CHECK</u> - Ensures that the values in a column satisfies a specific condition\n",
 "* <u>DEFAULT</u> - Sets a default value for a column if no value is specified\n",
 "* <u>CREATE INDEX</u> - Used to create and retrieve data from the database very quickly"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "<u>Syntax</u>:\n",
 "\n",
 " CREATE TABLE table_name (\n",
 " column1 datatype constraint,\n",
 " column2 datatype constraint,\n",
 " column3 datatype constraint,\n",
 " \n",
 ");"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# NOT NULL\n",
 "# NOT NULL on CREATE TABLE\n",
 " CREATE TABLE Persons (\n",
 " ID int NOT NULL,\n",
 " LastName varchar(255) NOT NULL,\n",
 " FirstName varchar(255) NOT NULL,\n",
 " Age int\n",
 ");\n",
 "# NOT NULL on ALTER TABLE\n",
 " ALTER TABLE Persons\n",
 " MODIFY Age int NOT NULL;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# UNIQUE\n",
 "# UNIQUE Constraint on CREATE TABLE\n",
 " CREATE TABLE Persons (\n",
 " ID int NOT NULL,\n",
 " LastName varchar(255) NOT NULL,\n",
 " FirstName varchar(255),\n",
 " Age int,\n",
 " UNIQUE (ID)\n",
 ");\n",
 "# UNIQUE Constraint on ALTER TABLE\n",
 " ALTER TABLE Persons\n",
 " ADD UNIQUE (ID);\n",
 "# DROP a UNIQUE Constraint\n",
 " ALTER TABLE Persons\n",
 " DROP INDEX UC_Person;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# PRIMARY KEY\n",
 "# PRIMARY KEY on CREATE TABLE\n",
 " CREATE TABLE Persons (\n",
 " ID int NOT NULL,\n",
 " LastName varchar(255) NOT NULL,\n",
 " FirstName varchar(255),\n",
 " Age int,\n",
 " PRIMARY KEY (ID)\n",
 ");\n",
 "# PRIMARY KEY on ALTER TABLE\n",
 " ALTER TABLE Persons\n",
 " ADD PRIMARY KEY (ID);\n",
 "# DROP a PRIMARY KEY Constraint\n",
 " ALTER TABLE Persons\n",
 " DROP PRIMARY KEY;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# FOREIGN KEY\n",
 "# FOREIGN KEY on CREATE TABLE\n",
 " CREATE TABLE Orders (\n",
 " OrderID int NOT NULL,\n",
 " OrderNumber int NOT NULL,\n",
 " PersonID int,\n",
 " PRIMARY KEY (OrderID),\n",
 " FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)\n",
 ");\n",
 "# FOREIGN KEY on ALTER TABLE\n",
 " ALTER TABLE Orders\n",
 " ADD FOREIGN KEY (PersonID) REFERENCES Persons(PersonID);\n",
 "# DROP a FOREIGN KEY Constraint\n",
 " ALTER TABLE Orders\n",
 " DROP FOREIGN KEY FK_PersonOrder;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# CHECK\n",
 "# CHECK on CREATE TABLE\n",
 " CREATE TABLE Persons (\n",
 " ID int NOT NULL,\n",
 " LastName varchar(255) NOT NULL,\n",
 " FirstName varchar(255),\n",
 " Age int,\n",
 " CHECK (Age>=18)\n",
 ");\n",
 "# CHECK on ALTER TABLE\n",
 " ALTER TABLE Persons\n",
 " ADD CHECK (Age>=18);\n",
 "# DROP a CHECK Constraint\n",
 " ALTER TABLE Persons\n",
 " DROP CHECK CHK_PersonAge;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# DEFAULT\n",
 "# DEFAULT on CREATE TABLE\n",
 " CREATE TABLE Persons (\n",
 " ID int NOT NULL,\n",
 " LastName varchar(255) NOT NULL,\n",
 " FirstName varchar(255),\n",
 " Age int,\n",
 " City varchar(255) DEFAULT 'Sandnes'\n",
 ");\n",
 "# DEFAULT on ALTER TABLE\n",
 " ALTER TABLE Persons\n",
 " ALTER City SET DEFAULT 'Sandnes';\n",
 "# DROP a DEFAULT Constraint\n",
 " ALTER TABLE Persons\n",
 " ALTER City DROP DEFAULT;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# CREATE INDEX\n",
 "# CREATE INDEX\n",
 " CREATE INDEX index_name\n",
 " ON table_name (column1, column2, ...);\n",
 "# CREATE UNIQUE INDEX\n",
 " CREATE UNIQUE INDEX index_name\n",
 " ON table_name (column1, column2, ...);\n",
 "# DROP INDEX\n",
 " ALTER TABLE table_name\n",
 " DROP INDEX index_name;"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# AUTO INCREMENT\n",
 "* Auto-increment allows a unique number to be generated automatically when a new record is inserted into a table.\n",
 "\n",
 "* Often this is the primary key field that we would like to be created automatically every time a new record is inserted."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " CREATE TABLE Persons (\n",
 " Personid int NOT NULL AUTO_INCREMENT,\n",
 " LastName varchar(255) NOT NULL,\n",
 " FirstName varchar(255),\n",
 " Age int,\n",
 " PRIMARY KEY (Personid)\n",
 ");"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Working With Dates\n",
 "# MySQL Date Data Types\n",
 "MySQL comes with the following data types for storing a date or a date/time value in the database:\n",
 "\n",
 "* <u>DATE</u> -> format YYYY-MM-DD\n",
 "* <u>DATETIME</u> -> format: YYYY-MM-DD HH:MI:SS\n",
 "* <u>TIMESTAMP</u> -> format: YYYY-MM-DD HH:MI:SS\n",
 "* <u>YEAR</u> -> format YYYY or YY"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 " SELECT * FROM Orders WHERE OrderDate='2008-11-11'"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# CREATE VIEW\n",
 "* A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real tables in the database."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Creating a View\n",
 " CREATE VIEW view_name AS\n",
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " WHERE condition;\n",
 "# Updating a View\n",
 " CREATE OR REPLACE VIEW view_name AS\n",
 " SELECT column1, column2, ...\n",
 " FROM table_name\n",
 " WHERE condition;\n",
 "# Dropping a View\n",
 " DROP VIEW view_name;"
]
 }
],
 "metadata": {
 "interpreter": {
 "hash": "26f01626838fe02340c49408e611549b375a01d3f259fee8fe5c369c3e4c769b"
 },
 "kernelspec": {
 "display_name": "Python 3.9.6 64-bit",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.6"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

