diff --git a/document/core/exec/instructions.rst b/document/core/exec/instructions.rst index 5844e8b35..2059785dd 100644 --- a/document/core/exec/instructions.rst +++ b/document/core/exec/instructions.rst @@ -396,7 +396,7 @@ SIMD instructions are defined in terms of generic numeric operators applied lane 5. Let :math:`t_2` be the type :math:`\unpacked(t_1\K{x}N)`. -6. Let :math:`c_2` be the result of computing :math:`\extend^{sx^?}_{|t_1|,|t_2|}(i^\ast[x])`. +6. Let :math:`c_2` be the result of computing :math:`\extend^{sx^?}_{t_1,t_2}(i^\ast[x])`. 7. Push the value :math:`t_2.\CONST~c_2` to the stack. @@ -408,7 +408,7 @@ SIMD instructions are defined in terms of generic numeric operators applied lane \\ \qquad \begin{array}[t]{@{}r@{~}l@{}} (\iff & t_2 = \unpacked(t_1\K{x}N) \\ - \wedge & c_2 = \extend^{sx^?}_{|t_1|,|t_2|}(\lanes_{t_1\K{x}N}(c_1)[x]) + \wedge & c_2 = \extend^{sx^?}_{t_1,t_2}(\lanes_{t_1\K{x}N}(c_1)[x]) \end{array} \end{array} @@ -430,9 +430,9 @@ SIMD instructions are defined in terms of generic numeric operators applied lane 6. Pop the value :math:`\V128.\VCONST~c_2` from the stack. -7. Let :math:`i_2^\ast` be the sequence :math:`\lanes_{\shape}(c_2)`. +7. Let :math:`i^\ast` be the sequence :math:`\lanes_{\shape}(c_2)`. -8. Let :math:`c` be the result of computing :math:`\lanes^{-1}_{\shape}(i_2^\ast \with [x] = c_1)` +8. Let :math:`c` be the result of computing :math:`\lanes^{-1}_{\shape}(i^\ast \with [x] = c_1)` 9. Push :math:`\V128.\VCONST~c` on the stack. @@ -443,8 +443,8 @@ SIMD instructions are defined in terms of generic numeric operators applied lane \end{array} \\ \qquad \begin{array}[t]{@{}r@{~}l@{}} - (\iff & i_2^\ast = \lanes_{\shape}(c_2)) \\ - \wedge & c = \lanes^{-1}_{\shape}(i_2^\ast \with [x] = c_1) + (\iff & i^\ast = \lanes_{\shape}(c_2)) \\ + \wedge & c = \lanes^{-1}_{\shape}(i^\ast \with [x] = c_1) \end{array} \end{array} @@ -680,9 +680,9 @@ SIMD instructions are defined in terms of generic numeric operators applied lane 2. Pop the value :math:`\V128.\VCONST~c_1` from the stack. -3. Let :math:`i_1^N` be the sequence :math:`\lanes_{t_1\K{x}M}(c_1)[0 \slice N]`. +3. Let :math:`i^\ast` be the sequence :math:`\lanes_{t_1\K{x}M}(c_1)[0 \slice N]`. -4. Let :math:`c` be the result of computing :math:`\lanes^{-1}_{t_2\K{x}N}((\extend^{\sx}_{t_1,t_2}(i_1))^N)` +4. Let :math:`c` be the result of computing :math:`\lanes^{-1}_{t_2\K{x}N}(\extend^{\sx}_{t_1,t_2}(i^\ast))` 5. Push the value :math:`\V128.\VCONST~c` onto the stack. @@ -693,8 +693,8 @@ SIMD instructions are defined in terms of generic numeric operators applied lane \end{array} \\ \qquad \begin{array}[t]{@{}r@{~}l@{}} - (\iff & i_1^N = \lanes_{t_1\K{x}M}(c_1)[0 \slice N] \\ - \wedge & c = \lanes^{-1}_{t_2\K{x}N}((\extend^{\sx}_{M,N}(i_1))^N) + (\iff & i^\ast = \lanes_{t_1\K{x}M}(c_1)[0 \slice N] \\ + \wedge & c = \lanes^{-1}_{t_2\K{x}N}(\extend^{\sx}_{M,N}(i^\ast)) \end{array} \end{array} @@ -706,9 +706,9 @@ SIMD instructions are defined in terms of generic numeric operators applied lane 2. Pop the value :math:`\V128.\VCONST~c_1` from the stack. -3. Let :math:`i_1^N` be the sequence :math:`\lanes_{t_1\K{x}M}(c_1)[N \slice N]`. +3. Let :math:`i^\ast` be the sequence :math:`\lanes_{t_1\K{x}M}(c_1)[N \slice N]`. -4. Let :math:`c` be the result of computing :math:`\lanes^{-1}_{t_2\K{x}N}((\extend^{\sx}_{t_1,t_2}(i_1))^N)` +4. Let :math:`c` be the result of computing :math:`\lanes^{-1}_{t_2\K{x}N}(\extend^{\sx}_{t_1,t_2}(i^\ast))` 5. Push the value :math:`\V128.\VCONST~c` onto the stack. @@ -719,8 +719,8 @@ SIMD instructions are defined in terms of generic numeric operators applied lane \end{array} \\ \qquad \begin{array}[t]{@{}r@{~}l@{}} - (\iff & i_1^N = \lanes_{t_1\K{x}M}(c_1)[N \slice N] \\ - \wedge & c = \lanes^{-1}_{t_2\K{x}N}((\extend^{\sx}_{M,N}(i_1))^N) + (\iff & i^\ast = \lanes_{t_1\K{x}M}(c_1)[N \slice N] \\ + \wedge & c = \lanes^{-1}_{t_2\K{x}N}(\extend^{\sx}_{M,N}(i^\ast)) \end{array} \end{array}