
2190102 ADV COMP PROG Cheat Sheet - M

By @WasinUddy (✉️ ws@prometheuzdy.cloud)

1

Download Example Code from Laboratory Session!!!!

Do not forget to it

2

What is OOP?

Object-oriented programming (OOP) is a programming paradigm that uses "objects" to design applications and

software. These objects represent real-world entities and can both store data and perform actions.

Class in Java
In Java, a class is a blueprint or template for creating objects. It defines the structure and behavior of objects of that

class. Each class can have attributes (also called fields) and methods.

• Attributes (Fields): Attributes are variables declared within a class to store data. They represent the state or

properties of objects created from the class. Attributes define what an object "has." For example, if you are

creating a class to represent a Person, attributes could include name, age, and address.

• Methods: Methods are functions defined within a class that perform actions or operations on the class's

attributes or provide some functionality. Methods define what an object "does." For example, a Person class

might have methods like setName, getAge, and printDetails.

3

Example Implementation of Class Person

public class Person {

 // Attributes (fields)

 public String name;

 public int age;

 // Constructor (a special method to initialize objects)

 public Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 // Getter method for name

 public String getName() {

 return name;

 }

 // Setter method for name

 public void setName(String name) {

 this.name = name;

 }

 // Getter method for age

 public int getAge() {

 return age;

 }

 // Setter method for age

 public void setAge(int age) {

 this.age = age;

 }

 // Method to print person's details

 public void printDetails() {

 System.out.println("Name: " + name);

 System.out.println("Age: " + age);

 }

}

• Attributes (name and age): These are private fields, meaning they can only be accessed within the class

itself. We use getter and setter methods to access and modify these attributes from outside the class.

• Constructor: The constructor is a special method used to initialize objects of the class when they are created.

It takes parameters (in this case, name and age) and assigns them to the object's attributes.

• Getter and Setter methods: These methods allow us to get and set the values of the name and age

attributes, respectively. They provide controlled access to the attributes.

• printDetails method: This method is used to print the details (name and age) of a Person object.

4

Example Usage of Class Person

public class App {

 public static void main(String[] args) {

 // Create a Person object

 Person person1 = new Person("Alice", 25);

 // Access attributes and methods

 System.out.println("Name: " + person1.getName());

 System.out.println("Age: " + person1.getAge());

 person1.printDetails();

 // Update attributes using setters

 person1.setName("Bob");

 person1.setAge(30);

 person1.printDetails();

 }

}

In this App class, we create a Person object, access its attributes using getter methods, print details, and update the

attributes using setter methods.

5

Encapsulation

Encapsulation refers to the concept of bundling the data (attributes or fields) and methods (functions) that operate

on the data into a single unit, known as a class. In encapsulation, the internal state of an object is hidden from

outside access, and access to that state is controlled through methods. This helps in data protection and maintaining

the integrity of an object's state.

Key Concepts of Encapsulation
• Private Access Modifier: In Java, encapsulation is primarily achieved by using the private access modifier for

class fields (attributes). When a field is declared as private, it can only be accessed within the class where it's

defined.

• Getter and Setter Methods: To provide controlled access to the private fields, getter and setter methods are

used. Getter methods allow you to retrieve the value of a field, and setter methods allow you to modify the

value of a field. By controlling access through these methods, you can implement validation logic, access

control, and maintain the integrity of the object's data.

Benefits of Encapsulation
• Data Hiding: Encapsulation hides the internal details of an object's implementation, which reduces

complexity and makes it easier to change the internal representation without affecting other parts of the

code.

• Controlled Access: With getter and setter methods, you can control how external code interacts with an

object's data. This allows you to validate input, ensure data consistency, and implement access control rules.

• Flexibility: Encapsulation allows you to change the internal implementation of a class without affecting the

code that uses the class. This promotes code maintenance and evolution.

6

Example Implementation of Encapsulation on Class Person

public class Person {

 // Attributes (fields)

 private String name;

 private int age;

 // Constructor (a special method to initialize objects)

 public Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 // Getter method for name

 public String getName() {

 return name;

 }

 // Setter method for name

 public void setName(String name) {

 this.name = name;

 }

 // Getter method for age

 public int getAge() {

 return age;

 }

 // Setter method for age

 public void setAge(int age) {

 this.age = age;

 }

 // Method to print person's details

 public void printDetails() {

 System.out.println("Name: " + name);

 System.out.println("Age: " + age);

 }

}

• The name and age fields are declared as private, making them inaccessible from outside the class.

• Getter methods (getName and getAge) allow external code to retrieve the values of name and age.

• Setter methods (setName and setAge) provide controlled access to modify the values of name and age. The

setAge method includes validation logic to ensure that the age is non-negative.

7

Inheritance

Inheritance is one of the key principles of Object-Oriented Programming (OOP) and allows you to create new classes

that are based on existing classes, inheriting their attributes and methods.

Key Concepts of Inheritance
• Extending a Class: To create a subclass that inherits from a superclass, you use the extends keyword in the

class declaration.

• Access to Superclass Members: A subclass has access to all the public and protected members (fields and

methods) of its superclass. However, it cannot directly access private members of the superclass.

• Method Overriding: A subclass can provide its own implementation for a method that is already defined in

its superclass. This is known as method overriding.

Inheritance in Java
Inheritance is a mechanism in Java that allows one class to inherit the properties (fields) and behaviors (methods) of

another class. The class that is being inherited from is called the superclass or base class, and the class that inherits

from it is called the subclass or derived class.

8

Example Implementation on Inheritance Dog, Corgi, Husky Classes
a simple example with a Dog superclass and two subclasses, Corgi and Husky. The Dog class will contain common

properties and methods that are shared by all dogs, while the subclasses will add specific attributes and behaviors.

Example of Super Class

public class Dog {

 private String name;

 private int age;

 public Dog(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

 public void bark() {

 System.out.println(name + " is barking!");

 }

}

The Dog class is the superclass that contains attributes and methods common to all dogs. It has a constructor, getter

methods for name and age, and a bark method.

9

Example of Sub Classes

public class Corgi extends Dog {

 public Corgi(String name, int age) {

 super(name, age); // Call the superclass constructor

 }

 // Additional method specific to Corgi

 public void shortLegs() {

 System.out.println(getName() + " has short legs!");

 }

}

public class Husky extends Dog {

 public Husky(String name, int age) {

 super(name, age); // Call the superclass constructor

 }

 // Additional method specific to Husky

 public void thickFur() {

 System.out.println(getName() + " has thick fur!");

 }

}

• The Corgi and Husky classes are subclasses of Dog. They use the extends keyword to inherit from the Dog

class and call the superclass constructor using super(name, age) .

• Each subclass adds its own specific method: shortLegs for Corgi and thickFur for Husky.

10

Example Usage

public class App {

 public static void main(String[] args) {

 Corgi corgi = new Corgi("Buddy", 3);

 Husky husky = new Husky("Luna", 2);

 corgi.bark();

 corgi.shortLegs();

 husky.bark();

 husky.thickFur();

 }

}

In this example, we create instances of Corgi and Husky and call their methods. The subclasses inherit the getName,

getAge, and bark methods from the Dog superclass and add their specific behaviors. This demonstrates how

inheritance allows you to create a hierarchy of classes with shared and specialized characteristics.

11

Polymorphism

Polymorphism allows objects of different classes to be treated as objects of a common base class. It enables you to

write code that can work with objects of multiple types, promoting flexibility and extensibility in your programs.

Benefits of Polymorphism
• Code Reusability: Polymorphism allows you to write generic code that can work with a variety of objects,

promoting code reuse.

• Flexibility: It makes your code more flexible and adaptable to changes. You can easily extend your system by

adding new subclasses without modifying existing code.

• Maintenance: Polymorphism simplifies code maintenance. You can make changes in the superclass or add

new subclasses without affecting the rest of the codebase.

• Enhanced Readability: Polymorphic code is often more readable and self-explanatory, as it abstracts away

specific object types and focuses on their common behaviors.

Polymorphism in Java
In Java, polymorphism can be realized in several ways, but one of the most common ways is through method

overriding.

12

Example Implementation of Polymorphism to represent Automobile

Example of Base Class

public class Automobile {

 void start() {

 System.out.println("Automobile is starting.");

 }

}

Example of Sub Classes Car and Motorcycle inherit and override method

public class Car extends Automobil {

 public Car () {

 }

 @Override

 public void start() {

 System.out.println("Car is starting");

 }

}

public class Motorcycle extends Automobile {

 public Motorcycle() {

 }

 @Override

 public void start() {

 System.out.println("Motorcycle is starting.");

 }

}

Two subclasses, Car and Motorcycle, inherit from Automobile and override the start method with their specific

implementations.

13

Abstraction

Abstraction involves simplifying complex reality by modeling classes based on the essential properties and behaviors

while hiding the unnecessary details.

Benefits of Abstraction
• Simplicity and Ease of Use: Abstraction simplifies complex systems or objects, making them easier to

understand and use. Users can interact with abstracted interfaces without needing to know the inner

workings of the underlying system.

• Code Reusability: Abstraction promotes code reusability by allowing you to define common behaviors and

interfaces. These abstractions can be reused in various parts of your code or in different projects.

• Maintenance and Evolution: Abstraction makes it easier to maintain and evolve your code. Changes to the

internal implementation of a system can be made without affecting code that uses the abstracted interface.

• Polymorphism: Abstraction enables polymorphism, allowing you to treat objects of different classes as

objects of a common base class. This promotes flexibility in your code and the ability to work with objects

generically.

14

Example Implementation of Abstraction to represent TV Remote

Example of Abstract Class

public abstract class RemoteControl {

 private boolean poweredOn;

 private int currentChannel;

 private int currentVolume;

 public RemoteControl() {

 poweredOn = false;

 currentChannel = 0;

 currentVolume = 0;

 }

 // Turn the remote control on

 public void turnOn() {

 poweredOn = true;

 System.out.println("Remote control is now ON.");

 }

 // Turn the remote control off

 public void turnOff() {

 poweredOn = false;

 System.out.println("Remote control is now OFF.");

 }

 // Abstract method to change the channel (to be implemented by subclasses)

 public abstract void changeChannel(int channel);

 // Abstract method to adjust the volume (to be implemented by subclasses)

 public abstract void adjustVolume(int volume);

}

RemoteControl is an abstract class that represents the abstraction of a remote control. It includes common

attributes like poweredOn, currentChannel, and currentVolume, along with methods like turnOn, turnOff,

changeChannel, and adjustVolume which need to be implemented.

15

Example of Sub Class Implementing Abstract Method of Abstract Class

public class TVRemote extends RemoteControl {

 @Override

 public void changeChannel(int channel) {

 if (isPoweredOn()) {

 setCurrentChannel(channel);

 System.out.println("TV channel changed to channel " + channel);

 } else {

 System.out.println("Turn on the remote control first.");

 }

 }

 @Override

 public void adjustVolume(int volume) {

 if (isPoweredOn()) {

 setCurrentVolume(getCurrentVolume() + volume);

 System.out.println("Volume adjusted to " + getCurrentVolume());

 } else {

 System.out.println("Turn on the remote control first.");

 }

 }

}
TVRemote is a concrete subclass that extends RemoteControl. It implements the abstract methods changeChannel

and adjustVolume specific to a TV remote.

Example Usage

public class App {

 public static void main(String[] args) {

 TVRemote remote = new TVRemote();

 remote.turnOn();

 remote.changeChannel(5);

 remote.adjustVolume(10);

 remote.turnOff();

 remote.changeChannel(3);

 remote.adjustVolume(-5);

 }

}

In the App class, we create an instance of TVRemote and use it to control the TV. We don't need to know the inner

details of how the remote control works; we interact with its abstracted interface.

16

Interface

interface is a blueprint for a class. It defines a contract of methods that a class must implement. Unlike classes,

interfaces cannot contain instance variables (fields) or concrete method implementations. Instead, they specify the

method signatures that implementing classes must provide.

Key Concepts of Inheritance
• Method Signatures: Interfaces define method signatures without specifying the implementation. These

methods are implicitly public and abstract (no need to use the public or abstract modifiers).

• Multiple Inheritance: Java supports multiple inheritance through interfaces. A class can implement multiple

interfaces, which is useful for achieving polymorphism and code reusability.

• Implementation by Classes: A class that implements an interface must provide concrete implementations

(method bodies) for all the methods declared in that interface.

• "implements" Keyword: To declare that a class implements an interface, you use the implements keyword

in the class declaration.

Benefits of Interface
• Multiple Inheritance: Interfaces allow a class to inherit from multiple interfaces, enabling code reuse and

flexibility.

• Method Contracts: Interfaces enforce clear method contracts between interfaces and implementing classes,

enhancing code reliability.

• Polymorphism: Interfaces enable objects of different classes to be treated as objects of a common interface

type, promoting code reusability.

• Decoupling and Design Patterns: Interfaces support loose coupling, leading to modular and maintainable

code. They are essential for design patterns and design flexibility.

17

Example Implementation of Interface on playable devices

Example of Interface

public interface Playable {

 void play();

}

define an interface called Playable, which declares a single method play().

Example of Class implementing interface

public class VideoGame implements Playable {

 private String title;

 public VideoGame(String title) {

 this.title = title;

 }

 @Override

 public void play() {

 System.out.println("Playing the video game: " + title);

 }

}

public class MusicPlayer implements Playable {

 private String song;

 public MusicPlayer(String song) {

 this.song = song;

 }

 @Override

 public void play() {

 System.out.println("Playing the song: " + song);

 }

}

Define two classes, VideoGame and MusicPlayer, both of which implement the Playable interface. Each class

provides its own implementation of the play() method.

18

Example Usage

public class App {

 public static void main(String[] args) {

 Playable game = new VideoGame("Super Mario");

 Playable music = new MusicPlayer("Bohemian Rhapsody");

 game.play(); // Output: Playing the video game: Super Mario

 music.play(); // Output: Playing the song: Bohemian Rhapsody

 }

}

In the App class, we create instances of VideoGame and MusicPlayer and call their play() methods. This

demonstrates how different classes can implement the same interface to achieve polymorphism and provide their

unique "play" functionality.

19

Exception Handling

Exception handling is a powerful mechanism in Java that provides a way to handle runtime errors, allowing the

program to continue its execution or terminate gracefully. It uses a combination of blocks and keywords to catch and

manage exceptions, ensuring that the program doesn't crash unexpectedly.

Key Concepts of Exception Handling
• Try-Catch Block: The try block contains code that might throw an exception. The catch block captures and

handles the exception if one occurs in the try block.

• Throwing Exceptions: The throw keyword is used to explicitly throw an exception, signaling an exceptional

condition in the program.

• Exception Propagation: If a method doesn't handle an exception, it propagates up the call stack to the

previous method, and so on, until it's caught or reaches the main method.

• Finally Block: The finally block contains code that is always executed, regardless of whether an exception

occurred or not. It's often used for cleanup activities.

• Checked vs. Unchecked Exceptions: Java categorizes exceptions as checked (must be explicitly caught or

thrown) and unchecked (runtime exceptions that don't need to be declared or caught).

Benefits of Exception Handling
• Graceful Termination: Instead of crashing, programs can handle exceptions gracefully, providing meaningful

error messages or taking alternative actions.

• Separation of Error Handling Code: Exception handling separates the error handling code from the regular

code, making the program cleaner and more readable.

• Program Reliability: By handling potential errors, programs become more robust and reliable, ensuring they

can handle unexpected situations.

• Resource Management: The finally block ensures resources, like files or network connections, are closed or

released, preventing resource leaks.

• Controlled Propagation: Exceptions can be propagated up the call stack, allowing higher-level methods to

handle them, leading to centralized error handling.

20

Example Usage and Implementation of each Exception Handling

try-catch blocks

• The try block contains the code that might throw an exception.

• The catch block contains the code that will be executed if an exception is thrown in the try block.

try {

 // Some code...

} catch (ArithmeticException e) {

 // Handle arithmetic exceptions

} catch (NullPointerException e) {

 // Handle null pointer exceptions

}
You can have multiple catch blocks to handle different types of exceptions.

try {

 // Some code...

} catch (ArithmeticException e) {

 // Handle arithmetic exceptions

} catch (NullPointerException e) {

 // Handle null pointer exceptions

}
The finally block contains code that will always be executed, regardless of whether an exception was thrown or not.

try {

 // Some code...

} catch (Exception e) {

 // Handle exception

} finally {

 System.out.println("This will always be executed.");

}

Throwing Exception

You can throw an exception using the throw keyword. This is useful when you want to signal that an exceptional

condition has occurred.

public void someMethod(int value) throws Exception {

 if (value < 0) {

 throw new Exception("Value cannot be negative");

 }

}

21

Custom Exceptions

You can create your own exception classes by extending the Exception class.

public class CustomException extends Exception {

 public CustomException(String message) {

 super(message);

 }

}

Then the CustomException can be throwed

throw new CustomException("This is a custom exception");

22

Strategy Pattern

The Strategy Pattern is a behavioral design pattern that defines a family of algorithms, encapsulates each one, and

makes them interchangeable. It allows the algorithm to vary independently from the clients that use it.

Intents
• Define a set of algorithms, encapsulate each one, and make them interchangeable.

• Allow an object to alter its behavior when its internal state changes.

Key Concepts of Strategy Pattern
• Strategy (Interface/Abstract Class): This defines an interface common to all supported algorithms.

• ConcreteStrategy (Classes): These implement the algorithm defined by the Strategy.

• Context (Class): This class maintains a reference to a Strategy object and can switch between different

strategies.

Benefits of Strategy Pattern
• Flexibility: The Strategy Pattern allows you to define a family of algorithms and make them interchangeable,

providing flexibility in choosing the algorithm at runtime.

• Decoupling: It decouples the algorithm from the context that uses it, promoting loose coupling.

• Open/Closed Principle: The system can be extended with new strategies without modifying the existing

code.

23

Example Usage and Implementation of Strategy Pattern
Let's consider an example of a simple e-commerce system where different types of discounts (strategies) can be

applied to an order.

Strategy

public interface DiscountStrategy {

 double applyDiscount(double price);

}

Concrete Strategy

public class NoDiscount implements DiscountStrategy {

 @Override

 public double applyDiscount(double price) {

 return price;

 }

}

public class SeasonalDiscount implements DiscountStrategy {

 @Override

 public double applyDiscount(double price) {

 return price * 0.9; // 10% discount

 }

}

public class ClearanceDiscount implements DiscountStrategy {

 @Override

 public double applyDiscount(double price) {

 return price * 0.5; // 50% discount

 }

}

Context

public class Order {

 private DiscountStrategy discountStrategy;

 private double price;

 public Order(double price, DiscountStrategy discountStrategy) {

 this.price = price;

 this.discountStrategy = discountStrategy;

 }

 public double getFinalPrice() {

 return discountStrategy.applyDiscount(price);

 }

 public void setDiscountStrategy(DiscountStrategy discountStrategy) {

 this.discountStrategy = discountStrategy;

 }

}

24

Usage

public class Main {

 public static void main(String[] args) {

 Order order = new Order(100, new NoDiscount());

 System.out.println("with No Discount: " + order.getFinalPrice());

 order.setDiscountStrategy(new SeasonalDiscount());

 System.out.println("with Seasonal Discount: " + order.getFinalPrice());

 order.setDiscountStrategy(new ClearanceDiscount());

 System.out.println("with Clearance Discount: " + order.getFinalPrice());

 }

}

25

Data Types

Primitive Data Types
• byte:

o 8-bit signed integer.

o Range: -128 to 127.

• short:

o 16-bit signed integer.

o Range: -32,768 to 32,767.

• int:

o 32-bit signed integer.

o Range: -2^31 to 2^31 -1.

• long:

o 64-bit signed integer.

o Range: -2^63 to 2^63 -1.

• float:

o 32-bit floating-point number.

• double:

o 64-bit floating-point number.

• char:

o 16-bit Unicode character.

o Range: 0 to 65,535.

• boolean:

o Represents only two possible values: true or false

Reference Data Types
• Objects: Any object you create becomes a reference data type. For example, if you create a class Car, then a

variable of type Car would be a reference data type.

• Arrays: Arrays are also considered reference data types in Java.

String
While String is technically a reference data type (since it's an object), it's worth mentioning separately due to its

frequent use and special behavior in Java.

• Strings are immutable in Java, meaning their values cannot be changed after they're created.

• Java provides a special syntax for creating strings using double quotes.

String name = "John Doe";

26

Array

What is an Array
An array in Java is a homogeneous data structure that can store multiple values of the same type in contiguous

memory locations. It can be thought of as a collection of variables that are accessed with an index.

Declaring Arrays
You can declare an array by specifying its type followed by square brackets.

int[] myArray;

Initializing Arrays
Arrays can be initialized in various ways:

• At the time of declaration

int[] myArray = {1, 2, 3, 4, 5};
• Using the new keyword

int[] myArray = new int[5]; // Allocates memory for 5 integers

Accessing Array Elements
You can access an element of an array using its index. Remember, array indices start from 0

int firstElement = myArray[0];

Modifying Array Elements
You can modify an element of an array by using its index

myArray[2] = 10; // Sets the third element to 10

Array Length
You can find the length (number of elements) of an array using the length property:

int arrayLength = myArray.length;

27

Looping Through Arrays
You can loop through arrays using standard loops or the enhanced for loop

• Standard for loop

for (int i = 0; i < myArray.length; i++) {

 System.out.println(myArray[i]);

}

• Enhanced for loop

for (int num : myArray) {

 System.out.println(num);

}

Add Elements to an Array

public class AddToArrayExample {

 public static void main(String[] args) {

 int[] originalArray = {1, 2, 3, 4, 5};

 int newElement = 6;

 int[] newArray = addElement(originalArray, newElement);

 for (int num : newArray) {

 System.out.println(num);

 }

 }

 public static int[] addElement(int[] original, int element) {

 int length = original.length;

 // Create a new array with size increased by 1

 int[] newArray = new int[length + 1];

 // Copy elements from the original array to the new array

 for (int i = 0; i < length; i++) {

 newArray[i] = original[i];

 }

 // Add the new element to the last position of the new array

 newArray[length] = element;

 return newArray;

 }

}

28

ArrayList

the ArrayList class is a part of the Java Collections Framework and provides a dynamic array-like data structure.

Unlike arrays, ArrayList can dynamically grow and shrink in size.

Importing the ArrayList class

import java.util.ArrayList;

Declaring an ArrayList
You can declare an ArrayList by specifying its type within angle brackets (< >)

ArrayList<String> names = new ArrayList<>();

Adding Elements
You can add elements to an ArrayList using the add method

names.add("Alice");

names.add("Bob");

names.add("Charlie");

Accessing Elements
You can access an element of an ArrayList using the get method

String firstPerson = names.get(0); // Gets the first element(index starts from 0)

Modifying Elements
You can modify an element of an ArrayList using the set method

names.set(1, "Robert"); // Changes the second element to "Robert"

Removing Elements
You can remove an element from an ArrayList by its index or by its value

names.remove(0); // Removes the first element

names.remove("Charlie"); // Removes the element "Charlie"

Getting the Size
You can find the number of elements in an ArrayList using the size method

int size = names.size();

29

Looping Through an ArrayList
You can loop through an ArrayList using a standard loop or an enhanced for loop

• Standard for loop

for (int i = 0; i < names.size(); i++) {

 System.out.println(names.get(i));

}
• Enhanced for loop

for (String name : names) {

 System.out.println(name);

}

Checking if an ArrayList Contains an Element
You can check if an ArrayList contains a specific element using the contains method

boolean hasAlice = names.contains("Alice");

30

Useful Examples

Multi-Constructor Abstraction

// Abstract class Shape to define the common properties and methods for different shapes

abstract class Shape {

 // Color of the shape

 protected String color;

 // Constructor to initialize the color

 public Shape(String color) {

 this.color = color;

 }

 // Abstract method to get the area of the shape

 public abstract double getArea();

 // Abstract method to resize the shape

 public abstract void resize(double factor);

 // Getter method for color

 public String getColor() {

 return color;

 }

}

// Class Square extending Shape

class Square extends Shape {

 // Side length of the square

 private double sideLength;

 // Constructor to initialize the side length and color

 public Square(double sideLength, String color) {

 super(color);

 this.sideLength = sideLength;

 }

 // Overridden method to get the area of the square

 @Override

 public double getArea() {

 return this.sideLength * this.sideLength;

 }

 // Method to resize the square

 public void resize(double factor) {

 this.sideLength *= factor;

 }

}

31

2190102 ADV COMP PROG Cheat Sheet - F

By @WasinUddy (✉️ ws@prometheuzdy.cloud)

32

Observer Pattern

The Observer Pattern is a widely used design pattern in software development, particularly useful when building

systems where the state of one object affects the state of others.

Key Concepts of Observer Pattern
• Subject (Observable) : This is the entity that holds the state. When its state changes, it needs to notify its

observers.

• Observers : These are the entities that need to be informed about the state changes in the subject. They

implement a common interface that allows the subject to notify them of any changes.

Benefits of Observer Pattern
• Loose Coupling : The subject does not need to know details about the observers, just that they implement a

specific interface.

• Dynamic Subscription : Objects can dynamically subscribe or unsubscribe from receiving updates.

Drawbacks of Observer Pattern
• Memory Leaks : Improper unsubscribe can lead to memory leaks.

33

Example Implementation of Observer Pattern

Define the Observer and Subject Interface

public interface Observer {

 void update(String message);

}

public interface Subject {

 void registerObserver(Observer o);

 void removeObserver(Observer o);

 void notifyObservers();

}

34

Implement the Observer and Subject

public class NewsReader implements Observer {

 private String name;

 public NewsReader(String name) {

 this.name = name;

 }

 @Override

 public void update(String news) {

 System.out.println(name + " received news: " + news);

 }

}

import java.util.ArrayList;

import java.util.List;

public class NewsAgency implements Subject {

 private List<Observer> observers = new ArrayList<>();

 private String news;

 public void setNews(String news) {

 this.news = news;

 notifyObservers();

 }

 @Override

 public void registerObserver(Observer o) {

 observers.add(o);

 }

 @Override

 public void removeObserver(Observer o) {

 observers.remove(o);

 }

 @Override

 public void notifyObservers() {

 for (Observer observer : observers) {

 observer.update(news);

 }

 }

}

35

Using the Pattern

public class Main {

 public static void main(String[] args) {

 NewsAgency agency = new NewsAgency();

 NewsReader reader1 = new NewsReader("Reader 1");

 NewsReader reader2 = new NewsReader("Reader 2");

 agency.registerObserver(reader1);

 agency.registerObserver(reader2);

 agency.setNews("New Java version released!");

 agency.removeObserver(reader2);

 agency.setNews("Another important news!");

 }

}

36

Decorator Pattern

The Decorator Pattern is used to extend or alter the functionality of objects at runtime by wrapping them in an

object of a decorator class. This provides a flexible alternative to using inheritance to modify behavior.

Key Concepts of Decorator Pattern
• Component: This is an interface or abstract class defining the methods that will be implemented. In our case,

it's the object to which new functionality will be added.

• Concrete Component: A class that implements the Component interface.

• Decorator: This is an abstract class that implements the Component interface and has a reference to a

Component object. It can also add additional functionality.

• Concrete Decorator: A class that extends the Decorator class and adds extra behaviors.

Benefits of Decorator Pattern
• More Flexibility than Inheritance : It allows extending the behavior of objects without modifying the original

class.

• Avoids Explosion : Instead of having many a hierarchy of classes to combine behaviors, you can mix and

match decorators as needed.

Drawbacks of Decorator Pattern
• Complexity : Using Decorator Pattern can lead to a hard to read code.

• Instantiation Management : Order of decorating pattern can lead to different results.

37

Example Implementation of Decorator Pattern

Define the Component

public interface Coffee {

 String getDescription();

 double getCost();

}

Define the Concrete Component

public class SimpleCoffee implements Coffee {

 @Override

 public String getDescription() {

 return "Simple Coffee";

 }

 @Override

 public double getCost() {

 return 2.0;

 }

}

Define the Decorator

public abstract class CoffeeDecorator implements Coffee {

 protected Coffee decoratedCoffee;

 public CoffeeDecorator(Coffee coffee) {

 this.decoratedCoffee = coffee;

 }

 public String getDescription() {

 return decoratedCoffee.getDescription();

 }

 public double getCost() {

 return decoratedCoffee.getCost();

 }

}

38

Define the Concrete Decorator

public class MilkDecorator extends CoffeeDecorator {

 public MilkDecorator(Coffee coffee) {

 super(coffee);

 }

 @Override

 public String getDescription() {

 return decoratedCoffee.getDescription() + ", with milk";

 }

 @Override

 public double getCost() {

 return decoratedCoffee.getCost() + 0.5;

 }

}

public class SugarDecorator extends CoffeeDecorator {

 public SugarDecorator(Coffee coffee) {

 super(coffee);

 }

 @Override

 public String getDescription() {

 return decoratedCoffee.getDescription() + ", with sugar";

 }

 @Override

 public double getCost() {

 return decoratedCoffee.getCost() + 0.2;

 }

}

Using the Pattern

public class Main {

 public static void main(String[] args) {

 Coffee simpleCoffee = new SimpleCoffee();

 System.out.println(simpleCoffee.getDescription() + " Cost: $" +

simpleCoffee.getCost());

 Coffee milkCoffee = new MilkDecorator(simpleCoffee);

 System.out.println(milkCoffee.getDescription() + " Cost: $" +

milkCoffee.getCost());

 Coffee milkSugarCoffee = new SugarDecorator(milkCoffee);

 System.out.println(milkSugarCoffee.getDescription() + " Cost: $" +

milkSugarCoffee.getCost());

 }

}

39

Factory Pattern

The Factory Pattern is a creational design pattern that provides an interface for creating objects in a superclass, but

allows subclasses to alter the type of objects that will be created. This pattern is particularly useful when a system

should be independent of how its objects are created, composed, and represented.

Key Concepts of Factory Pattern
• Product : The interface or abstract class defining the type of objects the factory method will create.

• Concrete Products : The actual implementations of the Product Interface.

• Factory : An Interface or abstract class that declares the factory that will return the Product.

• Concrete Factory : A subclass of Factory that overrides the factory method to return an instance of a

Concrete Product

Benefits of Factory Pattern
• Loose Coupling: The Factory Pattern promotes loose coupling by reducing the dependency of the application

on concrete classes.

• Single Responsibility Principle: The factory class handles the creation of objects, which separates the

responsibility of object creation from the object's usage.

• Open/Closed Principle: You can introduce new types of products without disturbing the existing client code.

Drawbacks of Factory Pattern
• Complexity: The code can become more complicated since it introduces several new classes and interfaces.

• Development Overhead: More classes and objects to manage can increase the complexity of the codebase.

40

Example Implementation of Factory Pattern

Define the Product

public interface Vehicle {

 void design();

 void manufacture();

}

Create Concrete Products

public class Car implements Vehicle {

 @Override

 public void design() {

 System.out.println("Designing a Car");

 }

 @Override

 public void manufacture() {

 System.out.println("Manufacturing a Car");

 }

}

public class Bike implements Vehicle {

 @Override

 public void design() {

 System.out.println("Designing a Bike");

 }

 @Override

 public void manufacture() {

 System.out.println("Manufacturing a Bike");

 }

}

Create the Factory

public abstract class VehicleFactory {

 public abstract Vehicle createVehicle(String type);

 // Other helper methods can be added here

}

41

Implement Concrete Factory

public class ConcreteVehicleFactory extends VehicleFactory {

 @Override

 public Vehicle createVehicle(String type) {

 if (type.equalsIgnoreCase("car")) {

 return new Car();

 } else if (type.equalsIgnoreCase("bike")) {

 return new Bike();

 }

 return null;

 }

}

Using the Factory

public class Main {

 public static void main(String[] args) {

 VehicleFactory factory = new ConcreteVehicleFactory();

 Vehicle car = factory.createVehicle("car");

 car.design();

 car.manufacture();

 Vehicle bike = factory.createVehicle("bike");

 bike.design();

 bike.manufacture();

 }

}

42

Singleton Pattern

The Singleton Pattern is a creational design pattern that ensures a class has only one instance and provides a global

point of access to that instance. It's commonly used when exactly one object is needed to coordinate actions across

the system, such as in database connections or logging.

Key Concepts of Singleton Pattern
The Singleton Pattern restricts the instantiation of a class to a single object and provides a way to access that object

from anywhere in the application. This is achieved by:

• Making the constructor private to prevent the use of the new operator.

• Creating a static method that acts as a constructor. This method calls the constructor to create an object if

one doesn't exist and returns the object if it already exists.

43

Implementation of Singleton Pattern

Define Singleton Class

public class Government {

 private static Government instance = new Government("Democratic");

 private String type;

 private int numberOfPoliciesEnacted;

 // Private constructor with government type

 private Government(String type) {

 this.type = type;

 this.numberOfPoliciesEnacted = 0;

 // Initialize other properties and departments

 }

 // Public method to access the single instance

 public static Government getInstance() {

 return instance;

 }

 public void createPolicy(String policyName) {

 numberOfPoliciesEnacted++;

 System.out.println("Policy enacted: " + policyName + ". Total policies: " +

numberOfPoliciesEnacted);

 }

 public String getType() {

 return type;

 }

 // Other government functions...

}

Using the Singleton

public class Main {

 public static void main(String[] args) {

 // Get the single instance of Government

 Government government = Government.getInstance();

 // Display government type

 System.out.println("Government type: " + government.getType());

 // Use the government instance to create policies

 government.createPolicy("Healthcare Reform");

 government.createPolicy("Education System Improvement");

 }

}

44

Define 2nd Singleton Class

public class Government {

 private static Government instance = new Government();

 private String type;

 private Government() {

 // Default type

 this.type = "Democratic";

 }

 public static Government getInstance() {

 return instance;

 }

 public void setType(String type) {

 this.type = type;

 }

 public String getType() {

 return type;

 }

 public void createPolicy(String policyName) {

 System.out.println(type + " Government Policy enacted: " + policyName);

 }

}

Using 2nd Singleton class

public class Main {

 public static void main(String[] args) {

 // Get the single instance of Government

 Government government = Government.getInstance();

 // Initially, the government is Democratic

 government.createPolicy("Free Market Policy");

 // Change the government type to Communist

 government.setType("Communist");

 government.createPolicy("Five-Year Plan");

 // The government type can be changed again if needed

 // government.setType("Democratic");

 }

}

45

Introduction to JavaScript

JavaScript is a versatile scripting language primarily used for creating interactive features on web pages. It is an

essential part of web development alongside HTML and CSS. JavaScript can be used for both client-side (in the

browser) and server-side (on the server, e.g., Node.js) programming.

Basic Syntax

Statements
JavaScript instructions are called statements and are separated by semicolons (;).

let x = 5;

let y = 6;

let sum = x + y;

console.log(sum); // Outputs: 11

Comments
Use // for single-line comments and /* */ for multi-line comments.

// This is a single-line comment

/*

This is a multi-line comment

*/

46

Variables and Data Types

Variables
Declared with var, let (block scope) or const (constant)

let message = "Hello, world!";

const pi = 3.14;

Data Types
JavaScript is a dynamically typed language. The main data types are:

• Number: Both integers and floats.

• String: Textual data.

• Boolean: true or false.

• Undefined: A variable that has not been assigned a value.

• Null: Denotes a null value.

• Object: For more complex data structures.

• Array: A list-like object.

let age = 30; // Number

let name = "Alice"; // String

let isAdult = true; // Boolean

let undef; // Undefined

let empty = null; // Null

let user = { // Object

 firstName: "Bob",

 lastName: "Smith"

};

let colors = ["Red", "Green", "Blue"]; // Array

47

Control Structures

Conditional Statements

if (age >= 18) {

 console.log("Adult");

} else {

 console.log("Minor");

}

Switch Statement

switch (color) {

 case "Red":

 console.log("Color is Red");

 break;

 case "Blue":

 console.log("Color is Blue");

 break;

 default:

 console.log("Different Color");

}

Loops

For Loop

for (let i = 0; i < 5; i++) {

 console.log(i);

}

While Loop

let i = 0;

while (i < 5) {

 console.log(i);

 i++;

}

Do-While Loop

let i = 0;

do {

 console.log(i);

 i++;

} while (i < 5);

48

Functions

Function Declaration

function greet(name) {

 return "Hello, " + name + "!";

}

console.log(greet("Alice")); // Outputs: Hello, Alice!

Arrow Functions

const add = (a, b) => a + b;

console.log(add(5, 3)); // Outputs: 8

Arrays and Objects

Arrays

let fruits = ["Apple", "Banana", "Cherry"];

console.log(fruits[0]); // Outputs: Apple

Objects

let person = {

 firstName: "John",

 lastName: "Doe",

 age: 30

};

console.log(person.firstName); // Outputs: John

49

Asynchronous Programming

Asynchronous programming in JavaScript is a critical concept, especially in modern web development where tasks

like fetching data from a server, reading files, or executing time-consuming logic are common. It allows JavaScript to

perform these tasks without blocking the main thread, ensuring a smooth user experience. Let's dive into the key

concepts and techniques.

Key Concepts of Asynchronous Programming
• Synchronous vs Asynchronous: In synchronous operations, tasks are performed one after another. In

contrast, asynchronous operations allow JavaScript to start a task and move on to the next one without

waiting for the previous task to finish.

• Event Loop: JavaScript has a single-threaded runtime model based on an event loop. The event loop

continuously checks the queue of pending tasks and executes them when possible, without blocking the

main thread.

• Callbacks: The most basic method for asynchronous programming. A callback is a function passed into

another function as an argument and is executed after a task is completed.

• Promises: A more advanced way of handling asynchronous operations. A Promise represents a value that

may not be available yet but will be resolved at some point in the future.

• Async/Await: Introduced in ES8, async/await is syntactic sugar built on top of Promises, making

asynchronous code easier to write and read.

50

Callbacks

Callbacks are functions passed as arguments to another function and are executed after a task is completed. They’re

the foundation of asynchronous programming in JavaScript

Basic Concepts
You provide a function (the callback) to another function, telling it to execute the callback after completing a task

Handling Asynchronous Operations
For operations like reading files, network requests, or timers, callbacks are used to continue the flow of the program

once the operation is completed.

Example Implementation of Callbacks

function download(url, callback) {

 setTimeout(() => { // Simulate a time-consuming task

 console.log(`Downloading ${url} ...`);

 callback(url.split('/').pop());

 }, 2000);

}

download('http://example.com/file', function(fileName) {

 console.log(`Processing the downloaded file: ${fileName}`);

});

51

Promise

Promises are an evolution of callbacks, providing a more robust way to handle asynchronous operations.

Basic Concepts
• States: A Promise can be in one of three states: pending, resolved (fulfilled), or rejected.

• Chaining: Promises can be chained, allowing for sequential execution of asynchronous operations.

• Error Handling: .catch() method provides a cleaner way to handle errors compared to callbacks.

Example Implementation of Promise

function fetchData(url) {

 return new Promise((resolve, reject) => {

 setTimeout(() => {

 if(url) {

 resolve(`Data from ${url}`);

 } else {

 reject('No URL provided');

 }

 }, 1000);

 });

}

fetchData('http://example.com/data')

 .then(data => console.log(data))

 .catch(error => console.error(error));

52

Async/Await

Async/await is syntactic sugar built on top of promises, making asynchronous code look synchronous and more

readable.

Basic Concepts
• Async Function: Declared with the async keyword. It always returns a promise.

• Await Keyword: Used inside an async function to wait for a promise to resolve.

• Error Handling: Async functions can use traditional try-catch blocks for error handling.

async function fetchData(url) {

 return new Promise((resolve, reject) => {

 setTimeout(() => {

 if(url) {

 resolve(`Data from ${url}`);

 } else {

 reject('No URL provided');

 }

 }, 1000);

 });

}

async function loadData() {

 try {

 const data = await fetchData('http://example.com/data');

 console.log(data);

 } catch (error) {

 console.error(error);

 }

}

loadData();

53

API Calls

API calls are a fundamental part of modern web development in JavaScript, allowing your application to

communicate with external services and servers. Two popular ways to make these calls in JavaScript are using the

fetch() API and the Axios library. Let's delve into each of these.

How to Use:
• Basic GET Request: Fetch data from a URL.

• Handling Response: The response of a fetch call is a stream object, which can be converted into the desired

format, typically JSON.

• Error Handling: Use .catch() to handle network errors. However, fetch won't reject an HTTP error status even

if the response is an HTTP 404 or 500.

fetch('https://api.example.com/data')

 .then(response => {

 if (!response.ok) {

 throw new Error('Network response was not ok');

 }

 return response.json();

 })

 .then(data => console.log(data))

 .catch(error => console.error('There was a problem with the fetch operation:', error));

Processing the Response

.then(response => {

 if (!response.ok) {

 throw new Error('Network response was not ok');

 }

 return response.json();

})

• .then(response => {...}): This is a Promise handler. When the fetch request is completed, it processes the

response.

• response: This object contains the response of the fetch request.

• if (!response.ok): The ok property of the response is a boolean indicating whether the response was

successful (status in the range 200–299) or not.

• throw new Error('Network response was not ok'): If the response was not successful (e.g., 404 or 500 HTTP

status), an error is thrown. This will be caught in the .catch() block.

• return response.json(): If the response is successful, this line reads the body of the response and returns it

as a Promise that resolves with the result of parsing the body text as JSON. This is because the data returned

from the server is often in JSON format.

54

Handling the Data

.then(data => console.log(data))

• This .then() is chained to handle the resolution of the response.json() promise.

• data: This represents the parsed JSON data received from the previous .then().

• console.log(data): It logs the parsed data to the console. In a real application, you might do something more

complex with this data, like updating the UI.

Catching Errors

.catch(error => console.error('There was a problem with the fetch operation:', error));

• .catch(error => {...}): This block catches any errors that occur during the fetch operation or processing in the

.then() blocks.

• error: This represents the error that was caught.

• console.error('There was a problem with the fetch operation:', error): This logs the error to the console. In

a production environment, you might handle it by showing a message to the user or sending the error to a

logging service.

55

DOM Manipulation

DOM manipulation in JavaScript is a fundamental concept for web development, allowing you to dynamically change

the content and appearance of your web pages. The DOM (Document Object Model) is a programming interface for

HTML and XML documents. It represents the page so that programs can change the document structure, style, and

content. Here's a guide to some of the key aspects of DOM manipulation

Accessing Elements
JavaScript provides several methods to access and select elements from the DOM:

• getElementById: Selects an element by its ID.

• getElementsByClassName: Selects all elements that have a given class name.

• getElementsByTagName: Selects all elements with a specific tag name.

• querySelector: Uses CSS selectors to select the first matching element.

• querySelectorAll: Uses CSS selectors to select all matching elements.

const element = document.getElementById('myElement');

const classElements = document.getElementsByClassName('myClass');

const tagElements = document.getElementsByTagName('p');

const queryElement = document.querySelector('.myClass');

const queryAllElements = document.querySelectorAll('div.myClass');

Changing Content
• textContent: Sets or returns the textual content of an element and its descendants.

• innerHTML: Sets or gets the HTML or XML markup contained within the element.

element.textContent = 'New text content';

element.innerHTML = 'New HTML content';

Manipulate CSS
You can manipulate the style of an element by accessing the style property

element.style.color = 'blue';

element.style.backgroundColor = 'yellow';

Adding and Removing Elements
• createElement: Creates a new element.

• appendChild: Adds a new child element to an element.

• removeChild: Removes a child element from an element.

const newElement = document.createElement('div');

newElement.textContent = 'Hello, World!';

document.body.appendChild(newElement);

const parentElement = document.getElementById('parent');

parentElement.removeChild(newElement);

56

Event Handling
Add event listeners to elements to handle user interactions like clicks, form submissions, key presses, etc.

element.addEventListener('click', function() {

 console.log('Element clicked!');

});

Attributes
Set or get attributes like src, href, id, etc., of an element.

const image = document.querySelector('img');

image.setAttribute('src', 'image.jpg');

let srcValue = image.getAttribute('src');

57

HTML (HyperText Markup Language)

HTML is the standard markup language for documents designed to be displayed in a web browser. It can be assisted

by technologies like Cascading Style Sheets (CSS) and scripting languages like JavaScript.

Basic Structure of an HTML Document:

<!DOCTYPE html>

<html>

<head>

 <title>Page Title</title>

</head>

<body>

 <h1>My First Heading</h1>

 <p>My first paragraph.</p>

 <script>

 // JavaScript code can be placed here

 </script>

</body>

</html>

• <!DOCTYPE html>: Declares the document type and HTML version.

• <html>: The root element of an HTML page.

• <head>: Contains meta-information about the HTML document, like its title.

• <title>: Specifies a title for the document.

• <body>: Contains the visible page content.

• <h1>, <p>: HTML elements like headings, paragraphs, etc.

• <script>: Where JavaScript code is placed.

