Skip to content
The code of "Distribution Consistency based Covariance Metric Networks for Few-shot Learning", AAAI 2019.
Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
dataset
imgs
models
results/CovaMNet_miniImageNet_Conv64_5_Way_1_Shot
CovaMNet_Test_5way1shot.py
CovaMNet_Test_5way5shot.py
CovaMNet_Train_5way1shot.py
CovaMNet_Train_5way5shot.py
LICENSE
README.md

README.md

CovaMNet in PyTorch

We provide a PyTorch implementation of CovaMNet for few-shot learning. The code was written by Wenbin Li [Homepage].

If you use this code for your research, please cite:

Distribution Consistency based Covariance Metric Networks for Few-shot Learning.
Wenbin Li, Jinglin Xu, Jing Huo, Lei Wang, Yang Gao and Jiebo Luo. In AAAI 2019.

Prerequisites

  • Linux
  • Python 3
  • Pytorch 0.4
  • GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/WenbinLee/CovaMNet
cd CovaMNet
  • Install PyTorch 0.4 and other dependencies (e.g., torchvision).

Datasets

miniImageNet Few-shot Classification

  • Train a 5-way 1-shot model:
python CovaMNet_Train_5way1shot.py --dataset_dir ./datasets/miniImageNet --data_name miniImageNet
  • Test the model (specify the dataset_dir and data_name first):
python CovaMNet_Test_5way1shot.py --resume ./results/CovaMNet_miniImageNet_Conv64_5_Way_1_Shot/model_best.pth.tar
  • The results on the miniImageNet dataset:

Fine-grained Few-shot Classification

  • Data prepocessing (e.g., StanfordDog)
  • Specify the path of the dataset and the saving path.
  • Run the preprocessing script.
#!./dataset/StanfordDog/StanfordDog_prepare_csv.py
python ./dataset/StanfordDog/StanfordDog_prepare_csv.py
  • Train a 5-way 1-shot model:
python CovaMNet_Train_5way1shot.py --dataset_dir ./datasets/StanfordDog --data_name StanfordDog
  • Test the model (specify the dataset_dir and data_name first):
python CovaMNet_Test_5way1shot.py --resume ./results/CovaMNet_StanfordDog_Conv64_5_Way_1_Shot/model_best.pth.tar
  • The results on the fine-grained datasets:

Citation

If you use this code for your research, please cite our paper.

@inproceedings{li2019CovaMNet,
  title={Distribution Consistency based Covariance Metric Networks for Few-shot Learning},
  author={Li, Wenbin and Xu, Jinglin and Huo, Jing and Wang, Lei and Gao Yang and Luo, Jiebo},
  booktitle={AAAI},
  year={2019}
}

You can’t perform that action at this time.