Skip to content

Vision-Intelligence-and-Robots-Group/Best-Incremental-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 

Repository files navigation

Best Incremental Learning

Incremental Learning Repository: A collection of documents, papers, source code, and talks for incremental learning.

Keywords: Incremental Learning, Continual Learning, Continuous Learning, Lifelong Learning, Catastrophic Forgetting

CATALOGUE

Quick StartSurveyPapers by CategoriesDatasetsTutorial, Workshop, & Talks

CompetitionsAwesome ReferenceFull Paper List

1 Quick Start

Continual Learning | Papers With Code

Incremental Learning | Papers With Code

Class Incremental Learning from the Past to Present by 思悥 | 知乎 (In Chinese)

A Little Survey of Incremental Learning | 知乎 (In Chinese)

Origin of the Study

  • Catastrophic Forgetting, Rehearsal and Pseudorehearsal(1995)[paper]

  • Catastrophic forgetting in connectionist networks(1999)[paper]

  • Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem(1989)[paper]

Toolbox & Framework

  • [CLHive] [code]

  • [PTIL] Prompt-based Incremental Learning Toolbox [code]

  • [LAMDA-PILOT] PILOT: A Pre-Trained Model-Based Continual Learning Toolbox(arXiv 2023)[paper][code]GitHub stars

  • [FACIL] Class-incremental learning: survey and performance evaluation on image classification(TPAMI 2022)[paper][code]GitHub stars

  • [Avalanche] Avalanche: An End-to-End Library for Continual Learning(CVPR 2021)[paper][code]GitHub stars

  • [PyCIL] PyCIL: A Python Toolbox for Class-Incremental Learning(arXiv 2021)[paper][code]GitHub stars

  • [Mammoth] An Extendible (General) Continual Learning Framework for Pytorch [code]GitHub stars

  • [PyContinual] An Easy and Extendible Framework for Continual Learning[code]GitHub stars

Books

  • Lifelong Machine Learning [Link]

2 Survey

2.1 Surveys

  • A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning(arXiv 2023)[github]

  • Deep Class-Incremental Learning: A Survey(arXiv 2023)[paper][code]GitHub stars

  • A Comprehensive Survey of Continual Learning: Theory, Method and Application(arxiv 2023)[paper]

  • [FACIL] Class-incremental learning: survey and performance evaluation on image classification(TPAMI 2022)[paper][code]GitHub stars

  • Online Continual Learning in Image Classification: An Empirical Survey (Neurocomputing 2021)[paper]

  • A continual learning survey: Defying forgetting in classification tasks (TPAMI 2021) [paper]

  • Rehearsal revealed: The limits and merits of revisiting samples in continual learning (ICCV 2021)[paper]

  • Continual Lifelong Learning in Natural Language Processing: A Survey (COLING 2020) [paper]

  • A Comprehensive Study of Class Incremental Learning Algorithms for Visual Tasks (Neural Networks 2020) [paper]

  • Embracing Change: Continual Learning in Deep Neural Networks(Trends in Cognitive Sciences 2020)[paper]

  • Towards Continual Reinforcement Learning: A Review and Perspectives(arXiv 2020)[paper]

  • Class-incremental learning: survey and performance evaluation(arXiv 2020) [paper]

  • A comprehensive, application-oriented study of catastrophic forgetting in DNNs (ICLR 2019) [paper]

  • Three scenarios for continual learning (arXiv 2019) [paper]

  • Continual lifelong learning with neural networks: A review(arXiv 2019)[paper]

  • 类别增量学习研究进展和性能评价 (自动化学报 2023)[paper]

2.2 Analysis & Study

  • How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?(NeurIPS 2022)[paper]

  • [WPTP] A Theoretical Study on Solving Continual Learning(NeurIPS 2022)[paper][code]GitHub stars

  • The Challenges of Continuous Self-Supervised Learning(ECCV 2022)[peper]

  • Continual learning: a feature extraction formalization, an efficient algorithm, and fundamental obstructions(NeurIPS 2022)[paper]

  • A simple but strong baseline for online continual learning: Repeated Augmented Rehearsal(NeurIPS 2022)[paper][code]GitHub stars

  • Exploring Example Influence in Continual Learning(NeurIPS 2022)[paper]

  • Biological underpinnings for lifelong learning machines(Nat. Mach. Intell. 2022)[paper]

  • Probing Representation Forgetting in Supervised and Unsupervised Continual Learning(CVPR 2022)[paper][code]GitHub stars

  • [OpenLORIS-Object] Towards Lifelong Object Recognition: A Dataset and Benchmark(Pattern Recognit 2022)[paper]

  • Probing Representation Forgetting in Supervised and Unsupervised Continual Learning (CVPR 2022) [paper]

  • Learngene: From Open-World to Your Learning Task (AAAI 2022) [paper]

  • Continual Normalization: Rethinking Batch Normalization for Online Continual Learning (ICLR 2022) [paper]

  • [CLEVA-Compass] CLEVA-Compass: A Continual Learning Evaluation Assessment Compass to Promote Research Transparency and Comparability (ICLR 2022) [paper][code]GitHub stars

  • Learning curves for continual learning in neural networks: Self-knowledge transfer and forgetting (ICLR 2022) [paper]

  • [CKL] Towards Continual Knowledge Learning of Language Models (ICLR 2022) [paper]

  • Pretrained Language Model in Continual Learning: A Comparative Study (ICLR 2022) [paper]

  • Effect of scale on catastrophic forgetting in neural networks (ICLR 2022) [paper]

  • LifeLonger: A Benchmark for Continual Disease Classification(arXiv 2022)[paper]

  • [CDDB] A Continual Deepfake Detection Benchmark: Dataset, Methods, and Essentials(arXiv 2022)[paper]

  • [BN Tricks] Diagnosing Batch Normalization in Class Incremental Learning(arXiv 2022)[paper]

  • Architecture Matters in Continual Learning(arXiv 2022)[paper]

  • Learning where to learn: Gradient sparsity in meta and continual learning(NeurIPS 2021) [paper]

  • Continuous Coordination As a Realistic Scenario for Lifelong Learning(ICML 2021)[paper]

  • Understanding the Role of Training Regimes in Continual Learning (NeurIPS 2020)[paper]

  • Optimal Continual Learning has Perfect Memory and is NP-HARD (ICML 2020)[paper]

2.3 Settings

  • [FSCIL] Few-shot Class Incremental Learning [Link]GitHub stars

  • [DCIL] Decentralized Class Incremental Learning [paper][Setting]

3 Papers by Categories

Tips: you can use ctrl+F to match abbreviations with articles, or browse the paper list below.

3.1 From an Algorithm Perspective

Network Structure Rehearsal
2024 SEED(ICLR 2024)[paper]
CAMA(ICLR 2024)[paper][code]
SFR(ICLR 2024)[paper][code]
HLOP(ICLR 2024)[paper]
TPL(ICLR 2024)[paper][code]
EFC(ICLR 2024)[paper]
PICLE(ICLR 2024)[paper]
OVOR(ICLR 2024)[paper][code]
PEC(ICLR 2024)[paper][code]
refresh learning(ICLR 2024)[paper]
POCON(WACV 2024)[paper]
CLTA(WACV 2024)[paper][code]
FG-KSR(AAAI 2024)[paper][code]
MOSE(CVPR 2024)[paper][code]
AISEOCL(Pattern Recognition 2024)[paper]
AF-FCL(ICLR 2024)[paper][code]
DietCL(ICLR 2024)[paper]
BGS(ICLR 2024)[paper]
DMU(WACV 2024)[paper][code]
2023 A-Prompts (arXiv 2023)[paper]
ESN(AAAI 2023)[paper][code]GitHub stars
RevisitingCIL(arXiv 2023)[paper][code]GitHub stars
LwP(ICLR 2023)[paper]
SDMLP(ICLR 2023)[paper]
SaLinA(ICLR 2023)[paper][code]
BEEF(ICLR 2023)[paper][code]GitHub stars
WaRP(ICLR 2023)[paper]
OBC(ICLR 2023)[paper]
NC-FSCIL(ICLR 2023)[paper][code]GitHub stars
iVoro(ICLR 2023)[paper]
DAS(ICLR 2023)[paper]
Progressive Prompts(ICLR 2023)[paper]
SDP(ICLR 2023)[paper][code]GitHub stars
iLDR(ICLR 2023)[paper]
SoftNet-FSCIL(ICLR 2023)[paper][code]GitHub stars
PAR(CVPR 2023)[paper]
PETAL(CVPR 2023)[paper][code]GitHub stars
SAVC(CVPR 2023)[paper][code]GitHub stars
CODA-Prompt(CVPR 2023)[paper][code]GitHub stars
FeTrIL(WACV 2023)[paper][code]GitHub stars
ESMER(ICLR 2023)[paper][code]GitHub stars
MEMO(ICLR 2023)[paper][code]GitHub stars
CUDOS(ICLR 2023)[paper]
ACGAN(ICLR 2023)[paper][code]GitHub stars
TAMiL(ICLR 2023)[paper][code]GitHub stars
RSOI(CVPR 2023)[paper][code]GitHub stars
TBBN(CVPR 2023)[paper]
AMSS(CVPR 2023)[paper]
DGCL(CVPR 2023)[paper]
PCR(CVPR 2023)[paper][code]GitHub stars
FMWISS(CVPR 2023)[paper]
CL-DETR(CVPR 2023)[paper][code]GitHub stars
PIVOT(CVPR 2023)[paper]
CIM-CIL(CVPR 2023)[paper][code]GitHub stars
DNE(CVPR 2023)[paper]
2022 RD-IOD(ACM Trans 2022)[paper]
NCM(arXiv 2022)[paper]
IPP(arXiv 2022)[paper]
Incremental-DETR(arXiv 2022)[paper]
ELI(CVPR 2022)[paper]
CASSLE(CVPR 2022)[paper][code]GitHub stars
iFS-RCNN(CVPR 2022)[paper]
WILSON(CVPR 2022)[paper][code]GitHub stars
Connector(CVPR 2022)[paper][code]GitHub stars
PAD(CVPR 2022)[paper]
ERD(CVPR 2022)[paper][code]GitHub stars
AFC(CVPR 2022)[paper][code]GitHub stars
FACT(CVPR 2022)[paper][code]GitHub stars
L2P(CVPR 2022)[paper][code]GitHub stars
MEAT(CVPR 2022)[paper][code]GitHub stars
RCIL(CVPR 2022)[paper][code]GitHub stars
ZITS(CVPR 2022)[paper][code]GitHub stars
MTPSL(CVPR 2022)[paper][code]GitHub stars
MMA(CVPR-Workshop 2022)[paper]
CoSCL(ECCV 2022)[paper][code]GitHub stars
AdNS(ECCV 2022)[paper]
ProCA(ECCV 2022)[paper][code]GitHub stars
R-DFCIL(ECCV 2022)[paper][code]GitHub stars
S3C(ECCV 2022)[paper][code]GitHub stars
H^2^(ECCV 2022)[paper]
DualPrompt(ECCV 2022)[paper]
ALICE(ECCV 2022)[paper][code]GitHub stars
RU-TIL(ECCV 2022)[paper][code]GitHub stars
FOSTER(ECCV 2022)[paper]
SSR(ICLR 2022)[paper][code]GitHub stars
RGO(ICLR 2022)[paper]
TRGP(ICLR 2022)[paper]
AGCN(ICME 2022)[paper][code]GitHub stars
WSN(ICML 2022)[paper][code]GitHub stars
NISPA(ICML 2022)[paper][code]GitHub stars
S-FSVI(ICML 2022)[paper][code]GitHub stars
CUBER(NeurIPS 2022)[paper]
ADA(NeurIPS 2022)[paper]
CLOM(NeurIPS 2022)[paper]
S-Prompt(NeurIPS 2022)[paper]
ALIFE(NIPS 2022)[paper]
PMT(NIPS 2022)[paper]
STCISS(TNNLS 2022)[paper]
DSN(TPAMI 2022)[paper]
MgSvF(TPAMI 2022)[paper]
TransIL(WACV 2022)[paper]
NER-FSCIL(ACL 2022)[paper]
LIMIT(arXiv 2022)[paper]
EMP(arXiv 2022)[paper]
SPTM(CVPR 2022)[paper]
BER(CVPR 2022)[paper]
Sylph(CVPR 2022)[paper]
MetaFSCIL(CVPR 2022)[paper]
FCIL(CVPR 2022)[paper][code]GitHub stars
FILIT(CVPR 2022)[paper]
PuriDivER(CVPR 2022)[paper][code]GitHub stars
SNCL(CVPR 2022)[paper]
DVC(CVPR 2022)[paper][code]GitHub stars
CVS(CVPR 2022)[paper]
CPL(CVPR 2022)[paper]
GCR(CVPR 2022)[paper]
LVT(CVPR 2022)[paper]
vCLIMB(CVPR 2022)[paper][code]
Learn-to-Imagine(CVPR 2022)[paper][code]GitHub stars
DCR(CVPR 2022)[paper]
DIY-FSCIL(CVPR 2022)[paper]
C-FSCIL(CVPR 2022)[paper][code]GitHub stars
SSRE(CVPR 2022)[paper]
CwD(CVPR 2022)[paper][code]GitHub stars
MSL(CVPR 2022)[paper]
DyTox(CVPR 2022)[paper][code]GitHub stars
X-DER(ECCV 2022)[paper]
clsss-iNCD(ECCV 2022)[paper][code]GitHub stars
ARI(ECCV 2022)[paper][code]GitHub stars
Long-Tailed-CIL(ECCV 2022)[paper][code]GitHub stars
LIRF(ECCV 2022)[paper]
DSDM(ECCV 2022)[paper][code]GitHub stars
CVT(ECCV 2022)[paper]
TwF(ECCV 2022)[paper][code]GitHub stars
CSCCT(ECCV 2022)[paper][code]GitHub stars
DLCFT(ECCV 2022)[paper]
ERDR(ECCV2022)[paper]
NCDwF(ECCV2022)[paper]
CoMPS(ICLR 2022)[paper]
i-fuzzy(ICLR 2022)[paper][code]GitHub stars
CLS-ER(ICLR 2022)[paper][code]GitHub stars
MRDC(ICLR 2022)[paper][code]GitHub stars
OCS(ICLR 2022)[paper]
InfoRS(ICLR 2022)[paper]
ER-AML(ICLR 2022)[paper][code]GitHub stars
FAS(ICLR 2022)[paper]
LUMP(ICLR 2022)[paper]
CF-IL(ICLR 2022)[paper][code]GitHub stars
LFPT5(ICLR 2022)[paper][code]GitHub stars
Model Zoo(ICLR 2022)[paper]
OCM(ICML 2022)[paper][code]GitHub stars
DRO(ICML 2022)[paper][code]GitHub stars
EAK(ICPR 2022)[paper]
RAR(NeurIPS 2022)[paper]
LiDER(NeurIPS 2022)[paper]
SparCL(NeurIPS 2022)[paper]
ClonEx-SAC(NeurIPS 2022)[paper]
ODDL(NeurIPS 2022)[paper]
CSSL(PRL 2022)[paper]
MBP(TNNLS 2022)[paper]
CandVot(WACV 2022)[paper]
FlashCards(WACV 2022)[paper]
2021 Meta-DR(CVPR 2021)[paper]
continual cross-modal retrieval(CVPR 2021)[paper]
DER(CVPR 2021)[paper][code]GitHub stars
EFT(CVPR 2021)[paper][code]GitHub stars
PASS(CVPR 2021)[paper][code]GitHub stars
GeoDL(CVPR 2021)[paper][code]GitHub stars
IL-ReduNet(CVPR 2021)[paper]
PIGWM(CVPR 2021)[paper]
BLIP(CVPR 2021)[paper][code]GitHub stars
Adam-NSCL(CVPR 2021)[paper][code]GitHub stars
PLOP(CVPR 2021)[paper][code]GitHub stars
SDR(CVPR 2021)[paper][code]GitHub stars
SKD(CVPR 2021)[paper]
Always Be Dreaming(ICCV 2021)[paper][code]GitHub stars
SPB(ICCV 2021)[paper]
Else-Net(ICCV 2021)[paper]
LCwoF-Framework(ICCV 2021)[paper]
AFEC(NeurIPS 2021)[paper][code]GitHub stars
F2M(NeurIPS 2021)[paper][code]GitHub stars
NCL(NeurIPS 2021)[paper][code]GitHub stars
BCL(NeurIPS 2021)[paper][code]GitHub stars
Posterior Meta-Replay(NeurIPS 2021)[paper]
MARK(NeurIPS 2021)[paper][code]GitHub stars
Co-occur(NeurIPS 2021)[paper][code]GitHub stars
LINC(AAAI 2021)[paper]
CLNER(AAAI 2021)[paper]
CLIS(AAAI 2021)[paper]
PCL(AAAI 2021)[paper]
MAS3(AAAI 2021)[paper]
FSLL(AAAI 2021)[paper]
VAR-GPs(ICML 2021)[paper]
BSA(ICML 2021)[paper]
GPM(ICLR 2021)[paper][code]GitHub stars
GitHub stars
TMN(TNNLS 2021)[paper]
RKD(AAAI 2021)[paper]
AANets(CVPR 2021)[paper][code]GitHub stars
ORDisCo(CVPR 2021)[paper]
DDE(CVPR 2021)[paper][code]GitHub stars
IIRC(CVPR 2021)[paper]
Hyper-LifelongGAN(CVPR 2021)[paper]
CEC(CVPR 2021)[paper]
iMTFA(CVPR 2021)[paper]
RM(CVPR 2021)[paper]
LOGD(CVPR 2021)[paper]
SPPR(CVPR 2021)[paper]
LReID(CVPR 2021)[paper][code]GitHub stars
SS-IL(ICCV 2021)[paper]
TCD(ICCV 2021)[paper]
CLOC(ICCV 2021)[paper][code]GitHub stars
CoPE(ICCV 2021)[paper][code]GitHub stars
Co2L(ICCV 2021)[paper][code]GitHub stars
SPR(ICCV 2021)[paper]
NACL(ICCV 2021)[paper]
CL-HSCNet(ICCV 2021)[paper][code]GitHub stars
RECALL(ICCV 2021)[paper][code]GitHub stars
VAE(ICCV 2021)[paper]
ERT(ICPR 2021)[paper][code]GitHub stars
KCL(ICML 2021)[paper][code]GitHub stars
MLIOD(TPAMI 2021)[paper][code]GitHub stars
BNS(NeurIPS 2021)[paper]
FS-DGPM(NeurIPS 2021)[paper]
SSUL(NeurIPS 2021)[paper]
DualNet(NeurIPS 2021)[paper]
classAug(NeurIPS 2021)[paper]
GMED(NeurIPS 2021)[paper]
BooVAE(NeurIPS 2021)[paper][code]GitHub stars
GeMCL(NeurIPS 2021)[paper]
RMM(NIPS 2021)[paper][code]GitHub stars
LSF(IJCAI 2021)[paper]
ASER(AAAI 2021)[paper][code]GitHub stars
CML(AAAI 2021)[paper][code]GitHub stars
HAL(AAAI 2021)[paper]
MDMT(AAAI 2021)[paper]
AU(WACV 2021)[paper]
IDBR(NAACL 2021)[paper][code]GitHub stars
COIL(ACM MM 2021)[paper]
2020 CWR*(CVPR 2020)[paper]
MiB(CVPR 2020)[paper][code]GitHub stars
K-FAC(CVPR 2020)[paper]
SDC(CVPR 2020)[paper][code]GitHub stars
NLTF(AAAI 2020) [paper]
CLCL(ICLR 2020)[paper][code]GitHub stars
APD(ICLR 2020)[paper]
HYPERCL(ICLR 2020)[paper][code]GitHub stars
CN-DPM(ICLR 2020)[paper]
UCB(ICLR 2020)[paper][code]GitHub stars
CLAW(ICLR 2020)[paper]
CAT(NeurIPS 2020)[paper][code]GitHub stars
AGS-CL(NeurIPS 2020)[paper]
MERLIN(NeurIPS 2020)[paper][code]GitHub stars
OSAKA(NeurIPS 2020)[paper][code]GitHub stars
RATT(NeurIPS 2020)[paper]
CCLL(NeurIPS 2020)[paper]
CIDA(ECCV 2020)[paper]
GraphSAIL(CIKM 2020)[paper]
ANML(ECAI 2020)[paper][code]GitHub stars
ICWR(BMVC 2020)[paper]
DAM(TPAMI 2020)[paper]
OGD(PMLR 2020)[paper]
MC-OCL(ECCV2020)[paper][code]GitHub stars
RCM(ECCV 2020)[paper][code]GitHub stars
OvA-INN(IJCNN 2020)[paper]
XtarNet(ICLM 2020)[paper][code]GitHub stars
DMC(WACV 2020)[paper]
iTAML(CVPR 2020)[paper][code]GitHub stars
FSCIL(CVPR 2020)[paper][code]GitHub stars
GFR(CVPR 2020)[paper][code]GitHub stars
OSIL(CVPR 2020)[paper]
ONCE(CVPR 2020)[paper]
WA(CVPR 2020)[paper][code]
CGATE(CVPR 2020)[paper][code]GitHub stars
Mnemonics Training(CVPR 2020)[paper][code]GitHub stars
MEGA(NeurIPS 2020)[paper]
GAN Memory(NeurIPS 2020)[paper][code]GitHub stars
Coreset(NeurIPS 2020)[paper]
FROMP(NeurIPS 2020)[paper][code]GitHub stars
DER(NeurIPS 2020)[paper][code]GitHub stars
InstAParam(NeurIPS 2020)[paper]
BOCL(AAAI 2020)[paper]
REMIND(ECCV 2020)[paper][code]GitHub stars
ACL(ECCV 2020)[paper][code]GitHub stars
TPCIL(ECCV 2020)[paper]
GDumb(ECCV 2020)[paper][code]GitHub stars
PRS(ECCV 2020)[paper]
PODNet(ECCV 2020)[paper][code]GitHub stars
FA(ECCV 2020)[paper]
L-VAEGAN(ECCV 2020)[paper]
Piggyback GAN(ECCV 2020)[paper][code]GitHub stars
IDA(ECCV 2020)[paper]
RCM(ECCV 2020)[paper]
LAMOL(ICLR 2020)[paper][code]GitHub stars
FRCL(ICLR 2020)[paper][code]GitHub stars
GRS(ICLR 2020)[paper]
Brain-inspired replay(Natrue Communications 2020)[paper][code]GitHub stars
CLIFER(FG 2020)[paper]
ScaIL(WACV 2020)[paper][code]GitHub stars
ARPER(EMNLP 2020)[paper]
DnR(COLING 2020)[paper]
ADER(RecSys 2020)[paper][code]GitHub stars
MUC(ECCV 2020)[paper][code]GitHub stars
2019 LwM(CVPR 2019)[paper]
CPG(NeurIPS 2019)[paper][code]GitHub stars
UCL(NeurIPS 2019)[paper]
OML(NeurIPS 2019)[paper][code]GitHub stars
ALASSO(ICCV 2019)[paper]
Learn-to-Grow(PMLR 2019)[paper]
OWM(Nature Machine Intelligence 2019)[paper][code]GitHub stars
LUCIR(CVPR 2019)[paper][code]GitHub stars
TFCL(CVPR 2019)[paper]
GD(CVPR 2019)[paper][code]GitHub stars
DGM(CVPR 2019)[paper]
BiC(CVPR 2019)[paper][code]GitHub stars
MER(ICLR 2019)[paper][code]GitHub stars
PGMA(ICLR 2019)[paper]
A-GEM(ICLR 2019)[paper][code]GitHub stars
IL2M(ICCV 2019)[paper]
ILCAN(ICCV 2019)[paper]
Lifelong GAN(ICCV 2019)[paper]
GSS(NIPS 2019)[paper]
ER(NIPS 2019)[paper]
MIR(NIPS 2019)[paper][code]GitHub stars
RPS-Net(NIPS 2019)[paper]
CLEER(IJCAI 2019)[paper]
PAE(ICMR 2019)[paper][code]GitHub stars
2018 PackNet(CVPR 2018)[paper][code]GitHub stars
OLA(NIPS 2018)[paper]
RCL(NIPS 2018)[paper][code]GitHub stars
MARL(ICLR 2018)[paper]
DEN(ICLR 2018)[paper][code]GitHub stars
P&C(ICML 2018)[paper]
Piggyback(ECCV 2018)[paper][code]GitHub stars
RWalk(ECCV 2018)[paper]
MAS(ECCV 2018)[paper][code]GitHub stars
R-EWC(ICPR 2018)[paper][code]GitHub stars
HAT(PMLR 2018)[paper][code]GitHub stars
MeRGANs(NIPS 2018)[paper][code]GitHub stars
EEIL(ECCV 2018)[paper][code]GitHub stars
Adaptation by Distillation(ECCV 2018)[paper]
ESGR(BMVC 2018)[paper][code]GitHub stars
VCL(ICLR 2018)[paper]
FearNet(ICLR 2018)[paper]
DGDMN(ICLR 2018)[paper]
2017 Expert Gate(CVPR 2017)[paper][code]GitHub stars
ILOD(ICCV 2017)[paper][code]GitHub stars
EBLL(ICCV2017)[paper]
IMM(NIPS 2017)[paper][code]GitHub stars
SI(ICML 2017)[paper][code]GitHub stars
EWC(PNAS 2017)[paper][code]GitHub stars
iCARL(CVPR 2017)[paper][code]GitHub stars
GEM(NIPS 2017)[paper][code]GitHub stars
DGR(NIPS 2017)[paper][code]GitHub stars
2016 LwF(ECCV 2016)[paper][code]GitHub stars

3.2 From a Data Deployment Perspective

Data decentralized incremental learning

  • [DCID] Deep Class Incremental Learning from Decentralized Data(TNNLS 2022)[paper][code]
  • [GLFC] Federated Class-Incremental Learning(CVPR 2022)[paper][code]
  • [FedWeIT] Federated Continual Learning with Weighted Inter-client Transfer(ICML 2021)[paper][code]

Data centralized incremental learning

All other studies aforementioned except those already in the 'Decentralized' section.

4 Datasets

datasets describes
ImageNet There are 1.28 million training images and 50,000 validation images in over 1,000 categories. Usually crop into 224×224 color image
TinyImageNet Contains 100,000 64×64 color images of 200 categories (500 per category). Each class has 500 training images, 50 validation images, and 50 test images.
MiniImageNet This dataset is a subset of ImageNet used for few-shot learning. It consists of 60, 000 colour images of size 84 × 84 with 100 classes, each having 600 examples.
SubImageNet This dataset is a 100-class subset of ImageNet's random sample, which contains approximately 130,000 images for training and 5,000 images for testing.
CIFAR-10/100 Both datasets contain 60,000 natural RGB images of the size 32 × 32, including 50,000 training and 10,000 test images. CIFAR10 has 10 classes, while CIFAR100 has 100 classes.
CORe50 This dataset consists of 164,866 128×128 RGB-D images: 11 sessions × 50 objects × (around 300) frames per session.
Github
CORe50: a New Dataset and Benchmark for Continuous Object Recognition
OpenLORIS-Object This is the first real-world dataset for robotic vision with independent and quantifiable environmental factors, compared with other lifelong learning datasets, with 186 instances, 63 categories and 2,138,050 images.

5 Lecture, Tutorial, Workshop, & Talks

Life-Long learning | 李宏毅

Life-long Learning: [ppt] [pdf]

Catastrophic Forgetting [Chinese] [English]

Mitigating Catastrophic Forgetting [Chinese] [English]

Meta Learning : Learn to Learn [Chinese]

Continual AI Lecture

Open World Lifelong Learning | A Continual Machine Learning Course

Prompting-based Continual Learning | Continual AI

VALSE Webinar (In Chinese)

20211215【学无止境:深度连续学习】洪晓鹏:记忆拓扑保持的深度增量学习方法

20211215【学无止境:深度连续学习】李玺:基于深度神经网络的持续性学习理论与方法

ACM MULTIMEDIA

ACM2021 Few-shot Learning for Multi-Modality Tasks

CVPR Workshop

CVPR 2022 Workshop on Continual Learning in Computer Vision

CVPR2021 Workshop on Continual Learning in Computer Vision

CVPR2020 Workshop on Continual Learning in Computer Vision

CVPR2017 Continuous and Open-Set Learning Workshop

ICML Tutorial/Workshop

ICML 2021 Workshop on Theory and Foundation of Continual Learning

ICML 2021 Tutorial on Continual Learning with Deep Architectures

ICML2020 Workshop on Continual Learning

NeurIPS Workshop

NeurIPS2021 4th Robot Learning Workshop: Self-Supervised and Lifelong Learning

NeurIPS2018 Continual learning Workshop

NeurIPS2016 Continual Learning and Deep Networks Workshop

IJCAI Workshop

IJCAI 2021 International Workshop on Continual Semi-Supervised Learning

ContinualAI wiki

A Non-profit Research Organization and Open Community on Continual Learning for AI

CoLLAs

Conference on Lifelong Learning Agents - CoLLAs 2022

6 Competitions

achieved

3rd CLVISION CVPR Workshop Challenge 2022

IJCAI 2021 - International Workshop on Continual Semi-Supervised Learning

2rd CLVISION CVPR Workshop Challenge 2021

1rd CLVISION CVPR Workshop Challenge 2020

7 Awesome Reference

[1] https://github.com/xialeiliu/Awesome-Incremental-Learning

8 Contact Us

Should there be any concerns on this page, please don't hesitate to let us know via hongxiaopeng@ieee.org or xl330@126.com.

Full Paper List

arXiv (If accepted, welcome corrections)

  • Continual Instruction Tuning for Large Multimodal Models [paper]
  • Continual Adversarial Defense [paper][code]
  • Class-Prototype Conditional Diffusion Model for Continual Learning with Generative Replay [paper][code]
  • Class Incremental Learning for Adversarial Robustnes [paper]
  • KOPPA: Improving Prompt-based Continual Learning with Key-Query Orthogonal Projection and Prototype-based One-Versus-All [paper]
  • Prompt Gradient Projection for Continual Learning [paper]

2024

  • [MOSE] Orchestrate Latent Expertise: Advancing Online Continual Learning with Multi-Level Supervision and Reverse Self-Distillation(CVPR 2024) [paper][code]
  • [AISEOCL] Adaptive instance similarity embedding for online continual learning (Pattern Recognition 2024) [paper]
  • [SEED] Divide and not forget: Ensemble of selectively trained experts in Continual Learning(ICLR 2024) [paper]
  • [CAMA] Online Continual Learning for Interactive Instruction Following Agents(ICLR 2024) [paper][code]
  • [SFR]] Function-space Parameterization of Neural Networks for Sequential Learning(ICLR2024) [paper][code]
  • [HLOP] Hebbian Learning based Orthogonal Projection for Continual Learning of Spiking Neural Networks(ICLR 2024) [paper]
  • [TPL] Class Incremental Learning via Likelihood Ratio Based Task Prediction(ICLR 2024) [paper][code]
  • [AF-FCL] Accurate Forgetting for Heterogeneous Federated Continual Learning(ICLR 2024) [paper][code]
  • [EFC] Elastic Feature Consolidation For Cold Start Exemplar-Free Incremental Learning(ICLR 2024) [paper]
  • [DietCL] Continual Learning on a Diet:Learning from Sparsely Labeled Streams Under Constrained Computation(ICLR 2024) [paper]
  • [PICLE] A Probabilistic Framework for Modular Continual Learning(ICLR 2024) [paper]
  • OVOR OVOR: OnePrompt with Virtual Outlier Regularization for Rehearsal-Free Class-Incremental Learning(ICLR 2024) [paper][code]
  • [BGS] Continual Learning in the Presence of Spurious Correlations: Analyses and a Simple Baseline(ICLR 2024) [paper]
  • [PEC] Prediction Error-based Classification for Class-Incremental Learning(ICLR 2024) [paper][code]
  • [refresh learning] A Unified and General Framework for Continual Learning(ICLR 2024) [paper]
  • [CPPO] CPPO: Continual Learning for Reinforcement Learning with Human Feedback(ICLR 2024) [paper]
  • [JARe] Scalable Language Model with Generalized Continual Learning(ICLR 2024) [paper]
  • [POCON] Plasticity-Optimized Complementary Networks for Unsupervised Continual(WACV 2024) [paper]
  • [DMU] Online Class-Incremental Learning For Real-World Food Image Classification(WACV 2024) [paper][code]
  • [CLTA] Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free Continual Learning(WACV 2024) [paper][code]
  • [FG-KSR] Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class Incremental Learning(AAAI 2024) [paper][code]

2023

  • [PRD] Prototype-Sample Relation Distillation: Towards Replay-FreeContinual Learning(ICML 2023) [paper]
  • A Unified Continual Learning Framework with General Parameter-Efficient Tuning(ICCV 2023) [paper][code]
  • Cross-Modal Alternating Learning with Task-Aware Representations for Continual Learning(TMM 2023) [paper][code]
  • Semantic Knowledge Guided Class-Incremental Learning(TCSVT 2023) [paper]
  • Non-Exemplar Class-Incremental Learning via Adaptive Old Class Reconstruction(ACM MM 2023) [paper][code]
  • [HiDe-Prompt] Hierarchical Decomposition of Prompt-Based Continual Learning: Rethinking Obscured Sub-optimality(NeurIPS 2023)[paper][code]
  • TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion(NeurIPS 2023)[paper]
  • [AdaB2N] Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation(NeurIPS 2023)[paper][[code]]](https://github.com/lvyilin/AdaB2N)
  • Online Class Incremental Learning on Stochastic Blurry Task Boundary via Mask and Visual Prompt Tuning(ICCV 2023)[paper]
  • Decouple Before Interact: Multi-Modal Prompt Learning for Continual Visual Question Answering(ICCV 2023)[paper]
  • Prototype Reminiscence and Augmented Asymmetric Knowledge Aggregation for Non-Exemplar Class-Incremental Learning(ICCV 2023)[paper]
  • When Prompt-based Incremental Learning Does Not Meet Strong Pretraining(ICCV 2023)[paper]
  • Class-incremental Continual Learning for Instance Segmentation with Image-level Weak Supervision(ICCV 2023)[paper]
  • Dynamic Residual Classifier for Class Incremental Learning(ICCV 2023)[paper]
  • Audio-Visual Class-Incremental Learning(ICCV 2023)[paper]
  • First Session Adaptation: A Strong Replay-Free Baseline for Class-Incremental Learning(ICCV 2023)[paper]
  • Self-Organizing Pathway Expansion for Non-Exemplar Class-Incremental Learning(ICCV 2023)[paper]
  • Heterogeneous Forgetting Compensation for Class-Incremental Learning(ICCV 2023)[paper]
  • Masked Autoencoders are Efficient Class Incremental Learners(ICCV 2023)[paper]
  • Knowledge Restore and Transfer for Multi-Label Class-Incremental Learning(ICCV 2023)[paper]
  • Space-time Prompting for Video Class-incremental Learning(ICCV 2023)[paper]
  • CLNeRF: Continual Learning Meets NeRF(ICCV 2023)[paper]
  • Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?(ICCV 2023)[paper]
  • Exemplar-Free Continual Transformer with Convolutions(ICCV 2023)[paper]
  • Self-Evolved Dynamic Expansion Model for Task-Free Continual Learning(ICCV 2023)[paper]
  • Class-incremental Continual Learning for Instance Segmentation with Image-level Weak Supervision(ICCV 2023)