-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathDFGCSEPhase.cpp
995 lines (852 loc) · 36.7 KB
/
DFGCSEPhase.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
/*
* Copyright (C) 2011-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGCSEPhase.h"
#if ENABLE(DFG_JIT)
#include "ButterflyInlines.h"
#include "DFGAbstractHeap.h"
#include "DFGBlockMapInlines.h"
#include "DFGClobberSet.h"
#include "DFGClobberize.h"
#include "DFGDominators.h"
#include "DFGGraph.h"
#include "DFGPhase.h"
namespace JSC { namespace DFG {
// This file contains two CSE implementations: local and global. LocalCSE typically runs when we're
// in DFG mode, i.e. we want to compile quickly. LocalCSE contains a lot of optimizations for
// compile time. GlobalCSE, on the other hand, is fairly straight-forward. It will find more
// optimization opportunities by virtue of being global.
namespace {
namespace DFGCSEPhaseInternal {
static constexpr bool verbose = false;
}
class ImpureDataSlot {
WTF_MAKE_NONCOPYABLE(ImpureDataSlot);
WTF_MAKE_FAST_ALLOCATED;
public:
ImpureDataSlot(HeapLocation key, LazyNode value, unsigned hash)
: key(key), value(value), hash(hash)
{ }
HeapLocation key;
LazyNode value;
unsigned hash;
};
struct ImpureDataSlotHash : public DefaultHash<std::unique_ptr<ImpureDataSlot>> {
static unsigned hash(const std::unique_ptr<ImpureDataSlot>& key)
{
return key->hash;
}
static bool equal(const std::unique_ptr<ImpureDataSlot>& a, const std::unique_ptr<ImpureDataSlot>& b)
{
// The ImpureDataSlot are unique per table per HeapLocation. This lets us compare the key
// by just comparing the pointers of the unique ImpureDataSlots.
ASSERT(a != b || a->key == b->key);
return a == b;
}
};
struct ImpureDataTranslator {
static unsigned hash(const HeapLocation& key)
{
return key.hash();
}
static bool equal(const std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key)
{
if (!slot)
return false;
if (HashTraits<std::unique_ptr<ImpureDataSlot>>::isDeletedValue(slot))
return false;
return slot->key == key;
}
static void translate(std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key, unsigned hashCode)
{
new (NotNull, std::addressof(slot)) std::unique_ptr<ImpureDataSlot>(new ImpureDataSlot {key, LazyNode(), hashCode});
}
};
class ImpureMap {
WTF_MAKE_FAST_ALLOCATED;
WTF_MAKE_NONCOPYABLE(ImpureMap);
public:
ImpureMap() = default;
ImpureMap(ImpureMap&& other)
{
m_abstractHeapStackMap.swap(other.m_abstractHeapStackMap);
m_fallbackStackMap.swap(other.m_fallbackStackMap);
m_heapMap.swap(other.m_heapMap);
#if !defined(NDEBUG)
m_debugImpureData.swap(other.m_debugImpureData);
#endif
}
const ImpureDataSlot* add(const HeapLocation& location, const LazyNode& node)
{
const ImpureDataSlot* result = addImpl(location, node);
#if !defined(NDEBUG)
auto addResult = m_debugImpureData.add(location, node);
ASSERT(!!result == !addResult.isNewEntry);
#endif
return result;
}
LazyNode get(const HeapLocation& location) const
{
LazyNode result = getImpl(location);
#if !defined(NDEBUG)
ASSERT(result == m_debugImpureData.get(location));
#endif
return result;
}
void clobber(AbstractHeap heap, bool clobberConservatively)
{
switch (heap.kind()) {
case World: {
clear();
break;
}
case SideState:
break;
case Stack: {
ASSERT(!heap.payload().isTop());
m_abstractHeapStackMap.remove(heap.payload().value());
if (clobberConservatively)
m_fallbackStackMap.clear();
else
clobber(m_fallbackStackMap, heap);
break;
}
default:
if (clobberConservatively)
m_heapMap.clear();
else
clobber(m_heapMap, heap);
break;
}
#if !defined(NDEBUG)
m_debugImpureData.removeIf([heap, clobberConservatively, this](const HashMap<HeapLocation, LazyNode>::KeyValuePairType& pair) -> bool {
switch (heap.kind()) {
case World:
case SideState:
break;
case Stack: {
if (!clobberConservatively)
break;
if (pair.key.heap().kind() == Stack) {
auto iterator = m_abstractHeapStackMap.find(pair.key.heap().payload().value());
if (iterator != m_abstractHeapStackMap.end() && iterator->value->key == pair.key)
return false;
return true;
}
break;
}
default: {
if (!clobberConservatively)
break;
AbstractHeapKind kind = pair.key.heap().kind();
if (kind != World && kind != SideState && kind != Stack)
return true;
break;
}
}
return heap.overlaps(pair.key.heap());
});
ASSERT(m_debugImpureData.size()
== (m_heapMap.size()
+ m_abstractHeapStackMap.size()
+ m_fallbackStackMap.size()));
const bool verifyClobber = false;
if (verifyClobber) {
for (auto& pair : m_debugImpureData)
ASSERT(!!get(pair.key));
}
#endif
}
void clear()
{
m_abstractHeapStackMap.clear();
m_fallbackStackMap.clear();
m_heapMap.clear();
#if !defined(NDEBUG)
m_debugImpureData.clear();
#endif
}
private:
typedef HashSet<std::unique_ptr<ImpureDataSlot>, ImpureDataSlotHash> Map;
const ImpureDataSlot* addImpl(const HeapLocation& location, const LazyNode& node)
{
switch (location.heap().kind()) {
case World:
case SideState:
RELEASE_ASSERT_NOT_REACHED();
case Stack: {
AbstractHeap abstractHeap = location.heap();
if (abstractHeap.payload().isTop())
return add(m_fallbackStackMap, location, node);
auto addResult = m_abstractHeapStackMap.add(abstractHeap.payload().value(), nullptr);
if (addResult.isNewEntry) {
addResult.iterator->value.reset(new ImpureDataSlot {location, node, 0});
return nullptr;
}
if (addResult.iterator->value->key == location)
return addResult.iterator->value.get();
return add(m_fallbackStackMap, location, node);
}
default:
return add(m_heapMap, location, node);
}
return nullptr;
}
LazyNode getImpl(const HeapLocation& location) const
{
switch (location.heap().kind()) {
case World:
case SideState:
RELEASE_ASSERT_NOT_REACHED();
case Stack: {
auto iterator = m_abstractHeapStackMap.find(location.heap().payload().value());
if (iterator != m_abstractHeapStackMap.end()
&& iterator->value->key == location)
return iterator->value->value;
return get(m_fallbackStackMap, location);
}
default:
return get(m_heapMap, location);
}
return LazyNode();
}
static const ImpureDataSlot* add(Map& map, const HeapLocation& location, const LazyNode& node)
{
auto result = map.add<ImpureDataTranslator>(location);
if (result.isNewEntry) {
(*result.iterator)->value = node;
return nullptr;
}
return result.iterator->get();
}
static LazyNode get(const Map& map, const HeapLocation& location)
{
auto iterator = map.find<ImpureDataTranslator>(location);
if (iterator != map.end())
return (*iterator)->value;
return LazyNode();
}
static void clobber(Map& map, AbstractHeap heap)
{
map.removeIf([heap](const std::unique_ptr<ImpureDataSlot>& slot) -> bool {
return heap.overlaps(slot->key.heap());
});
}
// The majority of Impure Stack Slots are unique per value.
// This is very useful for fast clobber(), we can just remove the slot addressed by AbstractHeap
// in O(1).
//
// When there are conflict, any additional HeapLocation is added in the fallback map.
// This works well because fallbackStackMap remains tiny.
//
// One cannot assume a unique ImpureData is in m_abstractHeapStackMap. It may have been
// a duplicate in the past and now only live in m_fallbackStackMap.
//
// Obviously, TOP always goes into m_fallbackStackMap since it does not have a unique value.
HashMap<int64_t, std::unique_ptr<ImpureDataSlot>, DefaultHash<int64_t>, WTF::SignedWithZeroKeyHashTraits<int64_t>> m_abstractHeapStackMap;
Map m_fallbackStackMap;
Map m_heapMap;
#if !defined(NDEBUG)
HashMap<HeapLocation, LazyNode> m_debugImpureData;
#endif
};
class LocalCSEPhase : public Phase {
public:
LocalCSEPhase(Graph& graph)
: Phase(graph, "local common subexpression elimination")
, m_smallBlock(graph)
, m_largeBlock(graph)
, m_hugeBlock(graph)
{
}
bool run()
{
ASSERT(m_graph.m_fixpointState == FixpointNotConverged);
ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == LoadStore);
bool changed = false;
m_graph.clearReplacements();
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
if (block->size() <= SmallMaps::capacity)
changed |= m_smallBlock.run(block);
else if (block->size() <= Options::maxDFGNodesInBasicBlockForPreciseAnalysis())
changed |= m_largeBlock.run(block);
else
changed |= m_hugeBlock.run(block);
}
return changed;
}
private:
class SmallMaps {
public:
// This permits SmallMaps to be used for blocks that have up to 100 nodes. In practice,
// fewer than half of the nodes in a block have pure defs, and even fewer have impure defs.
// Thus, a capacity limit of 100 probably means that somewhere around ~40 things may end up
// in one of these "small" list-based maps. That number still seems largeish, except that
// the overhead of HashMaps can be quite high currently: clearing them, or even removing
// enough things from them, deletes (or resizes) their backing store eagerly. Hence
// HashMaps induce a lot of malloc traffic.
static constexpr unsigned capacity = 100;
SmallMaps()
: m_pureLength(0)
, m_impureLength(0)
{
}
void clear()
{
m_pureLength = 0;
m_impureLength = 0;
}
void write(AbstractHeap heap)
{
if (heap.kind() == SideState)
return;
for (unsigned i = 0; i < m_impureLength; ++i) {
if (heap.overlaps(m_impureMap[i].key.heap()))
m_impureMap[i--] = m_impureMap[--m_impureLength];
}
}
Node* addPure(PureValue value, Node* node)
{
for (unsigned i = m_pureLength; i--;) {
if (m_pureMap[i].key == value)
return m_pureMap[i].value;
}
RELEASE_ASSERT(m_pureLength < capacity);
m_pureMap[m_pureLength++] = WTF::KeyValuePair<PureValue, Node*>(value, node);
return nullptr;
}
LazyNode findReplacement(HeapLocation location)
{
for (unsigned i = m_impureLength; i--;) {
if (m_impureMap[i].key == location)
return m_impureMap[i].value;
}
return nullptr;
}
LazyNode addImpure(HeapLocation location, LazyNode node)
{
// FIXME: If we are using small maps, we must not def() derived values.
// For now the only derived values we def() are constant-based.
if (location.index() && !location.index().isNode())
return nullptr;
if (LazyNode result = findReplacement(location))
return result;
RELEASE_ASSERT(m_impureLength < capacity);
m_impureMap[m_impureLength++] = WTF::KeyValuePair<HeapLocation, LazyNode>(location, node);
return nullptr;
}
private:
WTF::KeyValuePair<PureValue, Node*> m_pureMap[capacity];
WTF::KeyValuePair<HeapLocation, LazyNode> m_impureMap[capacity];
unsigned m_pureLength;
unsigned m_impureLength;
};
class LargeMaps {
public:
LargeMaps()
{
}
void clear()
{
m_pureMap.clear();
m_impureMap.clear();
}
void write(AbstractHeap heap)
{
bool clobberConservatively = false;
m_impureMap.clobber(heap, clobberConservatively);
}
Node* addPure(PureValue value, Node* node)
{
auto result = m_pureMap.add(value, node);
if (result.isNewEntry)
return nullptr;
return result.iterator->value;
}
LazyNode findReplacement(HeapLocation location)
{
return m_impureMap.get(location);
}
LazyNode addImpure(const HeapLocation& location, const LazyNode& node)
{
if (const ImpureDataSlot* slot = m_impureMap.add(location, node))
return slot->value;
return LazyNode();
}
private:
HashMap<PureValue, Node*> m_pureMap;
ImpureMap m_impureMap;
};
// This is used only for huge basic blocks. Our usual CSE is quadratic complexity for # of DFG nodes in a basic block.
// HugeMaps model results conservatively to avoid an O(N^2) algorithm. In particular, we clear all the slots of the specified heap kind
// in ImpureMap instead of iterating slots and removing a matched slot. This change makes the complexity O(N).
// FIXME: We can make LargeMap O(N) without introducing conservative behavior if we track clobbering by hierarchical epochs.
// https://bugs.webkit.org/show_bug.cgi?id=200014
class HugeMaps {
public:
HugeMaps() = default;
void clear()
{
m_pureMap.clear();
m_impureMap.clear();
}
void write(AbstractHeap heap)
{
bool clobberConservatively = true;
m_impureMap.clobber(heap, clobberConservatively);
}
Node* addPure(PureValue value, Node* node)
{
auto result = m_pureMap.add(value, node);
if (result.isNewEntry)
return nullptr;
return result.iterator->value;
}
LazyNode findReplacement(HeapLocation location)
{
return m_impureMap.get(location);
}
LazyNode addImpure(const HeapLocation& location, const LazyNode& node)
{
if (const ImpureDataSlot* slot = m_impureMap.add(location, node))
return slot->value;
return LazyNode();
}
private:
HashMap<PureValue, Node*> m_pureMap;
ImpureMap m_impureMap;
};
template<typename Maps>
class BlockCSE {
public:
BlockCSE(Graph& graph)
: m_graph(graph)
, m_insertionSet(graph)
{
}
bool run(BasicBlock* block)
{
m_maps.clear();
m_changed = false;
m_block = block;
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
m_node = block->at(nodeIndex);
m_graph.performSubstitution(m_node);
if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) {
m_node->replaceWith(m_graph, m_node->child1().node());
m_changed = true;
} else {
// This rule only makes sense for local CSE, since in SSA form we have already
// factored the bounds check out of the PutByVal. It's kind of gross, but we
// still have reason to believe that PutByValAlias is a good optimization and
// that it's better to do it with a single node rather than separating out the
// CheckInBounds.
if (m_node->op() == PutByVal || m_node->op() == PutByValDirect) {
HeapLocation heap;
Node* base = m_graph.varArgChild(m_node, 0).node();
Node* index = m_graph.varArgChild(m_node, 1).node();
LocationKind indexedPropertyLoc = indexedPropertyLocForResultType(m_node->result());
ArrayMode mode = m_node->arrayMode();
switch (mode.type()) {
case Array::Int32:
if (!mode.isInBounds())
break;
heap = HeapLocation(indexedPropertyLoc, IndexedInt32Properties, base, index);
break;
case Array::Double: {
if (!mode.isInBounds())
break;
LocationKind kind = mode.isInBoundsSaneChain() ? IndexedPropertyDoubleSaneChainLoc : IndexedPropertyDoubleLoc;
heap = HeapLocation(kind, IndexedDoubleProperties, base, index);
break;
}
case Array::Contiguous:
if (!mode.isInBounds())
break;
heap = HeapLocation(indexedPropertyLoc, IndexedContiguousProperties, base, index);
break;
case Array::Int8Array:
case Array::Int16Array:
case Array::Int32Array:
case Array::Uint8Array:
case Array::Uint8ClampedArray:
case Array::Uint16Array:
case Array::Uint32Array:
case Array::Float32Array:
case Array::Float64Array:
if (!mode.isInBounds())
break;
heap = HeapLocation(
indexedPropertyLoc, TypedArrayProperties, base, index);
break;
default:
break;
}
if (!!heap && m_maps.findReplacement(heap))
m_node->setOp(PutByValAlias);
}
clobberize(m_graph, m_node, *this);
}
}
m_insertionSet.execute(block);
return m_changed;
}
void read(AbstractHeap) { }
void write(AbstractHeap heap)
{
m_maps.write(heap);
}
void def(PureValue value)
{
Node* match = m_maps.addPure(value, m_node);
if (!match)
return;
m_node->replaceWith(m_graph, match);
m_changed = true;
}
void def(const HeapLocation& location, const LazyNode& value)
{
LazyNode match = m_maps.addImpure(location, value);
if (!match)
return;
if (m_node->op() == GetLocal) {
// Usually the CPS rethreading phase does this. But it's OK for us to mess with
// locals so long as:
//
// - We dethread the graph. Any changes we make may invalidate the assumptions of
// our CPS form, particularly if this GetLocal is linked to the variablesAtTail.
//
// - We don't introduce a Phantom for the child of the GetLocal. This wouldn't be
// totally wrong but it would pessimize the code. Just because there is a
// GetLocal doesn't mean that the child was live. Simply rerouting the all uses
// of this GetLocal will preserve the live-at-exit information just fine.
//
// We accomplish the latter by just clearing the child; then the Phantom that we
// introduce won't have children and so it will eventually just be deleted.
m_node->child1() = Edge();
m_graph.dethread();
}
if (value.isNode() && value.asNode() == m_node) {
match.ensureIsNode(m_insertionSet, m_block, 0)->owner = m_block;
ASSERT(match.isNode());
m_node->replaceWith(m_graph, match.asNode());
m_changed = true;
}
}
private:
Graph& m_graph;
bool m_changed;
Node* m_node;
BasicBlock* m_block;
Maps m_maps;
InsertionSet m_insertionSet;
};
BlockCSE<SmallMaps> m_smallBlock;
BlockCSE<LargeMaps> m_largeBlock;
BlockCSE<HugeMaps> m_hugeBlock;
};
class GlobalCSEPhase : public Phase {
public:
GlobalCSEPhase(Graph& graph)
: Phase(graph, "global common subexpression elimination")
, m_impureDataMap(graph)
, m_insertionSet(graph)
{
}
bool run()
{
ASSERT(m_graph.m_fixpointState == FixpointNotConverged);
ASSERT(m_graph.m_form == SSA);
m_graph.initializeNodeOwners();
m_graph.ensureSSADominators();
m_preOrder = m_graph.blocksInPreOrder();
// First figure out what gets clobbered by blocks. Node that this uses the preOrder list
// for convenience only.
for (unsigned i = m_preOrder.size(); i--;) {
m_block = m_preOrder[i];
m_impureData = &m_impureDataMap[m_block];
for (unsigned nodeIndex = m_block->size(); nodeIndex--;)
addWrites(m_graph, m_block->at(nodeIndex), m_impureData->writes);
}
// Based on my experience doing this before, what follows might have to be made iterative.
// Right now it doesn't have to be iterative because everything is dominator-bsed. But when
// validation is enabled, we check if iterating would find new CSE opportunities.
bool changed = iterate();
// FIXME: It should be possible to assert that CSE will not find any new opportunities if you
// run it a second time. Unfortunately, we cannot assert this right now. Note that if we did
// this, we'd have to first reset all of our state.
// https://bugs.webkit.org/show_bug.cgi?id=145853
return changed;
}
bool iterate()
{
if (DFGCSEPhaseInternal::verbose)
dataLog("Performing iteration.\n");
m_changed = false;
m_graph.clearReplacements();
for (unsigned i = 0; i < m_preOrder.size(); ++i) {
m_block = m_preOrder[i];
m_impureData = &m_impureDataMap[m_block];
m_writesSoFar.clear();
if (DFGCSEPhaseInternal::verbose)
dataLog("Processing block ", *m_block, ":\n");
for (unsigned nodeIndex = 0; nodeIndex < m_block->size(); ++nodeIndex) {
m_nodeIndex = nodeIndex;
m_node = m_block->at(nodeIndex);
if (DFGCSEPhaseInternal::verbose)
dataLog(" Looking at node ", m_node, ":\n");
m_graph.performSubstitution(m_node);
if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) {
m_node->replaceWith(m_graph, m_node->child1().node());
m_changed = true;
} else
clobberize(m_graph, m_node, *this);
}
m_insertionSet.execute(m_block);
m_impureData->didVisit = true;
}
return m_changed;
}
void read(AbstractHeap) { }
void write(AbstractHeap heap)
{
bool clobberConservatively = false;
m_impureData->availableAtTail.clobber(heap, clobberConservatively);
m_writesSoFar.add(heap);
}
void def(PureValue value)
{
// With pure values we do not have to worry about the possibility of some control flow path
// clobbering the value. So, we just search for all of the like values that have been
// computed. We pick one that is in a block that dominates ours. Note that this means that
// a PureValue will map to a list of nodes, since there may be many places in the control
// flow graph that compute a value but only one of them that dominates us. We may build up
// a large list of nodes that compute some value in the case of gnarly control flow. This
// is probably OK.
auto result = m_pureValues.add(value, Vector<Node*>());
if (result.isNewEntry) {
result.iterator->value.append(m_node);
return;
}
for (unsigned i = result.iterator->value.size(); i--;) {
Node* candidate = result.iterator->value[i];
if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) {
m_node->replaceWith(m_graph, candidate);
m_changed = true;
return;
}
}
result.iterator->value.append(m_node);
}
LazyNode findReplacement(HeapLocation location)
{
// At this instant, our "availableAtTail" reflects the set of things that are available in
// this block so far. We check this map to find block-local CSE opportunities before doing
// a global search.
LazyNode match = m_impureData->availableAtTail.get(location);
if (!!match) {
if (DFGCSEPhaseInternal::verbose)
dataLog(" Found local match: ", match, "\n");
return match;
}
// If it's not available at this point in the block, and at some prior point in the block
// we have clobbered this heap location, then there is no point in doing a global search.
if (m_writesSoFar.overlaps(location.heap())) {
if (DFGCSEPhaseInternal::verbose)
dataLog(" Not looking globally because of local clobber: ", m_writesSoFar, "\n");
return nullptr;
}
// This perfoms a backward search over the control flow graph to find some possible
// non-local def() that matches our heap location. Such a match is only valid if there does
// not exist any path from that def() to our block that contains a write() that overlaps
// our heap. This algorithm looks for both of these things (the matching def and the
// overlapping writes) in one backwards DFS pass.
//
// This starts by looking at the starting block's predecessors, and then it continues along
// their predecessors. As soon as this finds a possible def() - one that defines the heap
// location we want while dominating our starting block - it assumes that this one must be
// the match. It then lets the DFS over predecessors complete, but it doesn't add the
// def()'s predecessors; this ensures that any blocks we visit thereafter are on some path
// from the def() to us. As soon as the DFG finds a write() that overlaps the location's
// heap, it stops, assuming that there is no possible match. Note that the write() case may
// trigger before we find a def(), or after. Either way, the write() case causes this
// function to immediately return nullptr.
//
// If the write() is found before we find the def(), then we know that any def() we would
// find would have a path to us that trips over the write() and hence becomes invalid. This
// is just a direct outcome of us looking for a def() that dominates us. Given a block A
// that dominates block B - so that A is the one that would have the def() and B is our
// starting block - we know that any other block must either be on the path from A to B, or
// it must be on a path from the root to A, but not both. So, if we haven't found A yet but
// we already have found a block C that has a write(), then C must be on some path from A
// to B, which means that A's def() is invalid for our purposes. Hence, before we find the
// def(), stopping on write() is the right thing to do.
//
// Stopping on write() is also the right thing to do after we find the def(). After we find
// the def(), we don't add that block's predecessors to the search worklist. That means
// that henceforth the only blocks we will see in the search are blocks on the path from
// the def() to us. If any such block has a write() that clobbers our heap then we should
// give up.
//
// Hence this graph search algorithm ends up being deceptively simple: any overlapping
// write() causes us to immediately return nullptr, and a matching def() means that we just
// record it and neglect to visit its precessors.
Vector<BasicBlock*, 8> worklist;
Vector<BasicBlock*, 8> seenList;
BitVector seen;
for (unsigned i = m_block->predecessors.size(); i--;) {
BasicBlock* predecessor = m_block->predecessors[i];
if (!seen.get(predecessor->index)) {
worklist.append(predecessor);
seen.set(predecessor->index);
}
}
while (!worklist.isEmpty()) {
BasicBlock* block = worklist.takeLast();
seenList.append(block);
if (DFGCSEPhaseInternal::verbose)
dataLog(" Searching in block ", *block, "\n");
ImpureBlockData& data = m_impureDataMap[block];
// We require strict domination because this would only see things in our own block if
// they came *after* our position in the block. Clearly, while our block dominates
// itself, the things in the block after us don't dominate us.
if (m_graph.m_ssaDominators->strictlyDominates(block, m_block)) {
if (DFGCSEPhaseInternal::verbose)
dataLog(" It strictly dominates.\n");
DFG_ASSERT(m_graph, m_node, data.didVisit);
DFG_ASSERT(m_graph, m_node, !match);
match = data.availableAtTail.get(location);
if (DFGCSEPhaseInternal::verbose)
dataLog(" Availability: ", match, "\n");
if (!!match) {
// Don't examine the predecessors of a match. At this point we just want to
// establish that other blocks on the path from here to there don't clobber
// the location we're interested in.
continue;
}
}
if (DFGCSEPhaseInternal::verbose)
dataLog(" Dealing with write set ", data.writes, "\n");
if (data.writes.overlaps(location.heap())) {
if (DFGCSEPhaseInternal::verbose)
dataLog(" Clobbered.\n");
return nullptr;
}
for (unsigned i = block->predecessors.size(); i--;) {
BasicBlock* predecessor = block->predecessors[i];
if (!seen.get(predecessor->index)) {
worklist.append(predecessor);
seen.set(predecessor->index);
}
}
}
if (!match)
return nullptr;
// Cache the results for next time. We cache them both for this block and for all of our
// predecessors, since even though we've already visited our predecessors, our predecessors
// probably have successors other than us.
// FIXME: Consider caching failed searches as well, when match is null. It's not clear that
// the reduction in compile time would warrant the increase in complexity, though.
// https://bugs.webkit.org/show_bug.cgi?id=134876
for (BasicBlock* block : seenList)
m_impureDataMap[block].availableAtTail.add(location, match);
m_impureData->availableAtTail.add(location, match);
return match;
}
void def(HeapLocation location, LazyNode value)
{
if (DFGCSEPhaseInternal::verbose)
dataLog(" Got heap location def: ", location, " -> ", value, "\n");
LazyNode match = findReplacement(location);
if (DFGCSEPhaseInternal::verbose)
dataLog(" Got match: ", match, "\n");
if (!match) {
if (DFGCSEPhaseInternal::verbose)
dataLog(" Adding at-tail mapping: ", location, " -> ", value, "\n");
auto result = m_impureData->availableAtTail.add(location, value);
ASSERT_UNUSED(result, !result);
return;
}
if (value.isNode() && value.asNode() == m_node) {
if (!match.isNode()) {
// We need to properly record the constant in order to use an existing one if applicable.
// This ensures that re-running GCSE will not find new optimizations.
match.ensureIsNode(m_insertionSet, m_block, m_nodeIndex)->owner = m_block;
auto result = m_pureValues.add(PureValue(match.asNode(), match->constant()), Vector<Node*>());
bool replaced = false;
if (!result.isNewEntry) {
for (unsigned i = result.iterator->value.size(); i--;) {
Node* candidate = result.iterator->value[i];
if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) {
ASSERT(candidate);
match->replaceWith(m_graph, candidate);
match.setNode(candidate);
replaced = true;
break;
}
}
}
if (!replaced)
result.iterator->value.append(match.asNode());
}
ASSERT(match.asNode());
m_node->replaceWith(m_graph, match.asNode());
m_changed = true;
}
}
struct ImpureBlockData {
ImpureBlockData()
: didVisit(false)
{
}
ClobberSet writes;
ImpureMap availableAtTail;
bool didVisit;
};
Vector<BasicBlock*> m_preOrder;
PureMultiMap m_pureValues;
BlockMap<ImpureBlockData> m_impureDataMap;
BasicBlock* m_block;
Node* m_node;
unsigned m_nodeIndex;
ImpureBlockData* m_impureData;
ClobberSet m_writesSoFar;
InsertionSet m_insertionSet;
bool m_changed;
};
} // anonymous namespace
bool performLocalCSE(Graph& graph)
{
return runPhase<LocalCSEPhase>(graph);
}
bool performGlobalCSE(Graph& graph)
{
return runPhase<GlobalCSEPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)