Skip to content

WendyShang/ecml19_sa3c

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Stochastic Activation Actor Critic Methods

This repository demonstrates our proposed stochastic activation actor critic methods, published at ECML-PKDD 2019. We use Qbert, BeamRider, and Seaquest to showcase sa3c, fully stochastic a3c (fa3c), and hierarchical prior sa3c (hpa3c) respectively. In addition, we provide baseline a3c and noisy-net training code as comparison.

If you find our work and code useful, please cite our paper [pdf][appendix]:

@inproceedings{shang2019stochastic,
  title={Stochastic Activation Actor Critic Methods},
  author={Shang, Wenling and van Hoof, Herk and Welling, Max},
  booktitle={ECML-PKDD},
  year={2019}
}

Prerequisites

conda create -n py36 python=3.6 anaconda
source activate py36
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
conda install -c menpo opencv
pip install gym
pip install gym[atari]
pip3 install logger

Baseline A3C

for Qbert

python main_atari.py --model_type baseline --save_best --game Qbert-v4 

for BeamRider

python main_atari.py --model_type baseline --save_best --game BeamRider-v4

for Seaquest

python main_atari.py --model_type baseline --save_best --game Seaquest-v4

NoisyNet A3C

for Qbert

python main_atari.py --model_type nn --save_best --game Qbert-v4

for BeamRider

python main_atari.py --model_type nn --save_best --game BeamRider-v4 

for Seaquest

python main_atari.py --model_type nn --save_best --game Seaquest-v4 

Stochastic Activation A3C

SA3C for Qbert

python main_atari.py --model_type sa3c --save_best --game Qbert-v4 --sig 4

FSA3C for BeamRider

python main_atari.py --model_type fsa3c --save_best --game BeamRider-v4 --sig 4

HPA3C for Seaquest

python main_atari.py --model_type hpa3c --save_best --game Seaquest-v4 --crelu

Acknowledgments

We greatly appreciate the dev teams for PyTorch, Gym and ALE. Our implementation has also taken inspiration from the following excellent repositories:

About

[ECML2019] Stochastic Actor Critic Methods

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages