Criterion C: Development

The Runner App is a program that allows the client to input running data and displays it
in a table. The program allows clients to sort between runs, toggle between units, and
view PRs and streaks.

Classes:

C history.java o GUl.java C Data.java

- GUI java generates the main Ul of the program where the user will input data.
- History.java creates a frame that displays the run log, PR, and streaks.
- Data.java holds methods used in this program

Text Files:
= IMile = Gk = 10K = HalfMarathon = Marathon
= kmData = milesData = streakFile

- The first row of files holds specific distance runs (sorting)
- kmData.txt and milesData.txt hold all runs in both units.
- streakFile.txt holds an integer that represents the streak number.

Format of txt files

2022/02/07 21:03:32|00:06:30|1.61|00:04:02
2022/02/07 21:03:49|00:18:30|5.0|00:03:42
2022/02/07 21:03:52|00:18:30|10.0|00:01:51
2022/02/07 21:04:02|01:18:30(42.195|00:01:52

= W N

GUlLjava

Runner App

Time (00:00:00)
_}C.uslt:pr_n e g Choose distance
Distance: KM (%]

Record Run

Figure 1: Main UI

Libraries imported:

import
import
import
import
import
import
import

javax.swing.+*;

java.
java.
java.
java.
java.
java.

awt.event.ActionEvent;
awt.event.ActionlListener;
io.%;

time.*;
time.format.DateTimeFormatter;
util.0Objects;

User interface:

The GUI of the program is created using javax.swing library.
The components of the Ul are created with these instance variables:
private JPanel mainPanel;

private JTextField timeTextField;

private JLabel timelLabel;

private JButton addRunButton;

private JTextField distanceTextField;

private JComboBox unitsComboBox;

private JPanel EnterDistancePanel;

private JPanel selectionPanel;

private JComboBox selectionBox;

Form (IA.GUI)
mainPanel : JPanel
1 timeTextField : JT¢
timeLabel : JLabel
ok addRunButton : JE
EnterDistancePan

selectionPanel : J

Time (00:00:00)

1 Mile B Choose distance
Property Value
GUlin 1A Distance: | | KM B

Record Run

I — O —

Figure 2: GUI.form

The Ul is designed using GUI.form and instance variables (listed above) are created here.

The GUI class is a subclass of the imported JFrame class.

public class GUI extends JFrame {

Constructor
S public GUI(String title) throws IDException { f/cnnstructed

frrrrsetup

super(title);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
this.setContentPane (mainPanel);

this.pack();

EnterDistancePanel.setVisible(false);

selectionBox.addActionListener(new ActionListener() H{...});
unitsComboBox.addActionListener(new ActionListener() {...});
if(Data.listCount() < 1 || (Data.streakCounter() == false && Data.sameDay() == false)){...}
addRunButton.addActionListener(new ActionListener() {...});
+
The call of the super constructor passes the JFrame constructor the title of the frame

which creates a functional JFrame.

this.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE); closes program if the JFrame
window is closed.

this.setContentPane(mainPanel) sets the mainPanel instance variable as the main panel of
the frame. The rest of the Ul is built on top of the mainPanel.

The addActionListeners in the constructor host the algorithmic code in the GUI class.
The call of the addActionListener() takes the parameter ActionListener object which is
responsible for handling action events when the user interacts with the component.

The simple conditional in the constructor is used to update the streak system and will be
discussed later.

SelectionBox ActionListener

selectionBox.addActionListener(new ActionlListener() { //distance dropbox
@0verride
public void actionPerformed(ActionEvent e) {

JComboBox temp = (JComboBox) e.getSource();

String msg = (String) temp.getSelectedItem();

if (msg.equals("1l Mile")) { //sets selection to vser's reguest
EnterDistancePanel.setVisible(false);
selection = "Mile";

} else if (msg.equals("5K")) {
EnterDistancePanel.setVisible(false);
selection = "Five";

} else if (msg.equals("10K")) {
EnterDistancePanel.setVisible(false);
selection = "Ten";

} else if (msg.equals("Half Marathon™)) {
EnterDistancePanel.setVisible(false);
selection = "Half";

} else if (msg.equals("Marathon™)) {
EnterDistancePanel.setVisible(false);
selection = "full";

} else if (msg.eqguals("Custom")) {
EnterDistancePanel.setVisible(true);
selection = "custom";

)

selectionBox is a JComboBox object that creates a dropbox in the UI that allows users to
choose the distance they want to log.

' Time (00:00:00)

selectionBox |t 1 Mile B EChoose distance

e —— e
H T

| Distance: | KM

Record Run : : :
""" e

The conditionals in the actionlistener modify the String selection instance variable which
dictates which distance the user wants to record. For every selection except “custom,” the
method will set the JPanel EnterDistancePanel to false which will hide the custom
distance textBox and the units dropbox.

n :

Time (00:00:00)

1 Mile) Choose distance

Record Run (Hidden)

If the user chooses the “custom” the JPanel EnterDistancePanel will become visible
which reveals the custom distance textBox and the units dropbox.
Time (00:00:00)

Custom EJ Choose distance

Distance: KM & (fEVE‘ﬁlE‘d)

Record Run

unitsComboBox ActionListener
unitsComboBox.addActionListener(new ActionListener() {
@0verride
public void actionPerformed(ActionEvent e) {
JComboBox temp = (JComboBox) e.getSource();
String msg = (String) temp.getSelectedItem();
if (msg.eguals("KM")) {
status = true;
} else {
status = false;

F);

unitsComboBox is a JComboBox object that is a dropbox that allows users to choose the
units for their running distance.

Time (00:00:00)

1 Mile E Choose distance

Distance: | KM E‘q— unitsComboBox

Record Run

The conditionals in the actionlistener modify the boolean status instance variable which
dictates which units that the user wants to use. (true: KM, false: miles)

addRunButton ActionListener
addRunButton.addActionListener(new ActionListener() {
@override
public void actionPerformed(ActionEvent e) {...}
});

addRunButton is a JButton object that is a button that will perform the actionPerformed
method when the user clicks it. The actionPerformed method is complex so the
explanation will be broken up. The addRunButton adds the user inputted information into
the correct files using file i/o and adjusts the integer in streakFile.txt that represents the
streak number.

DateTimeFormatter dtf = DateTimeFormatter.ofPattern("yyyy/MM/dd HH:mm:ss"):,
LocalDateTime now = LocalDateTime.now();
String timeNow = dtf.format(now);

DateTimeFormatter formatas how the date/time is displayed.
LocalDateTime.now() retrieves the date/time of the specific instance.
timeNow is the String of date/time

2022/82/19 16:01:21

Example:

String time = timeTextField.getText():
double distance = 0B;
String pace = "";

String time holds the data that the user inputted as the duration of the run.
double distance and String pace are initialized to default values as it will be modified
later in the method.

if (selection.equals("Mile")) {
distance = 1;
pace = Data.averagePace(distance, time);
try {
saveToFile(fileWame: "1 Mile", text: dtf.format(now) + "|" + time + "|" + distance + "|" + pace);
} catch (I0Exception ioException) {
ioException.printStackTrace();
+
try {
saveToFile(fileName: "Miles", text: dtf.format(now) + ™|" + time + "|" + distance + "|" + pace);
} catch (I0Exception ioException) {
ioException.printStackTrace();
i
double distance? = Data.milesToKm(distance);
String pace? = Data.averagePace(distance2, time);
try {
saveToFile(fileMame: "KM™, text: dtf.format(now) + "|" + time + "|™ + distance2 + "|" + pace2);
} catch (I0Exception ioException) {
ioException.printStackTrace():

I

This conditional checks the value of the instance variable selection to see which files to
add the collected information to. In this case, the selection is “mile”, so the distance
variable is set to 1 and the pace is calculated using the averagePace() method (which will
be explained later). The program then saves the data into 1Mile.txt which(sorted file) and
the miles.txt & km.txt(all runs).

else {
distance = Double.parseDouvble(distanceTextField.getText());
pace = Data.averagePace(distance, time);
if (status == true) { //if selection is KM
try {
saveToFile(fileMame: "KM, text: dtf.format(now) + "|" + time + "|" + distance + "|" + pace);
} catch (I0Exception ioException) {
ioException.printStackTrace();
I
double distance2 = Data.kmToMiles(distance);
String pace? = Data.averagePace(distance?, time);

try {
saveToFile(fileName: "Miles", text: dtf.format(now) + "|" + time + "|"™ + distance2 + "|" + pace2);
} catch (I0Exception ioException) {
ioException.printStackTrace();
I
} else {//if selection is Miles
double distance2Z = Data.milesToKm(distance);
String pace? = Data.averagePace(distance?, time);
try o
saveToFile(fileName: "Miles", text: dtf.format(now) + "|" + time + "™|" + distance + "|" + pace);
} catch (I0OException ioException) {
ioException.printStackTrace();
r
try 1
saveToFile(fileName: "KM™, text: dtf.format(now) + "|" + time + "|" + distance2 + "|" + pace2);
} catch (I0OException ioException) {
ioException.printStackTrace();

If the user chooses “custom”, the program will perform a conditional within the original
conditional (complex selection), which determines if the user chooses to input in
kilometers or miles.

If the boolean instance variable status 1s true, this indicates that the user’s custom
distance is in KM and the program will save the data in kmData.txt and convert
distance/pace into miles and store it in milesData.txt. Vice versa for status equals false.

tableFrame.dispose();// close old table update new one
try {
tableFrame = new history(title: "Run Log™);//make the history jframe.
} catch (FileNotFoundException fileNotFoundException) {
fileNotFoundException.printStackTrace();

Finally, the program will dispose of the tableFrame (the run log frame) and create a new
table which will refresh/update the data displayed.

history.java

Libraries imported:

import javax.swing.#;

import javax.swing.table.DefaultTableModel;
import java.awt.event.ActionEvent;

import java.awt.event.ActionlListener;
import java.io.File;

import java.io.FileNotFoundException;
import java.io.IOException;

import java.util.=x;

User Interface:

Instance variables that make up the run log GUI.
private JPanel tablePanel;
private JTable table;
private JComboBox comboBoxl;
private JComboBox SortComboBox;
private JPanel togglePanel;
private JPanel prLabelPanel;
private JlLabel icon;
private JlLabel streakLabel;
private ImageIcon crown;
private ImageIcon fire;

Form (lA.history)
tablePanel : JPanel I; | Run Log
JPanel]
Shape Color
JPanel . i
roun re
togglePanel : JPar square green
JPanel
prLabelPanel : |P:
aperty Walue
1]
I; |PF{ ESlreak:
Sort Runs : | All Runs oo
‘! B
KM
Figure 3: history.form

The Ul is designed using history.form and instance variables are created here.

2D Object arrays used to store data in each text file so it can be displayed on a table.

Object[][] data = fileArr(new File(pathname: " /|
Object[][] data2 = fileArr(new File(pathname: ",
Object[][] mile = FfileArr(new File(pathname: " /1
Object[][] five = fileArr(new File(pathname: " /|
Object[][] ten = fileArr(new File(pathname: " /U
Object[][] half = fileArr(new File(pathname: "/l
Object[][] marathon = FfileArr(new File(pathname

The method fileArr is called which returns a 2D array given parameter File Object.
public static Object [][] fileArr(File file) throws FileNotFoundException {
Scanner sc = new Scanner(file);
int length = 8;
while(sc.hasNextLine()) {
sc.nextLine();
length++;
F
Object[][] temp = new Object[Llength][4];
Scanner sc2 = new Scanner(file);
for(int i = 8; i<temp.length; i++){
temp[i] = scZ.nextLine().split(regex: "\\[|");
F
return temp;
I

While loop is used to get the length of the file. Then, a for loop is used to set each cell of
the 2D array with the data of one recorded run. sc2.nextLine().split() returns an array
stored with data that is split using the param key.

Figure 4: Table methods

private void createTableKm() { //creates km table
table.setModel(new DefaultTableModel(
data,
new String[]{"Date/time", "Duration", "Distance(KM)", "Pace mins/km"}
1);
h
private void createTableMile() { //creates mile table
table.setModel(new DefaultTableModel(
data2,
new String[]{"Date/time", "Duration", "Distance(Mi)", "Pace mins/mi"}
1);

Figure 4 fills the JTable table instance variable with data. It then takes a 2D array that
consists of the data to be displayed and a /D array that contains the table header.

Constructor

public history(String title) throws FileNotFoundException {
////setup
super(title);
this.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
this.setContentPane(tablePanel);
this.setVisible(true);
this.pack();
17

//section 2
crown = new ImageIcon(this.getClass().getResource(name: "crown.png™));//crown png
icon.setIcon(crown);//crown icon set
icon.setText("Distance PR: "+ Data.findLongestDate()+
" ("+Data.kmToMiles(Double.parseDouble(Data.finLongestDistanceKm()))+"Miles) "
+ "(" +Data.finLongestDistanceKm()+ "KM)");//display longest distance
fire = new ImageIcon(this.getClass().getResource(name: "streakImg.png"));//fire png
streakLabel.setIcon(fire);//streak icon
streakLabel.setText("Streak: " + getStreak());//streak number display
/f

if (status = trve) { //COMPLEXITY 4
createTableKm();

} else {
createTableMile();

T

comboBox1.addActionListener(new ActionListener() {...});
SortComboBox . addActionListener(new ActionListener() {...});

The //setup// portion of the history constructor is the same GUI constructor.
//Section 2 of the is responsible for creating this portion of the run log. (methods used
will be discussed later)

VR R VR As W WA e wvive.as |
2022/02/11 09... 00:02:12 1.0 00:02:12 '
2022/02/11 09... 00:02:12 1.0 00:02:12

2022/02/14 11... 11:11:11 1.0 11:11:11 !
2022/02/16 10... 12:12:12 1.0 12:12:12

2022/02/19 15... 00:06:00 1.0 D6

section 2

2022/02/19 16... 00:06:00 1.0 00:06:00

=
* Mile PR: [2022/02/11] 00:02:12

O Streak: 1

Sort Runs | 1 Mile <

comboBox1.addActionListener(new ActionListener() {
@0verride
public void actionPerformed(ActionEvent e) {
JComboBox temp = (JComboBox) e.getSource();
5tring msg = (S5tring) temp.getSelectedItem();
if (msg.eguals("KM")) {
status = true;
createTableKm(); //display km table
} else {
status = false;
createTableMile();//display miles table

F);

JComboBox comboBox1 is a dropbox with two selections (KM/Miles) with the
conditional if user selects “KM” status(of the table) is set to true(km) and will call
createTableKM() method. Vice versa when the user selects “Miles.”

W Distance PR: [2022/02/19) (93.23Miles) (150.0kM) ¢ Streak: 1

Sort Runs All Runs £ IEDIH]DDBDK]]
(2]

SortComboBox.addActionListener(new ActionListener() { //
@0verride
public void actionPerformed(ActionEvent e) {
JComboBox temp = (JComboBox) e.getSource();
String msg = (String) temp.getSelectedItem();
if(msg.equals("1l Mile")){ //display 1 mile table
togglePanel.setVisible(false);
table.setModel(new DefaultTableModel(
mile,
new String[]{"Date/time", "Duration"
1);
try {
icon.setText("Mile PR: " + Data.findPR(
} catch (IOException ioException) {
ioException.printStackTrace();

I

alea ifimen annalelEEINS SfSfdienTnn Bl +ahla
JComboBox SortComboBox lets the user sort their runs.
Conditionals in the actionPerformed control what’s being displayed.

Figure 5: SortComboBox actionlistener flowchart

start

> |

Mile Choice(msg) Marathon
l—&K—a \/ Half Marathon
all 10K l
runs '
i Create Marathon
Crei‘;‘;ém”e Create 5K table ||| Create 10K table | | Create Half table table
Display 1 Mile PR | | DisPiay SKPR Display 10K PR | | display Half PR dsplay Marathon

b

Miles KM
Create Miles all Create KM all run
run table table

| J
¥

Display

longest
Distance PR

Tables are created using the method discussed in Figure 4. (2D& 1D array complexity)

Data.java

Libraries imported:
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IDException;
import java.io.PrintWriter;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.time.LocalDate;
import java.time.format.DateTimeFormatter;
import java.util.=#;

Data.java contains user defined methods that are called in the other two classes.

Figure 6: Searching for the longest distance in the file.
public static String finLongestDistanceKm() throws FileNotFoundException

String longestDistance = "";
File file = new File(pathname: "fUsers/william/IdeaProjects/School/IE
Scanner sc = new Scanner(file);
double longest = B;
while(sc.hasNextLine()){

String [] tempArr = sc.nextLine().split(regex: "\\|");

double temp = Double.parseDouble(tempArr[2]);

if(temp>Llongest){

longest = temp;

i
longestDistance = Double.toString(Llongest);
return LonagestDistance;

This linear searching algorithm (discussed in Criterion B) returns the longest distance
recorded in the file. The while loop traverses every line of the file and compares the
distances. Finally, it returns the longest distances as a string.

List of all User Defined Methods in Data.java

Method Signature

Description

formatTime(int hours, int mins, int secs)

Accepts parameters of 3 integers (hours,
minutes, seconds) and refurns a string of
the formatted time (“hh:mm:ss")

averagePace(double distance, String time)

Accepts a double for distance and String
for duration in the parameter and returns
average pace.

kmToMiles(double km)

Returns miles given km input in
parameter

milesToKm{double miles)

Returns km given miles input parameter

listCount() Counts the number of lines in a file(All
run file)

streakCounter() Checks if the most recent run is the day
before today, if so then streak is not
broken and returns true

sameDay() Check if the most recent entry is on the

same day as the one just entered. If it is,
then returns true

saveToFile(String fileName, String text)

Save imputed text to the requested file
given the parameters String fileName, and
String text.

incrementStreak(String choice)

Increments number in the streakFile.txt by
the amount indicated by the string passed
in the parameter

findPR(String fileName) Returns fastest time in given file

findLongestDistance Kmf() Find the longest distance ever recorded
and return the longest distance in KM.
Uses Searching to loop through the file.

findLongestDate() Returns the date of the longest run.

Uses Searching to loop through the file.

timeToSeconds(String time)

Returns time in seconds given time in

Word Count: 868

