Skip to content

MOA is an open source framework for Big Data stream mining. It includes a collection of machine learning algorithms (classification, regression, clustering, outlier detection, concept drift detection and recommender systems) and tools for evaluation.

Branch: master
Go to file
Code

Latest commit

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
moa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

MOA (Massive Online Analysis)

Build Status Maven Central DockerHub License: GPL v3

MOA

MOA is the most popular open source framework for data stream mining, with a very active growing community (blog). It includes a collection of machine learning algorithms (classification, regression, clustering, outlier detection, concept drift detection and recommender systems) and tools for evaluation. Related to the WEKA project, MOA is also written in Java, while scaling to more demanding problems.

http://moa.cms.waikato.ac.nz/

Using MOA

MOA performs BIG DATA stream mining in real time, and large scale machine learning. MOA can be extended with new mining algorithms, and new stream generators or evaluation measures. The goal is to provide a benchmark suite for the stream mining community.

Mailing lists

Citing MOA

If you want to refer to MOA in a publication, please cite the following JMLR paper:

Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (2010); MOA: Massive Online Analysis; Journal of Machine Learning Research 11: 1601-1604

About

MOA is an open source framework for Big Data stream mining. It includes a collection of machine learning algorithms (classification, regression, clustering, outlier detection, concept drift detection and recommender systems) and tools for evaluation.

Topics

Resources

License

Languages

You can’t perform that action at this time.