Permalink
Find file
e687f3f Jan 24, 2017
2330 lines (1858 sloc) 65.9 KB
/*
* wiringPi:
* Arduino look-a-like Wiring library for the Raspberry Pi
* Copyright (c) 2012-2017 Gordon Henderson
* Additional code for pwmSetClock by Chris Hall <chris@kchall.plus.com>
*
* Thanks to code samples from Gert Jan van Loo and the
* BCM2835 ARM Peripherals manual, however it's missing
* the clock section /grr/mutter/
***********************************************************************
* This file is part of wiringPi:
* https://projects.drogon.net/raspberry-pi/wiringpi/
*
* wiringPi is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* wiringPi is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with wiringPi.
* If not, see <http://www.gnu.org/licenses/>.
***********************************************************************
*/
// Revisions:
// 19 Jul 2012:
// Moved to the LGPL
// Added an abstraction layer to the main routines to save a tiny
// bit of run-time and make the clode a little cleaner (if a little
// larger)
// Added waitForInterrupt code
// Added piHiPri code
//
// 9 Jul 2012:
// Added in support to use the /sys/class/gpio interface.
// 2 Jul 2012:
// Fixed a few more bugs to do with range-checking when in GPIO mode.
// 11 Jun 2012:
// Fixed some typos.
// Added c++ support for the .h file
// Added a new function to allow for using my "pin" numbers, or native
// GPIO pin numbers.
// Removed my busy-loop delay and replaced it with a call to delayMicroseconds
//
// 02 May 2012:
// Added in the 2 UART pins
// Change maxPins to numPins to more accurately reflect purpose
#include <stdio.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <ctype.h>
#include <poll.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <asm/ioctl.h>
#include "softPwm.h"
#include "softTone.h"
#include "wiringPi.h"
#include "../version.h"
// Environment Variables
#define ENV_DEBUG "WIRINGPI_DEBUG"
#define ENV_CODES "WIRINGPI_CODES"
#define ENV_GPIOMEM "WIRINGPI_GPIOMEM"
// Mask for the bottom 64 pins which belong to the Raspberry Pi
// The others are available for the other devices
#define PI_GPIO_MASK (0xFFFFFFC0)
struct wiringPiNodeStruct *wiringPiNodes = NULL ;
// BCM Magic
#define BCM_PASSWORD 0x5A000000
// The BCM2835 has 54 GPIO pins.
// BCM2835 data sheet, Page 90 onwards.
// There are 6 control registers, each control the functions of a block
// of 10 pins.
// Each control register has 10 sets of 3 bits per GPIO pin - the ALT values
//
// 000 = GPIO Pin X is an input
// 001 = GPIO Pin X is an output
// 100 = GPIO Pin X takes alternate function 0
// 101 = GPIO Pin X takes alternate function 1
// 110 = GPIO Pin X takes alternate function 2
// 111 = GPIO Pin X takes alternate function 3
// 011 = GPIO Pin X takes alternate function 4
// 010 = GPIO Pin X takes alternate function 5
//
// So the 3 bits for port X are:
// X / 10 + ((X % 10) * 3)
// Port function select bits
#define FSEL_INPT 0b000
#define FSEL_OUTP 0b001
#define FSEL_ALT0 0b100
#define FSEL_ALT1 0b101
#define FSEL_ALT2 0b110
#define FSEL_ALT3 0b111
#define FSEL_ALT4 0b011
#define FSEL_ALT5 0b010
// Access from ARM Running Linux
// Taken from Gert/Doms code. Some of this is not in the manual
// that I can find )-:
//
// Updates in September 2015 - all now static variables (and apologies for the caps)
// due to the Pi v2, v3, etc. and the new /dev/gpiomem interface
static volatile unsigned int GPIO_PADS ;
static volatile unsigned int GPIO_CLOCK_BASE ;
static volatile unsigned int GPIO_BASE ;
static volatile unsigned int GPIO_TIMER ;
static volatile unsigned int GPIO_PWM ;
#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)
// PWM
// Word offsets into the PWM control region
#define PWM_CONTROL 0
#define PWM_STATUS 1
#define PWM0_RANGE 4
#define PWM0_DATA 5
#define PWM1_RANGE 8
#define PWM1_DATA 9
// Clock regsiter offsets
#define PWMCLK_CNTL 40
#define PWMCLK_DIV 41
#define PWM0_MS_MODE 0x0080 // Run in MS mode
#define PWM0_USEFIFO 0x0020 // Data from FIFO
#define PWM0_REVPOLAR 0x0010 // Reverse polarity
#define PWM0_OFFSTATE 0x0008 // Ouput Off state
#define PWM0_REPEATFF 0x0004 // Repeat last value if FIFO empty
#define PWM0_SERIAL 0x0002 // Run in serial mode
#define PWM0_ENABLE 0x0001 // Channel Enable
#define PWM1_MS_MODE 0x8000 // Run in MS mode
#define PWM1_USEFIFO 0x2000 // Data from FIFO
#define PWM1_REVPOLAR 0x1000 // Reverse polarity
#define PWM1_OFFSTATE 0x0800 // Ouput Off state
#define PWM1_REPEATFF 0x0400 // Repeat last value if FIFO empty
#define PWM1_SERIAL 0x0200 // Run in serial mode
#define PWM1_ENABLE 0x0100 // Channel Enable
// Timer
// Word offsets
#define TIMER_LOAD (0x400 >> 2)
#define TIMER_VALUE (0x404 >> 2)
#define TIMER_CONTROL (0x408 >> 2)
#define TIMER_IRQ_CLR (0x40C >> 2)
#define TIMER_IRQ_RAW (0x410 >> 2)
#define TIMER_IRQ_MASK (0x414 >> 2)
#define TIMER_RELOAD (0x418 >> 2)
#define TIMER_PRE_DIV (0x41C >> 2)
#define TIMER_COUNTER (0x420 >> 2)
// Locals to hold pointers to the hardware
static volatile uint32_t *gpio ;
static volatile uint32_t *pwm ;
static volatile uint32_t *clk ;
static volatile uint32_t *pads ;
#ifdef USE_TIMER
static volatile uint32_t *timer ;
static volatile uint32_t *timerIrqRaw ;
#endif
// Data for use with the boardId functions.
// The order of entries here to correspond with the PI_MODEL_X
// and PI_VERSION_X defines in wiringPi.h
// Only intended for the gpio command - use at your own risk!
// piGpioBase:
// The base address of the GPIO memory mapped hardware IO
#define GPIO_PERI_BASE_OLD 0x20000000
#define GPIO_PERI_BASE_NEW 0x3F000000
static volatile unsigned int piGpioBase = 0 ;
const char *piModelNames [16] =
{
"Model A", // 0
"Model B", // 1
"Model A+", // 2
"Model B+", // 3
"Pi 2", // 4
"Alpha", // 5
"CM", // 6
"Unknown07", // 07
"Pi 3", // 08
"Pi Zero", // 09
"CM3", // 10
"Unknown11", // 11
"Unknown12", // 12
"Unknown13", // 13
"Unknown14", // 14
"Unknown15", // 15
} ;
const char *piRevisionNames [16] =
{
"00",
"01",
"02",
"03",
"04",
"05",
"06",
"07",
"08",
"09",
"10",
"11",
"12",
"13",
"14",
"15",
} ;
const char *piMakerNames [16] =
{
"Sony", // 0
"Egoman", // 1
"Embest", // 2
"Unknown", // 3
"Embest", // 4
"Unknown05", // 5
"Unknown06", // 6
"Unknown07", // 7
"Unknown08", // 8
"Unknown09", // 9
"Unknown10", // 10
"Unknown11", // 11
"Unknown12", // 12
"Unknown13", // 13
"Unknown14", // 14
"Unknown15", // 15
} ;
const int piMemorySize [8] =
{
256, // 0
512, // 1
1024, // 2
0, // 3
0, // 4
0, // 5
0, // 6
0, // 7
} ;
// Time for easy calculations
static uint64_t epochMilli, epochMicro ;
// Misc
static int wiringPiMode = WPI_MODE_UNINITIALISED ;
static volatile int pinPass = -1 ;
static pthread_mutex_t pinMutex ;
// Debugging & Return codes
int wiringPiDebug = FALSE ;
int wiringPiReturnCodes = FALSE ;
// Use /dev/gpiomem ?
int wiringPiTryGpioMem = FALSE ;
// sysFds:
// Map a file descriptor from the /sys/class/gpio/gpioX/value
static int sysFds [64] =
{
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
} ;
// ISR Data
static void (*isrFunctions [64])(void) ;
// Doing it the Arduino way with lookup tables...
// Yes, it's probably more innefficient than all the bit-twidling, but it
// does tend to make it all a bit clearer. At least to me!
// pinToGpio:
// Take a Wiring pin (0 through X) and re-map it to the BCM_GPIO pin
// Cope for 3 different board revisions here.
static int *pinToGpio ;
// Revision 1, 1.1:
static int pinToGpioR1 [64] =
{
17, 18, 21, 22, 23, 24, 25, 4, // From the Original Wiki - GPIO 0 through 7: wpi 0 - 7
0, 1, // I2C - SDA1, SCL1 wpi 8 - 9
8, 7, // SPI - CE1, CE0 wpi 10 - 11
10, 9, 11, // SPI - MOSI, MISO, SCLK wpi 12 - 14
14, 15, // UART - Tx, Rx wpi 15 - 16
// Padding:
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 31
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63
} ;
// Revision 2:
static int pinToGpioR2 [64] =
{
17, 18, 27, 22, 23, 24, 25, 4, // From the Original Wiki - GPIO 0 through 7: wpi 0 - 7
2, 3, // I2C - SDA0, SCL0 wpi 8 - 9
8, 7, // SPI - CE1, CE0 wpi 10 - 11
10, 9, 11, // SPI - MOSI, MISO, SCLK wpi 12 - 14
14, 15, // UART - Tx, Rx wpi 15 - 16
28, 29, 30, 31, // Rev 2: New GPIOs 8 though 11 wpi 17 - 20
5, 6, 13, 19, 26, // B+ wpi 21, 22, 23, 24, 25
12, 16, 20, 21, // B+ wpi 26, 27, 28, 29
0, 1, // B+ wpi 30, 31
// Padding:
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63
} ;
// physToGpio:
// Take a physical pin (1 through 26) and re-map it to the BCM_GPIO pin
// Cope for 2 different board revisions here.
// Also add in the P5 connector, so the P5 pins are 3,4,5,6, so 53,54,55,56
static int *physToGpio ;
static int physToGpioR1 [64] =
{
-1, // 0
-1, -1, // 1, 2
0, -1,
1, -1,
4, 14,
-1, 15,
17, 18,
21, -1,
22, 23,
-1, 24,
10, -1,
9, 25,
11, 8,
-1, 7, // 25, 26
-1, -1, -1, -1, -1, // ... 31
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63
} ;
static int physToGpioR2 [64] =
{
-1, // 0
-1, -1, // 1, 2
2, -1,
3, -1,
4, 14,
-1, 15,
17, 18,
27, -1,
22, 23,
-1, 24,
10, -1,
9, 25,
11, 8,
-1, 7, // 25, 26
// B+
0, 1,
5, -1,
6, 12,
13, -1,
19, 16,
26, 20,
-1, 21,
// the P5 connector on the Rev 2 boards:
-1, -1,
-1, -1,
-1, -1,
-1, -1,
-1, -1,
28, 29,
30, 31,
-1, -1,
-1, -1,
-1, -1,
-1, -1,
} ;
// gpioToGPFSEL:
// Map a BCM_GPIO pin to it's Function Selection
// control port. (GPFSEL 0-5)
// Groups of 10 - 3 bits per Function - 30 bits per port
static uint8_t gpioToGPFSEL [] =
{
0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,
} ;
// gpioToShift
// Define the shift up for the 3 bits per pin in each GPFSEL port
static uint8_t gpioToShift [] =
{
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
} ;
// gpioToGPSET:
// (Word) offset to the GPIO Set registers for each GPIO pin
static uint8_t gpioToGPSET [] =
{
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
} ;
// gpioToGPCLR:
// (Word) offset to the GPIO Clear registers for each GPIO pin
static uint8_t gpioToGPCLR [] =
{
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
} ;
// gpioToGPLEV:
// (Word) offset to the GPIO Input level registers for each GPIO pin
static uint8_t gpioToGPLEV [] =
{
13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,
14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,
} ;
#ifdef notYetReady
// gpioToEDS
// (Word) offset to the Event Detect Status
static uint8_t gpioToEDS [] =
{
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
} ;
// gpioToREN
// (Word) offset to the Rising edge ENable register
static uint8_t gpioToREN [] =
{
19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,
20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,
} ;
// gpioToFEN
// (Word) offset to the Falling edgde ENable register
static uint8_t gpioToFEN [] =
{
22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,
} ;
#endif
// GPPUD:
// GPIO Pin pull up/down register
#define GPPUD 37
// gpioToPUDCLK
// (Word) offset to the Pull Up Down Clock regsiter
static uint8_t gpioToPUDCLK [] =
{
38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,
39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,
} ;
// gpioToPwmALT
// the ALT value to put a GPIO pin into PWM mode
static uint8_t gpioToPwmALT [] =
{
0, 0, 0, 0, 0, 0, 0, 0, // 0 -> 7
0, 0, 0, 0, FSEL_ALT0, FSEL_ALT0, 0, 0, // 8 -> 15
0, 0, FSEL_ALT5, FSEL_ALT5, 0, 0, 0, 0, // 16 -> 23
0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31
0, 0, 0, 0, 0, 0, 0, 0, // 32 -> 39
FSEL_ALT0, FSEL_ALT0, 0, 0, 0, FSEL_ALT0, 0, 0, // 40 -> 47
0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55
0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63
} ;
// gpioToPwmPort
// The port value to put a GPIO pin into PWM mode
static uint8_t gpioToPwmPort [] =
{
0, 0, 0, 0, 0, 0, 0, 0, // 0 -> 7
0, 0, 0, 0, PWM0_DATA, PWM1_DATA, 0, 0, // 8 -> 15
0, 0, PWM0_DATA, PWM1_DATA, 0, 0, 0, 0, // 16 -> 23
0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31
0, 0, 0, 0, 0, 0, 0, 0, // 32 -> 39
PWM0_DATA, PWM1_DATA, 0, 0, 0, PWM1_DATA, 0, 0, // 40 -> 47
0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55
0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63
} ;
// gpioToGpClkALT:
// ALT value to put a GPIO pin into GP Clock mode.
// On the Pi we can really only use BCM_GPIO_4 and BCM_GPIO_21
// for clocks 0 and 1 respectively, however I'll include the full
// list for completeness - maybe one day...
#define GPIO_CLOCK_SOURCE 1
// gpioToGpClkALT0:
static uint8_t gpioToGpClkALT0 [] =
{
0, 0, 0, 0, FSEL_ALT0, FSEL_ALT0, FSEL_ALT0, 0, // 0 -> 7
0, 0, 0, 0, 0, 0, 0, 0, // 8 -> 15
0, 0, 0, 0, FSEL_ALT5, FSEL_ALT5, 0, 0, // 16 -> 23
0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31
FSEL_ALT0, 0, FSEL_ALT0, 0, 0, 0, 0, 0, // 32 -> 39
0, 0, FSEL_ALT0, FSEL_ALT0, FSEL_ALT0, 0, 0, 0, // 40 -> 47
0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55
0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63
} ;
// gpioToClk:
// (word) Offsets to the clock Control and Divisor register
static uint8_t gpioToClkCon [] =
{
-1, -1, -1, -1, 28, 30, 32, -1, // 0 -> 7
-1, -1, -1, -1, -1, -1, -1, -1, // 8 -> 15
-1, -1, -1, -1, 28, 30, -1, -1, // 16 -> 23
-1, -1, -1, -1, -1, -1, -1, -1, // 24 -> 31
28, -1, 28, -1, -1, -1, -1, -1, // 32 -> 39
-1, -1, 28, 30, 28, -1, -1, -1, // 40 -> 47
-1, -1, -1, -1, -1, -1, -1, -1, // 48 -> 55
-1, -1, -1, -1, -1, -1, -1, -1, // 56 -> 63
} ;
static uint8_t gpioToClkDiv [] =
{
-1, -1, -1, -1, 29, 31, 33, -1, // 0 -> 7
-1, -1, -1, -1, -1, -1, -1, -1, // 8 -> 15
-1, -1, -1, -1, 29, 31, -1, -1, // 16 -> 23
-1, -1, -1, -1, -1, -1, -1, -1, // 24 -> 31
29, -1, 29, -1, -1, -1, -1, -1, // 32 -> 39
-1, -1, 29, 31, 29, -1, -1, -1, // 40 -> 47
-1, -1, -1, -1, -1, -1, -1, -1, // 48 -> 55
-1, -1, -1, -1, -1, -1, -1, -1, // 56 -> 63
} ;
/*
* Functions
*********************************************************************************
*/
/*
* wiringPiFailure:
* Fail. Or not.
*********************************************************************************
*/
int wiringPiFailure (int fatal, const char *message, ...)
{
va_list argp ;
char buffer [1024] ;
if (!fatal && wiringPiReturnCodes)
return -1 ;
va_start (argp, message) ;
vsnprintf (buffer, 1023, message, argp) ;
va_end (argp) ;
fprintf (stderr, "%s", buffer) ;
exit (EXIT_FAILURE) ;
return 0 ;
}
/*
* piGpioLayout:
* Return a number representing the hardware revision of the board.
* This is not strictly the board revision but is used to check the
* layout of the GPIO connector - and there are 2 types that we are
* really interested in here. The very earliest Pi's and the
* ones that came after that which switched some pins ....
*
* Revision 1 really means the early Model A and B's.
* Revision 2 is everything else - it covers the B, B+ and CM.
* ... and the Pi 2 - which is a B+ ++ ...
* ... and the Pi 0 - which is an A+ ...
*
* The main difference between the revision 1 and 2 system that I use here
* is the mapping of the GPIO pins. From revision 2, the Pi Foundation changed
* 3 GPIO pins on the (original) 26-way header - BCM_GPIO 22 was dropped and
* replaced with 27, and 0 + 1 - I2C bus 0 was changed to 2 + 3; I2C bus 1.
*
* Additionally, here we set the piModel2 flag too. This is again, nothing to
* do with the actual model, but the major version numbers - the GPIO base
* hardware address changed at model 2 and above (not the Zero though)
*
*********************************************************************************
*/
static void piGpioLayoutOops (const char *why)
{
fprintf (stderr, "Oops: Unable to determine board revision from /proc/cpuinfo\n") ;
fprintf (stderr, " -> %s\n", why) ;
fprintf (stderr, " -> You'd best google the error to find out why.\n") ;
//fprintf (stderr, " -> http://www.raspberrypi.org/phpBB3/viewtopic.php?p=184410#p184410\n") ;
exit (EXIT_FAILURE) ;
}
int piGpioLayout (void)
{
FILE *cpuFd ;
char line [120] ;
char *c ;
static int gpioLayout = -1 ;
if (gpioLayout != -1) // No point checking twice
return gpioLayout ;
if ((cpuFd = fopen ("/proc/cpuinfo", "r")) == NULL)
piGpioLayoutOops ("Unable to open /proc/cpuinfo") ;
// Start by looking for the Architecture to make sure we're really running
// on a Pi. I'm getting fed-up with people whinging at me because
// they can't get it to work on weirdFruitPi boards...
while (fgets (line, 120, cpuFd) != NULL)
if (strncmp (line, "Hardware", 8) == 0)
break ;
if (strncmp (line, "Hardware", 8) != 0)
piGpioLayoutOops ("No \"Hardware\" line") ;
if (wiringPiDebug)
printf ("piGpioLayout: Hardware: %s\n", line) ;
// See if it's BCM2708 or BCM2709 or the new BCM2835.
// OK. As of Kernel 4.8, we have BCM2835 only, regardless of model.
// However I still want to check because it will trap the cheapskates and rip-
// off merchants who want to use wiringPi on non-Raspberry Pi platforms - which
// I do not support so don't email me your bleating whinges about anything
// other than a genuine Raspberry Pi.
if (! (strstr (line, "BCM2708") || strstr (line, "BCM2709") || strstr (line, "BCM2835")))
{
fprintf (stderr, "Unable to determine hardware version. I see: %s,\n", line) ;
fprintf (stderr, " - expecting BCM2708, BCM2709 or BCM2835.\n") ;
fprintf (stderr, "If this is a genuine Raspberry Pi then please report this\n") ;
fprintf (stderr, "to projects@drogon.net. If this is not a Raspberry Pi then you\n") ;
fprintf (stderr, "are on your own as wiringPi is designed to support the\n") ;
fprintf (stderr, "Raspberry Pi ONLY.\n") ;
exit (EXIT_FAILURE) ;
}
// Right - we're Probably on a Raspberry Pi. Check the revision field for the real
// hardware type
// In-future, I ought to use the device tree as there are now Pi entries in
// /proc/device-tree/ ...
// but I'll leave that for the next revision.
// Isolate the Revision line
rewind (cpuFd) ;
while (fgets (line, 120, cpuFd) != NULL)
if (strncmp (line, "Revision", 8) == 0)
break ;
fclose (cpuFd) ;
if (strncmp (line, "Revision", 8) != 0)
piGpioLayoutOops ("No \"Revision\" line") ;
// Chomp trailing CR/NL
for (c = &line [strlen (line) - 1] ; (*c == '\n') || (*c == '\r') ; --c)
*c = 0 ;
if (wiringPiDebug)
printf ("piGpioLayout: Revision string: %s\n", line) ;
// Scan to the first character of the revision number
for (c = line ; *c ; ++c)
if (*c == ':')
break ;
if (*c != ':')
piGpioLayoutOops ("Bogus \"Revision\" line (no colon)") ;
// Chomp spaces
++c ;
while (isspace (*c))
++c ;
if (!isxdigit (*c))
piGpioLayoutOops ("Bogus \"Revision\" line (no hex digit at start of revision)") ;
// Make sure its long enough
if (strlen (c) < 4)
piGpioLayoutOops ("Bogus revision line (too small)") ;
// Isolate last 4 characters: (in-case of overvolting or new encoding scheme)
c = c + strlen (c) - 4 ;
if (wiringPiDebug)
printf ("piGpioLayout: last4Chars are: \"%s\"\n", c) ;
if ( (strcmp (c, "0002") == 0) || (strcmp (c, "0003") == 0))
gpioLayout = 1 ;
else
gpioLayout = 2 ; // Covers everything else from the B revision 2 to the B+, the Pi v2, v3, zero and CM's.
if (wiringPiDebug)
printf ("piGpioLayoutOops: Returning revision: %d\n", gpioLayout) ;
return gpioLayout ;
}
/*
* piBoardRev:
* Deprecated, but does the same as piGpioLayout
*********************************************************************************
*/
int piBoardRev (void)
{
return piGpioLayout () ;
}
/*
* piBoardId:
* Return the real details of the board we have.
*
* This is undocumented and really only intended for the GPIO command.
* Use at your own risk!
*
* Seems there are some boards with 0000 in them (mistake in manufacture)
* So the distinction between boards that I can see is:
*
* 0000 - Error
* 0001 - Not used
*
* Original Pi boards:
* 0002 - Model B, Rev 1, 256MB, Egoman
* 0003 - Model B, Rev 1.1, 256MB, Egoman, Fuses/D14 removed.
*
* Newer Pi's with remapped GPIO:
* 0004 - Model B, Rev 1.2, 256MB, Sony
* 0005 - Model B, Rev 1.2, 256MB, Egoman
* 0006 - Model B, Rev 1.2, 256MB, Egoman
*
* 0007 - Model A, Rev 1.2, 256MB, Egoman
* 0008 - Model A, Rev 1.2, 256MB, Sony
* 0009 - Model A, Rev 1.2, 256MB, Egoman
*
* 000d - Model B, Rev 1.2, 512MB, Egoman (Red Pi, Blue Pi?)
* 000e - Model B, Rev 1.2, 512MB, Sony
* 000f - Model B, Rev 1.2, 512MB, Egoman
*
* 0010 - Model B+, Rev 1.2, 512MB, Sony
* 0013 - Model B+ Rev 1.2, 512MB, Embest
* 0016 - Model B+ Rev 1.2, 512MB, Sony
* 0019 - Model B+ Rev 1.2, 512MB, Egoman
*
* 0011 - Pi CM, Rev 1.1, 512MB, Sony
* 0014 - Pi CM, Rev 1.1, 512MB, Embest
* 0017 - Pi CM, Rev 1.1, 512MB, Sony
* 001a - Pi CM, Rev 1.1, 512MB, Egoman
*
* 0012 - Model A+ Rev 1.1, 256MB, Sony
* 0015 - Model A+ Rev 1.1, 512MB, Embest
* 0018 - Model A+ Rev 1.1, 256MB, Sony
* 001b - Model A+ Rev 1.1, 256MB, Egoman
*
* A small thorn is the olde style overvolting - that will add in
* 1000000
*
* The Pi compute module has an revision of 0011 or 0014 - since we only
* check the last digit, then it's 1, therefore it'll default to not 2 or
* 3 for a Rev 1, so will appear as a Rev 2. This is fine for the most part, but
* we'll properly detect the Compute Module later and adjust accordingly.
*
* And then things changed with the introduction of the v2...
*
* For Pi v2 and subsequent models - e.g. the Zero:
*
* [USER:8] [NEW:1] [MEMSIZE:3] [MANUFACTURER:4] [PROCESSOR:4] [TYPE:8] [REV:4]
* NEW 23: will be 1 for the new scheme, 0 for the old scheme
* MEMSIZE 20: 0=256M 1=512M 2=1G
* MANUFACTURER 16: 0=SONY 1=EGOMAN 2=EMBEST
* PROCESSOR 12: 0=2835 1=2836
* TYPE 04: 0=MODELA 1=MODELB 2=MODELA+ 3=MODELB+ 4=Pi2 MODEL B 5=ALPHA 6=CM
* REV 00: 0=REV0 1=REV1 2=REV2
*********************************************************************************
*/
void piBoardId (int *model, int *rev, int *mem, int *maker, int *warranty)
{
FILE *cpuFd ;
char line [120] ;
char *c ;
unsigned int revision ;
int bRev, bType, bProc, bMfg, bMem, bWarranty ;
// Will deal with the properly later on - for now, lets just get it going...
// unsigned int modelNum ;
(void)piGpioLayout () ; // Call this first to make sure all's OK. Don't care about the result.
if ((cpuFd = fopen ("/proc/cpuinfo", "r")) == NULL)
piGpioLayoutOops ("Unable to open /proc/cpuinfo") ;
while (fgets (line, 120, cpuFd) != NULL)
if (strncmp (line, "Revision", 8) == 0)
break ;
fclose (cpuFd) ;
if (strncmp (line, "Revision", 8) != 0)
piGpioLayoutOops ("No \"Revision\" line") ;
// Chomp trailing CR/NL
for (c = &line [strlen (line) - 1] ; (*c == '\n') || (*c == '\r') ; --c)
*c = 0 ;
if (wiringPiDebug)
printf ("piBoardId: Revision string: %s\n", line) ;
// Need to work out if it's using the new or old encoding scheme:
// Scan to the first character of the revision number
for (c = line ; *c ; ++c)
if (*c == ':')
break ;
if (*c != ':')
piGpioLayoutOops ("Bogus \"Revision\" line (no colon)") ;
// Chomp spaces
++c ;
while (isspace (*c))
++c ;
if (!isxdigit (*c))
piGpioLayoutOops ("Bogus \"Revision\" line (no hex digit at start of revision)") ;
revision = (unsigned int)strtol (c, NULL, 16) ; // Hex number with no leading 0x
// Check for new way:
if ((revision & (1 << 23)) != 0) // New way
{
if (wiringPiDebug)
printf ("piBoardId: New Way: revision is: 0x%08X\n", revision) ;
bRev = (revision & (0x0F << 0)) >> 0 ;
bType = (revision & (0xFF << 4)) >> 4 ;
bProc = (revision & (0x0F << 12)) >> 12 ; // Not used for now.
bMfg = (revision & (0x0F << 16)) >> 16 ;
bMem = (revision & (0x07 << 20)) >> 20 ;
bWarranty = (revision & (0x03 << 24)) != 0 ;
*model = bType ;
*rev = bRev ;
*mem = bMem ;
*maker = bMfg ;
*warranty = bWarranty ;
if (wiringPiDebug)
printf ("piBoardId: rev: %d, type: %d, proc: %d, mfg: %d, mem: %d, warranty: %d\n",
bRev, bType, bProc, bMfg, bMem, bWarranty) ;
}
else // Old way
{
if (wiringPiDebug)
printf ("piBoardId: Old Way: revision is: %s\n", c) ;
if (!isdigit (*c))
piGpioLayoutOops ("Bogus \"Revision\" line (no digit at start of revision)") ;
// Make sure its long enough
if (strlen (c) < 4)
piGpioLayoutOops ("Bogus \"Revision\" line (not long enough)") ;
// If longer than 4, we'll assume it's been overvolted
*warranty = strlen (c) > 4 ;
// Extract last 4 characters:
c = c + strlen (c) - 4 ;
// Fill out the replys as appropriate
/**/ if (strcmp (c, "0002") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1 ; *mem = 0 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0003") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_1 ; *mem = 0 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0004") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_2 ; *mem = 0 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0005") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_2 ; *mem = 0 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0006") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_2 ; *mem = 0 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0007") == 0) { *model = PI_MODEL_A ; *rev = PI_VERSION_1_2 ; *mem = 0 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0008") == 0) { *model = PI_MODEL_A ; *rev = PI_VERSION_1_2 ; *mem = 0 ; *maker = PI_MAKER_SONY ; ; }
else if (strcmp (c, "0009") == 0) { *model = PI_MODEL_A ; *rev = PI_VERSION_1_2 ; *mem = 0 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "000d") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_2 ; *mem = 1 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "000e") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_2 ; *mem = 1 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "000f") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_2 ; *mem = 1 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0010") == 0) { *model = PI_MODEL_BP ; *rev = PI_VERSION_1_2 ; *mem = 1 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0013") == 0) { *model = PI_MODEL_BP ; *rev = PI_VERSION_1_2 ; *mem = 1 ; *maker = PI_MAKER_EMBEST ; }
else if (strcmp (c, "0016") == 0) { *model = PI_MODEL_BP ; *rev = PI_VERSION_1_2 ; *mem = 1 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0019") == 0) { *model = PI_MODEL_BP ; *rev = PI_VERSION_1_2 ; *mem = 1 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0011") == 0) { *model = PI_MODEL_CM ; *rev = PI_VERSION_1_1 ; *mem = 1 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0014") == 0) { *model = PI_MODEL_CM ; *rev = PI_VERSION_1_1 ; *mem = 1 ; *maker = PI_MAKER_EMBEST ; }
else if (strcmp (c, "0017") == 0) { *model = PI_MODEL_CM ; *rev = PI_VERSION_1_1 ; *mem = 1 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "001a") == 0) { *model = PI_MODEL_CM ; *rev = PI_VERSION_1_1 ; *mem = 1 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0012") == 0) { *model = PI_MODEL_AP ; *rev = PI_VERSION_1_1 ; *mem = 0 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0015") == 0) { *model = PI_MODEL_AP ; *rev = PI_VERSION_1_1 ; *mem = 1 ; *maker = PI_MAKER_EMBEST ; }
else if (strcmp (c, "0018") == 0) { *model = PI_MODEL_AP ; *rev = PI_VERSION_1_1 ; *mem = 0 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "001b") == 0) { *model = PI_MODEL_AP ; *rev = PI_VERSION_1_1 ; *mem = 0 ; *maker = PI_MAKER_EGOMAN ; }
else { *model = 0 ; *rev = 0 ; *mem = 0 ; *maker = 0 ; }
}
}
/*
* wpiPinToGpio:
* Translate a wiringPi Pin number to native GPIO pin number.
* Provided for external support.
*********************************************************************************
*/
int wpiPinToGpio (int wpiPin)
{
return pinToGpio [wpiPin & 63] ;
}
/*
* physPinToGpio:
* Translate a physical Pin number to native GPIO pin number.
* Provided for external support.
*********************************************************************************
*/
int physPinToGpio (int physPin)
{
return physToGpio [physPin & 63] ;
}
/*
* setPadDrive:
* Set the PAD driver value
*********************************************************************************
*/
void setPadDrive (int group, int value)
{
uint32_t wrVal ;
if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO))
{
if ((group < 0) || (group > 2))
return ;
wrVal = BCM_PASSWORD | 0x18 | (value & 7) ;
*(pads + group + 11) = wrVal ;
if (wiringPiDebug)
{
printf ("setPadDrive: Group: %d, value: %d (%08X)\n", group, value, wrVal) ;
printf ("Read : %08X\n", *(pads + group + 11)) ;
}
}
}
/*
* getAlt:
* Returns the ALT bits for a given port. Only really of-use
* for the gpio readall command (I think)
*********************************************************************************
*/
int getAlt (int pin)
{
int fSel, shift, alt ;
pin &= 63 ;
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return 0 ;
fSel = gpioToGPFSEL [pin] ;
shift = gpioToShift [pin] ;
alt = (*(gpio + fSel) >> shift) & 7 ;
return alt ;
}
/*
* pwmSetMode:
* Select the native "balanced" mode, or standard mark:space mode
*********************************************************************************
*/
void pwmSetMode (int mode)
{
if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO))
{
if (mode == PWM_MODE_MS)
*(pwm + PWM_CONTROL) = PWM0_ENABLE | PWM1_ENABLE | PWM0_MS_MODE | PWM1_MS_MODE ;
else
*(pwm + PWM_CONTROL) = PWM0_ENABLE | PWM1_ENABLE ;
}
}
/*
* pwmSetRange:
* Set the PWM range register. We set both range registers to the same
* value. If you want different in your own code, then write your own.
*********************************************************************************
*/
void pwmSetRange (unsigned int range)
{
if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO))
{
*(pwm + PWM0_RANGE) = range ; delayMicroseconds (10) ;
*(pwm + PWM1_RANGE) = range ; delayMicroseconds (10) ;
}
}
/*
* pwmSetClock:
* Set/Change the PWM clock. Originally my code, but changed
* (for the better!) by Chris Hall, <chris@kchall.plus.com>
* after further study of the manual and testing with a 'scope
*********************************************************************************
*/
void pwmSetClock (int divisor)
{
uint32_t pwm_control ;
divisor &= 4095 ;
if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO))
{
if (wiringPiDebug)
printf ("Setting to: %d. Current: 0x%08X\n", divisor, *(clk + PWMCLK_DIV)) ;
pwm_control = *(pwm + PWM_CONTROL) ; // preserve PWM_CONTROL
// We need to stop PWM prior to stopping PWM clock in MS mode otherwise BUSY
// stays high.
*(pwm + PWM_CONTROL) = 0 ; // Stop PWM
// Stop PWM clock before changing divisor. The delay after this does need to
// this big (95uS occasionally fails, 100uS OK), it's almost as though the BUSY
// flag is not working properly in balanced mode. Without the delay when DIV is
// adjusted the clock sometimes switches to very slow, once slow further DIV
// adjustments do nothing and it's difficult to get out of this mode.
*(clk + PWMCLK_CNTL) = BCM_PASSWORD | 0x01 ; // Stop PWM Clock
delayMicroseconds (110) ; // prevents clock going sloooow
while ((*(clk + PWMCLK_CNTL) & 0x80) != 0) // Wait for clock to be !BUSY
delayMicroseconds (1) ;
*(clk + PWMCLK_DIV) = BCM_PASSWORD | (divisor << 12) ;
*(clk + PWMCLK_CNTL) = BCM_PASSWORD | 0x11 ; // Start PWM clock
*(pwm + PWM_CONTROL) = pwm_control ; // restore PWM_CONTROL
if (wiringPiDebug)
printf ("Set to: %d. Now : 0x%08X\n", divisor, *(clk + PWMCLK_DIV)) ;
}
}
/*
* gpioClockSet:
* Set the freuency on a GPIO clock pin
*********************************************************************************
*/
void gpioClockSet (int pin, int freq)
{
int divi, divr, divf ;
pin &= 63 ;
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
divi = 19200000 / freq ;
divr = 19200000 % freq ;
divf = (int)((double)divr * 4096.0 / 19200000.0) ;
if (divi > 4095)
divi = 4095 ;
*(clk + gpioToClkCon [pin]) = BCM_PASSWORD | GPIO_CLOCK_SOURCE ; // Stop GPIO Clock
while ((*(clk + gpioToClkCon [pin]) & 0x80) != 0) // ... and wait
;
*(clk + gpioToClkDiv [pin]) = BCM_PASSWORD | (divi << 12) | divf ; // Set dividers
*(clk + gpioToClkCon [pin]) = BCM_PASSWORD | 0x10 | GPIO_CLOCK_SOURCE ; // Start Clock
}
/*
* wiringPiFindNode:
* Locate our device node
*********************************************************************************
*/
struct wiringPiNodeStruct *wiringPiFindNode (int pin)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
while (node != NULL)
if ((pin >= node->pinBase) && (pin <= node->pinMax))
return node ;
else
node = node->next ;
return NULL ;
}
/*
* wiringPiNewNode:
* Create a new GPIO node into the wiringPi handling system
*********************************************************************************
*/
static void pinModeDummy (UNU struct wiringPiNodeStruct *node, UNU int pin, UNU int mode) { return ; }
static void pullUpDnControlDummy (UNU struct wiringPiNodeStruct *node, UNU int pin, UNU int pud) { return ; }
static int digitalReadDummy (UNU struct wiringPiNodeStruct *node, UNU int UNU pin) { return LOW ; }
static void digitalWriteDummy (UNU struct wiringPiNodeStruct *node, UNU int pin, UNU int value) { return ; }
static void pwmWriteDummy (UNU struct wiringPiNodeStruct *node, UNU int pin, UNU int value) { return ; }
static int analogReadDummy (UNU struct wiringPiNodeStruct *node, UNU int pin) { return 0 ; }
static void analogWriteDummy (UNU struct wiringPiNodeStruct *node, UNU int pin, UNU int value) { return ; }
struct wiringPiNodeStruct *wiringPiNewNode (int pinBase, int numPins)
{
int pin ;
struct wiringPiNodeStruct *node ;
// Minimum pin base is 64
if (pinBase < 64)
(void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: pinBase of %d is < 64\n", pinBase) ;
// Check all pins in-case there is overlap:
for (pin = pinBase ; pin < (pinBase + numPins) ; ++pin)
if (wiringPiFindNode (pin) != NULL)
(void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: Pin %d overlaps with existing definition\n", pin) ;
node = (struct wiringPiNodeStruct *)calloc (sizeof (struct wiringPiNodeStruct), 1) ; // calloc zeros
if (node == NULL)
(void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: Unable to allocate memory: %s\n", strerror (errno)) ;
node->pinBase = pinBase ;
node->pinMax = pinBase + numPins - 1 ;
node->pinMode = pinModeDummy ;
node->pullUpDnControl = pullUpDnControlDummy ;
node->digitalRead = digitalReadDummy ;
node->digitalWrite = digitalWriteDummy ;
node->pwmWrite = pwmWriteDummy ;
node->analogRead = analogReadDummy ;
node->analogWrite = analogWriteDummy ;
node->next = wiringPiNodes ;
wiringPiNodes = node ;
return node ;
}
#ifdef notYetReady
/*
* pinED01:
* pinED10:
* Enables edge-detect mode on a pin - from a 0 to a 1 or 1 to 0
* Pin must already be in input mode with appropriate pull up/downs set.
*********************************************************************************
*/
void pinEnableED01Pi (int pin)
{
pin = pinToGpio [pin & 63] ;
}
#endif
/*
*********************************************************************************
* Core Functions
*********************************************************************************
*/
/*
* pinModeAlt:
* This is an un-documented special to let you set any pin to any mode
*********************************************************************************
*/
void pinModeAlt (int pin, int mode)
{
int fSel, shift ;
if ((pin & PI_GPIO_MASK) == 0) // On-board pin
{
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
fSel = gpioToGPFSEL [pin] ;
shift = gpioToShift [pin] ;
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | ((mode & 0x7) << shift) ;
}
}
/*
* pinMode:
* Sets the mode of a pin to be input, output or PWM output
*********************************************************************************
*/
void pinMode (int pin, int mode)
{
int fSel, shift, alt ;
struct wiringPiNodeStruct *node = wiringPiNodes ;
int origPin = pin ;
if ((pin & PI_GPIO_MASK) == 0) // On-board pin
{
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
softPwmStop (origPin) ;
softToneStop (origPin) ;
fSel = gpioToGPFSEL [pin] ;
shift = gpioToShift [pin] ;
/**/ if (mode == INPUT)
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) ; // Sets bits to zero = input
else if (mode == OUTPUT)
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (1 << shift) ;
else if (mode == SOFT_PWM_OUTPUT)
softPwmCreate (origPin, 0, 100) ;
else if (mode == SOFT_TONE_OUTPUT)
softToneCreate (origPin) ;
else if (mode == PWM_TONE_OUTPUT)
{
pinMode (origPin, PWM_OUTPUT) ; // Call myself to enable PWM mode
pwmSetMode (PWM_MODE_MS) ;
}
else if (mode == PWM_OUTPUT)
{
if ((alt = gpioToPwmALT [pin]) == 0) // Not a hardware capable PWM pin
return ;
// Set pin to PWM mode
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (alt << shift) ;
delayMicroseconds (110) ; // See comments in pwmSetClockWPi
pwmSetMode (PWM_MODE_BAL) ; // Pi default mode
pwmSetRange (1024) ; // Default range of 1024
pwmSetClock (32) ; // 19.2 / 32 = 600KHz - Also starts the PWM
}
else if (mode == GPIO_CLOCK)
{
if ((alt = gpioToGpClkALT0 [pin]) == 0) // Not a GPIO_CLOCK pin
return ;
// Set pin to GPIO_CLOCK mode and set the clock frequency to 100KHz
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (alt << shift) ;
delayMicroseconds (110) ;
gpioClockSet (pin, 100000) ;
}
}
else
{
if ((node = wiringPiFindNode (pin)) != NULL)
node->pinMode (node, pin, mode) ;
return ;
}
}
/*
* pullUpDownCtrl:
* Control the internal pull-up/down resistors on a GPIO pin
* The Arduino only has pull-ups and these are enabled by writing 1
* to a port when in input mode - this paradigm doesn't quite apply
* here though.
*********************************************************************************
*/
void pullUpDnControl (int pin, int pud)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin
{
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
*(gpio + GPPUD) = pud & 3 ; delayMicroseconds (5) ;
*(gpio + gpioToPUDCLK [pin]) = 1 << (pin & 31) ; delayMicroseconds (5) ;
*(gpio + GPPUD) = 0 ; delayMicroseconds (5) ;
*(gpio + gpioToPUDCLK [pin]) = 0 ; delayMicroseconds (5) ;
}
else // Extension module
{
if ((node = wiringPiFindNode (pin)) != NULL)
node->pullUpDnControl (node, pin, pud) ;
return ;
}
}
/*
* digitalRead:
* Read the value of a given Pin, returning HIGH or LOW
*********************************************************************************
*/
int digitalRead (int pin)
{
char c ;
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin
{
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode
{
if (sysFds [pin] == -1)
return LOW ;
lseek (sysFds [pin], 0L, SEEK_SET) ;
read (sysFds [pin], &c, 1) ;
return (c == '0') ? LOW : HIGH ;
}
else if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return LOW ;
if ((*(gpio + gpioToGPLEV [pin]) & (1 << (pin & 31))) != 0)
return HIGH ;
else
return LOW ;
}
else
{
if ((node = wiringPiFindNode (pin)) == NULL)
return LOW ;
return node->digitalRead (node, pin) ;
}
}
/*
* digitalWrite:
* Set an output bit
*********************************************************************************
*/
void digitalWrite (int pin, int value)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin
{
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode
{
if (sysFds [pin] != -1)
{
if (value == LOW)
write (sysFds [pin], "0\n", 2) ;
else
write (sysFds [pin], "1\n", 2) ;
}
return ;
}
else if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
if (value == LOW)
*(gpio + gpioToGPCLR [pin]) = 1 << (pin & 31) ;
else
*(gpio + gpioToGPSET [pin]) = 1 << (pin & 31) ;
}
else
{
if ((node = wiringPiFindNode (pin)) != NULL)
node->digitalWrite (node, pin, value) ;
}
}
/*
* pwmWrite:
* Set an output PWM value
*********************************************************************************
*/
void pwmWrite (int pin, int value)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin
{
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
*(pwm + gpioToPwmPort [pin]) = value ;
}
else
{
if ((node = wiringPiFindNode (pin)) != NULL)
node->pwmWrite (node, pin, value) ;
}
}
/*
* analogRead:
* Read the analog value of a given Pin.
* There is no on-board Pi analog hardware,
* so this needs to go to a new node.
*********************************************************************************
*/
int analogRead (int pin)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((node = wiringPiFindNode (pin)) == NULL)
return 0 ;
else
return node->analogRead (node, pin) ;
}
/*
* analogWrite:
* Write the analog value to the given Pin.
* There is no on-board Pi analog hardware,
* so this needs to go to a new node.
*********************************************************************************
*/
void analogWrite (int pin, int value)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((node = wiringPiFindNode (pin)) == NULL)
return ;
node->analogWrite (node, pin, value) ;
}
/*
* pwmToneWrite:
* Pi Specific.
* Output the given frequency on the Pi's PWM pin
*********************************************************************************
*/
void pwmToneWrite (int pin, int freq)
{
int range ;
if (freq == 0)
pwmWrite (pin, 0) ; // Off
else
{
range = 600000 / freq ;
pwmSetRange (range) ;
pwmWrite (pin, freq / 2) ;
}
}
/*
* digitalWriteByte:
* digitalReadByte:
* Pi Specific
* Write an 8-bit byte to the first 8 GPIO pins - try to do it as
* fast as possible.
* However it still needs 2 operations to set the bits, so any external
* hardware must not rely on seeing a change as there will be a change
* to set the outputs bits to zero, then another change to set the 1's
* Reading is just bit fiddling.
* These are wiringPi pin numbers 0..7, or BCM_GPIO pin numbers
* 17, 18, 22, 23, 24, 24, 4 on a Pi v1 rev 0-3
* 17, 18, 27, 23, 24, 24, 4 on a Pi v1 rev 3 onwards or B+, 2, 3, zero
*********************************************************************************
*/
void digitalWriteByte (const int value)
{
uint32_t pinSet = 0 ;
uint32_t pinClr = 0 ;
int mask = 1 ;
int pin ;
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS)
{
for (pin = 0 ; pin < 8 ; ++pin)
{
digitalWrite (pinToGpio [pin], value & mask) ;
mask <<= 1 ;
}
return ;
}
else
{
for (pin = 0 ; pin < 8 ; ++pin)
{
if ((value & mask) == 0)
pinClr |= (1 << pinToGpio [pin]) ;
else
pinSet |= (1 << pinToGpio [pin]) ;
mask <<= 1 ;
}
*(gpio + gpioToGPCLR [0]) = pinClr ;
*(gpio + gpioToGPSET [0]) = pinSet ;
}
}
unsigned int digitalReadByte (void)
{
int pin, x ;
uint32_t raw ;
uint32_t data = 0 ;
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS)
{
for (pin = 0 ; pin < 8 ; ++pin)
{
x = digitalRead (pinToGpio [pin]) ;
data = (data << 1) | x ;
}
}
else
{
raw = *(gpio + gpioToGPLEV [0]) ; // First bank for these pins
for (pin = 0 ; pin < 8 ; ++pin)
{
x = pinToGpio [pin] ;
data = (data << 1) | (((raw & (1 << x)) == 0) ? 0 : 1) ;
}
}
return data ;
}
/*
* digitalWriteByte2:
* digitalReadByte2:
* Pi Specific
* Write an 8-bit byte to the second set of 8 GPIO pins. This is marginally
* faster than the first lot as these are consecutive BCM_GPIO pin numbers.
* However they overlap with the original read/write bytes.
*********************************************************************************
*/
void digitalWriteByte2 (const int value)
{
register int mask = 1 ;
register int pin ;
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS)
{
for (pin = 20 ; pin < 28 ; ++pin)
{
digitalWrite (pin, value & mask) ;
mask <<= 1 ;
}
return ;
}
else
{
*(gpio + gpioToGPCLR [0]) = (~value & 0xFF) << 20 ; // 0x0FF00000; ILJ > CHANGE: Old causes glitch
*(gpio + gpioToGPSET [0]) = ( value & 0xFF) << 20 ;
}
}
unsigned int digitalReadByte2 (void)
{
int pin, x ;
uint32_t data = 0 ;
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS)
{
for (pin = 20 ; pin < 28 ; ++pin)
{
x = digitalRead (pin) ;
data = (data << 1) | x ;
}
}
else
data = ((*(gpio + gpioToGPLEV [0])) >> 20) & 0xFF ; // First bank for these pins
return data ;
}
/*
* waitForInterrupt:
* Pi Specific.
* Wait for Interrupt on a GPIO pin.
* This is actually done via the /sys/class/gpio interface regardless of
* the wiringPi access mode in-use. Maybe sometime it might get a better
* way for a bit more efficiency.
*********************************************************************************
*/
int waitForInterrupt (int pin, int mS)
{
int fd, x ;
uint8_t c ;
struct pollfd polls ;
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
if ((fd = sysFds [pin]) == -1)
return -2 ;
// Setup poll structure
polls.fd = fd ;
polls.events = POLLPRI | POLLERR ;
// Wait for it ...
x = poll (&polls, 1, mS) ;
// If no error, do a dummy read to clear the interrupt
// A one character read appars to be enough.
if (x > 0)
{
lseek (fd, 0, SEEK_SET) ; // Rewind
(void)read (fd, &c, 1) ; // Read & clear
}
return x ;
}
/*
* interruptHandler:
* This is a thread and gets started to wait for the interrupt we're
* hoping to catch. It will call the user-function when the interrupt
* fires.
*********************************************************************************
*/
static void *interruptHandler (UNU void *arg)
{
int myPin ;
(void)piHiPri (55) ; // Only effective if we run as root
myPin = pinPass ;
pinPass = -1 ;
for (;;)
if (waitForInterrupt (myPin, -1) > 0)
isrFunctions [myPin] () ;
return NULL ;
}
/*
* wiringPiISR:
* Pi Specific.
* Take the details and create an interrupt handler that will do a call-
* back to the user supplied function.
*********************************************************************************
*/
int wiringPiISR (int pin, int mode, void (*function)(void))
{
pthread_t threadId ;
const char *modeS ;
char fName [64] ;
char pinS [8] ;
pid_t pid ;
int count, i ;
char c ;
int bcmGpioPin ;
if ((pin < 0) || (pin > 63))
return wiringPiFailure (WPI_FATAL, "wiringPiISR: pin must be 0-63 (%d)\n", pin) ;
/**/ if (wiringPiMode == WPI_MODE_UNINITIALISED)
return wiringPiFailure (WPI_FATAL, "wiringPiISR: wiringPi has not been initialised. Unable to continue.\n") ;
else if (wiringPiMode == WPI_MODE_PINS)
bcmGpioPin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
bcmGpioPin = physToGpio [pin] ;
else
bcmGpioPin = pin ;
// Now export the pin and set the right edge
// We're going to use the gpio program to do this, so it assumes
// a full installation of wiringPi. It's a bit 'clunky', but it
// is a way that will work when we're running in "Sys" mode, as
// a non-root user. (without sudo)
if (mode != INT_EDGE_SETUP)
{
/**/ if (mode == INT_EDGE_FALLING)
modeS = "falling" ;
else if (mode == INT_EDGE_RISING)
modeS = "rising" ;
else
modeS = "both" ;
sprintf (pinS, "%d", bcmGpioPin) ;
if ((pid = fork ()) < 0) // Fail
return wiringPiFailure (WPI_FATAL, "wiringPiISR: fork failed: %s\n", strerror (errno)) ;
if (pid == 0) // Child, exec
{
/**/ if (access ("/usr/local/bin/gpio", X_OK) == 0)
{
execl ("/usr/local/bin/gpio", "gpio", "edge", pinS, modeS, (char *)NULL) ;
return wiringPiFailure (WPI_FATAL, "wiringPiISR: execl failed: %s\n", strerror (errno)) ;
}
else if (access ("/usr/bin/gpio", X_OK) == 0)
{
execl ("/usr/bin/gpio", "gpio", "edge", pinS, modeS, (char *)NULL) ;
return wiringPiFailure (WPI_FATAL, "wiringPiISR: execl failed: %s\n", strerror (errno)) ;
}
else
return wiringPiFailure (WPI_FATAL, "wiringPiISR: Can't find gpio program\n") ;
}
else // Parent, wait
wait (NULL) ;
}
// Now pre-open the /sys/class node - but it may already be open if
// we are in Sys mode...
if (sysFds [bcmGpioPin] == -1)
{
sprintf (fName, "/sys/class/gpio/gpio%d/value", bcmGpioPin) ;
if ((sysFds [bcmGpioPin] = open (fName, O_RDWR)) < 0)
return wiringPiFailure (WPI_FATAL, "wiringPiISR: unable to open %s: %s\n", fName, strerror (errno)) ;
}
// Clear any initial pending interrupt
ioctl (sysFds [bcmGpioPin], FIONREAD, &count) ;
for (i = 0 ; i < count ; ++i)
read (sysFds [bcmGpioPin], &c, 1) ;
isrFunctions [pin] = function ;
pthread_mutex_lock (&pinMutex) ;
pinPass = pin ;
pthread_create (&threadId, NULL, interruptHandler, NULL) ;
while (pinPass != -1)
delay (1) ;
pthread_mutex_unlock (&pinMutex) ;
return 0 ;
}
/*
* initialiseEpoch:
* Initialise our start-of-time variable to be the current unix
* time in milliseconds and microseconds.
*********************************************************************************
*/
static void initialiseEpoch (void)
{
#ifdef OLD_WAY
struct timeval tv ;
gettimeofday (&tv, NULL) ;
epochMilli = (uint64_t)tv.tv_sec * (uint64_t)1000 + (uint64_t)(tv.tv_usec / 1000) ;
epochMicro = (uint64_t)tv.tv_sec * (uint64_t)1000000 + (uint64_t)(tv.tv_usec) ;
#else
struct timespec ts ;
clock_gettime (CLOCK_MONOTONIC_RAW, &ts) ;
epochMilli = (uint64_t)ts.tv_sec * (uint64_t)1000 + (uint64_t)(ts.tv_nsec / 1000000L) ;
epochMicro = (uint64_t)ts.tv_sec * (uint64_t)1000000 + (uint64_t)(ts.tv_nsec / 1000L) ;
#endif
}
/*
* delay:
* Wait for some number of milliseconds
*********************************************************************************
*/
void delay (unsigned int howLong)
{
struct timespec sleeper, dummy ;
sleeper.tv_sec = (time_t)(howLong / 1000) ;
sleeper.tv_nsec = (long)(howLong % 1000) * 1000000 ;
nanosleep (&sleeper, &dummy) ;
}
/*
* delayMicroseconds:
* This is somewhat intersting. It seems that on the Pi, a single call
* to nanosleep takes some 80 to 130 microseconds anyway, so while
* obeying the standards (may take longer), it's not always what we
* want!
*
* So what I'll do now is if the delay is less than 100uS we'll do it
* in a hard loop, watching a built-in counter on the ARM chip. This is
* somewhat sub-optimal in that it uses 100% CPU, something not an issue
* in a microcontroller, but under a multi-tasking, multi-user OS, it's
* wastefull, however we've no real choice )-:
*
* Plan B: It seems all might not be well with that plan, so changing it
* to use gettimeofday () and poll on that instead...
*********************************************************************************
*/
void delayMicrosecondsHard (unsigned int howLong)
{
struct timeval tNow, tLong, tEnd ;
gettimeofday (&tNow, NULL) ;
tLong.tv_sec = howLong / 1000000 ;
tLong.tv_usec = howLong % 1000000 ;
timeradd (&tNow, &tLong, &tEnd) ;
while (timercmp (&tNow, &tEnd, <))
gettimeofday (&tNow, NULL) ;
}
void delayMicroseconds (unsigned int howLong)
{
struct timespec sleeper ;
unsigned int uSecs = howLong % 1000000 ;
unsigned int wSecs = howLong / 1000000 ;
/**/ if (howLong == 0)
return ;
else if (howLong < 100)
delayMicrosecondsHard (howLong) ;
else
{
sleeper.tv_sec = wSecs ;
sleeper.tv_nsec = (long)(uSecs * 1000L) ;
nanosleep (&sleeper, NULL) ;
}
}
/*
* millis:
* Return a number of milliseconds as an unsigned int.
* Wraps at 49 days.
*********************************************************************************
*/
unsigned int millis (void)
{
uint64_t now ;
#ifdef OLD_WAY
struct timeval tv ;
gettimeofday (&tv, NULL) ;
now = (uint64_t)tv.tv_sec * (uint64_t)1000 + (uint64_t)(tv.tv_usec / 1000) ;
#else
struct timespec ts ;
clock_gettime (CLOCK_MONOTONIC_RAW, &ts) ;
now = (uint64_t)ts.tv_sec * (uint64_t)1000 + (uint64_t)(ts.tv_nsec / 1000000L) ;
#endif
return (uint32_t)(now - epochMilli) ;
}
/*
* micros:
* Return a number of microseconds as an unsigned int.
* Wraps after 71 minutes.
*********************************************************************************
*/
unsigned int micros (void)
{
uint64_t now ;
#ifdef OLD_WAY
struct timeval tv ;
gettimeofday (&tv, NULL) ;
now = (uint64_t)tv.tv_sec * (uint64_t)1000000 + (uint64_t)tv.tv_usec ;
#else
struct timespec ts ;
clock_gettime (CLOCK_MONOTONIC_RAW, &ts) ;
now = (uint64_t)ts.tv_sec * (uint64_t)1000000 + (uint64_t)(ts.tv_nsec / 1000) ;
#endif
return (uint32_t)(now - epochMicro) ;
}
/*
* wiringPiVersion:
* Return our current version number
*********************************************************************************
*/
void wiringPiVersion (int *major, int *minor)
{
*major = VERSION_MAJOR ;
*minor = VERSION_MINOR ;
}
/*
* wiringPiSetup:
* Must be called once at the start of your program execution.
*
* Default setup: Initialises the system into wiringPi Pin mode and uses the
* memory mapped hardware directly.
*
* Changed now to revert to "gpio" mode if we're running on a Compute Module.
*********************************************************************************
*/
int wiringPiSetup (void)
{
int fd ;
int model, rev, mem, maker, overVolted ;
static int alreadyDoneThis = FALSE ;
// It's actually a fatal error to call any of the wiringPiSetup routines more than once,
// (you run out of file handles!) but I'm fed-up with the useless twats who email
// me bleating that there is a bug in my code, so screw-em.
if (alreadyDoneThis)
return 0 ;
alreadyDoneThis = TRUE ;
if (getenv (ENV_DEBUG) != NULL)
wiringPiDebug = TRUE ;
if (getenv (ENV_CODES) != NULL)
wiringPiReturnCodes = TRUE ;
if (wiringPiDebug)
printf ("wiringPi: wiringPiSetup called\n") ;
// Get the board ID information. We're not really using the information here,
// but it will give us information like the GPIO layout scheme (2 variants
// on the older 26-pin Pi's) and the GPIO peripheral base address.
// and if we're running on a compute module, then wiringPi pin numbers
// don't really many anything, so force native BCM mode anyway.
piBoardId (&model, &rev, &mem, &maker, &overVolted) ;
if ((model == PI_MODEL_CM) || (model == PI_MODEL_CM3))
wiringPiMode = WPI_MODE_GPIO ;
else
wiringPiMode = WPI_MODE_PINS ;
/**/ if (piGpioLayout () == 1) // A, B, Rev 1, 1.1
{
pinToGpio = pinToGpioR1 ;
physToGpio = physToGpioR1 ;
}
else // A2, B2, A+, B+, CM, Pi2, Pi3, Zero
{
pinToGpio = pinToGpioR2 ;
physToGpio = physToGpioR2 ;
}
// ...
switch (model)
{
case PI_MODEL_A: case PI_MODEL_B:
case PI_MODEL_AP: case PI_MODEL_BP:
case PI_ALPHA: case PI_MODEL_CM: case PI_MODEL_ZERO:
piGpioBase = GPIO_PERI_BASE_OLD ;
break ;
default:
piGpioBase = GPIO_PERI_BASE_NEW ;
break ;
}
// Open the master /dev/ memory control device
// Device strategy: December 2016:
// Try /dev/mem. If that fails, then
// try /dev/gpiomem. If that fails then game over.
if ((fd = open ("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC) ) < 0)
{
if ((fd = open ("/dev/gpiomem", O_RDWR | O_SYNC | O_CLOEXEC) ) < 0)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: Unable to open /dev/mem or /dev/gpiomem: %s.\n Try running with sudo?\n", strerror (errno)) ;
piGpioBase = 0 ;
}
// Set the offsets into the memory interface.
GPIO_PADS = piGpioBase + 0x00100000 ;
GPIO_CLOCK_BASE = piGpioBase + 0x00101000 ;
GPIO_BASE = piGpioBase + 0x00200000 ;
GPIO_TIMER = piGpioBase + 0x0000B000 ;
GPIO_PWM = piGpioBase + 0x0020C000 ;
// Map the individual hardware components
// GPIO:
gpio = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_BASE) ;
if (gpio == MAP_FAILED)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (GPIO) failed: %s\n", strerror (errno)) ;
// PWM
pwm = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_PWM) ;
if (pwm == MAP_FAILED)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (PWM) failed: %s\n", strerror (errno)) ;
// Clock control (needed for PWM)
clk = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_CLOCK_BASE) ;
if (clk == MAP_FAILED)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (CLOCK) failed: %s\n", strerror (errno)) ;
// The drive pads
pads = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_PADS) ;
if (pads == MAP_FAILED)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (PADS) failed: %s\n", strerror (errno)) ;
#ifdef USE_TIMER
// The system timer
timer = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_TIMER) ;
if (timer == MAP_FAILED)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (TIMER) failed: %s\n", strerror (errno)) ;
// Set the timer to free-running, 1MHz.
// 0xF9 is 249, the timer divide is base clock / (divide+1)
// so base clock is 250MHz / 250 = 1MHz.
*(timer + TIMER_CONTROL) = 0x0000280 ;
*(timer + TIMER_PRE_DIV) = 0x00000F9 ;
timerIrqRaw = timer + TIMER_IRQ_RAW ;
#endif
initialiseEpoch () ;
return 0 ;
}
/*
* wiringPiSetupGpio:
* Must be called once at the start of your program execution.
*
* GPIO setup: Initialises the system into GPIO Pin mode and uses the
* memory mapped hardware directly.
*********************************************************************************
*/
int wiringPiSetupGpio (void)
{
(void)wiringPiSetup () ;
if (wiringPiDebug)
printf ("wiringPi: wiringPiSetupGpio called\n") ;
wiringPiMode = WPI_MODE_GPIO ;
return 0 ;
}
/*
* wiringPiSetupPhys:
* Must be called once at the start of your program execution.
*
* Phys setup: Initialises the system into Physical Pin mode and uses the
* memory mapped hardware directly.
*********************************************************************************
*/
int wiringPiSetupPhys (void)
{
(void)wiringPiSetup () ;
if (wiringPiDebug)
printf ("wiringPi: wiringPiSetupPhys called\n") ;
wiringPiMode = WPI_MODE_PHYS ;
return 0 ;
}
/*
* wiringPiSetupSys:
* Must be called once at the start of your program execution.
*
* Initialisation (again), however this time we are using the /sys/class/gpio
* interface to the GPIO systems - slightly slower, but always usable as
* a non-root user, assuming the devices are already exported and setup correctly.
*/
int wiringPiSetupSys (void)
{
int pin ;
char fName [128] ;
static int alreadyDoneThis = FALSE ;
// It's actually a fatal error to call any of the wiringPiSetup routines more than once,
// (you run out of file handles!) but I'm fed-up with the useless twats who email
// me bleating that there is a bug in my code, so screw-em.
if (alreadyDoneThis)
return 0 ;
alreadyDoneThis = TRUE ;
if (getenv (ENV_DEBUG) != NULL)
wiringPiDebug = TRUE ;
if (getenv (ENV_CODES) != NULL)
wiringPiReturnCodes = TRUE ;
if (wiringPiDebug)
printf ("wiringPi: wiringPiSetupSys called\n") ;
if (piGpioLayout () == 1)
{
pinToGpio = pinToGpioR1 ;
physToGpio = physToGpioR1 ;
}
else
{
pinToGpio = pinToGpioR2 ;
physToGpio = physToGpioR2 ;
}
// Open and scan the directory, looking for exported GPIOs, and pre-open
// the 'value' interface to speed things up for later
for (pin = 0 ; pin < 64 ; ++pin)
{
sprintf (fName, "/sys/class/gpio/gpio%d/value", pin) ;
sysFds [pin] = open (fName, O_RDWR) ;
}
initialiseEpoch () ;
wiringPiMode = WPI_MODE_GPIO_SYS ;
return 0 ;
}