

PayU Integration Document - Version 2.6 Page 1

 Strictly Confidential

PayUbiz

Integration Document

7th Floor, Pearl Towers
Plot 51, Sector 32
Gurgaon, 122002

India
T: 0124-6749078
F: 0124-6749101

PayU Integration Document - Version 2.6 Page 2

Table of Contents (Click on the topic for direct access)
OVERVIEW ... 4

PayU Payment Gateway .. 4

Payment Process Flow .. 4

SECTION I: WEBSITE INTEGRATION ... 5

Steps for Integration Process .. 6

Parameters to be posted by Merchant to PayU in Transaction Request .. 8

Seamless Integration – Parameters in Transaction Request ... 17

Additional Charges – Convenience Fee Model (To be used only if recommended by Account

Manager at PayU) ... 18

Method 1: Enabled from backend at PayU ... 18

Method 2: Merchant Calculates and Posts Additional Charges to PayU 18

Important Things to remember: Characters allowed for parameters .. 20

Formula for hash (checksum) before transaction... 20

Formula for hash (checksum) after transaction ... 20

Hash (Checksum) Algorithm Example codes... 20

For PHP .. 20

For .NET ... 20

For JSP ... 21

Response Parameters posted by PayU to Merchant .. 22

Shopping Cart Integration Kits .. 26

Platform based Integration kits .. 26

SECTION II: WEB SERVICES – APIs ... 27

Web Service Request Format: .. 27

Web Service Response Format ... 28

LIST OF APIs AND THEIR DESCRIPTION ... 28

1) verify_payment ... 28

2) check_payment ... 30

3) cancel_refund_transaction ... 31

4) check_action_status (1ST Usage) ... 33

5) check_action_status (2nd Usage) .. 34

6) getAllRefundsFromTxnIds ... 36

7) capture_transaction .. 37

8) update_requests ... 38

PayU Integration Document - Version 2.6 Page 3

9) cod_verify ... 40

10) cod_cancel .. 41

11) cod_settled ... 42

12) get_TDR ... 44

13) udf_update ... 44

14) create_invoice ... 45

15) expire_invoice ... 47

16) check_offer_status (1st Usage) .. 47

17) check_offer_status (2nd Usage) ... 49

18) getNetbankingStatus .. 51

19) getIssuingBankStatus .. 52

20) getIssuingBankDownBins .. 53

21) get_Transaction_Details ... 54

22) get_transaction_info... 56

23) check_isDomestic ... 59

24) get_settlement_details ... 60

25) get_merchant_ibibo_codes .. 61

26) eligibleBinsForEMI .. 62

27) get_user_cards.. 63

28) save_user_card ... 64

29) edit_user_card .. 65

30) delete_user_card .. 66

PayU Integration Document - Version 2.6 Page 4

OVERVIEW

This document describes the steps for technical integration process between merchant website and

PayU Payment Gateway for enabling online transactions. This document is covered in two sections.

Section I covers website integration and Section II covers APIs provided to the merchants.

PayU Payment Gateway

PayU offers electronic payment services to merchant website through its partnerships with various

banks and payment instrument companies. Through PayU, the customers would be able to make

electronic payments through a variety of modes which are mentioned below:

 Credit cards

 Debit cards

 Online net banking accounts

 EMI payments

 Cash Cards

 Email Invoicing

 IVR

 Cash on Delivery (COD)

PayU also offers an online interface (known as PayU Dashboard) where the merchant has access to

various features like viewing all the transaction details, settlement reports, analytical reports etc.

Through this interface, the merchant can also execute actions like capturing, cancelling and

refunding the transactions. This online interface can be accessed through https://www.payu.in by

using the username and password provided to you.

Payment Process Flow
The following diagram explains how the customer makes the payment and how the process flows:

https://www.payu.in/

PayU Integration Document - Version 2.6 Page 5

SECTION I: WEBSITE INTEGRATION

The merchant can integrate with PayU by using one of the below methods:

1) Non-Seamless Integration – In this mode during the transaction, the customer would

be re-directed from merchant website to PayU payment page. On the PayU payment page,

he would need to select the payment option and enter the respective card details. After this,

PayU would re-direct the customer to the desired bank webpage for further authentication.

2) Seamless Integration - In this mode, the merchant needs to collect the customer card

details on their own website and post them to PayU. Here, the customer would not be

stopped at PayU payment page at all, as the payment option and card details are already

received from the merchant. The merchant must be PCI-DSS certified in this case. For

further information on PCI-DSS certification please contact your Account Manager at PayU.

Also, the merchant website can be based either on a shopping cart or can be developed by the

merchant (not based upon any shopping cart). Based on the type (out of these two), PayU would

provide integration kit (code) to the merchant which they needs to incorporate at their end. The list

of Integration kits supported by PayU at present is mentioned in later sections of the document.

PayU Integration Document - Version 2.6 Page 6

Steps for Integration Process
The steps for integrating with PayU can technically be described as below:

1) To start off the integration process, you would be provided a test setup by PayU where you

would be given a test merchant account and test credit card credentials to have a first-hand

experience of the overall transaction flow. Here, you need to make the transaction request

on our test server (and not the production server). Once your testing is complete, then only

you will be ready to move to the PayU production server.

2) To initiate a transaction, the merchant needs to generate a POST REQUEST - which must

consist of mandatory and optional parameters mentioned in the later section. This POST

REQUEST needs to be hit on the below mentioned PayU URLs:

For PayU Test Server:

POST URL: https://test.payu.in/_payment

For PayU Production (LIVE) Server:

POST URL: https://secure.payu.in/_payment

3) In the merchant initiated POST REQUEST, one of the mandatory parameters is named as

hash. The details of this hash parameter have been covered in the later section. But it is

absolutely critical for the merchant to calculate the hash correctly and post to us in the

request.

4) When the transaction POST REQUEST hits the PayU server, a new transaction entry is

created in the PayU Database. To identify each new transaction in the PayU Database, a

unique identifier is created every time at PayU’s end. This identifier is known as the PayU ID

(or MihPayID).

5) With the POST REQUEST, customer would be re-directed to PayU’s payment page. Customer

now selects the particular payment option on PayU’s page (Credit Card/Debit Card/Net

Banking etc) and clicks on ‘Pay Now’. PayU re-directs the customer to the chosen bank. The

customer goes through the necessary authorization/authentication process at bank’s login

page, and the bank gives the success/failure response back to PayU.

6) PayU marks the transaction status on the basis of response received from Bank. PayU

provides the final transaction response string to the merchant through a POST RESPONSE.

The parameters in this response are covered in the subsequent sections.

7) In the POST RESPONSE sent by PayU, you would receive the final status of the transaction.

You will receive the hash parameter here also. Similar to step 3, it is absolutely crucial to

verify this hash value at your end and then only accept/reject the invoice order. This is done

to strictly avoid any tampering attempt by the user.

https://test.payu.in/_payment

PayU Integration Document - Version 2.6 Page 7

DISCLAIMER:

1. Test URL: The Test URL is provided to PayU merchants to test the integration of their server with

that of PayU or Bank. It is understood that since this is merely a Test URL, the Merchant should

not treat any transactions done on this Test server as live and should not deliver the

products/services with respect to any such test transactions even in the case your server receive a

successful transaction confirmation from PayU/Bank.

2. Merchants are herein forth requested to set up required control checks on their (merchant)

systems/servers to ensure that only those transactions should get routed to the PayU test server

which are initiated with sole intention of test the environment.

PayU Integration Document - Version 2.6 Page 8

Parameters to be posted by Merchant to PayU in Transaction Request

Sr.
No

Variable Description

1) key (Mandatory)

This parameter is the unique Merchant Key provided by PayU for your merchant

account. The Merchant Key acts as the unique identifier (primary key) to identify a

particular Merchant Account in our database. While posting the data to us, you need

to put this Merchant Key value for you merchant account in this parameter.

Also, please note that during integration with PayU, you would need to first

integrate with our Test Server. PayU would be providing you the necessary

Merchant Key for test server. Please do not use your live account’s merchant key

here. It would not work.

Once testing is done, you are ready to move to live server. Here, you would need to

replace the test Merchant Key with Live Merchant Key. This is a critical step for

successfully moving to live PayU server.

Example: C0Ds8q

2) txnid (Mandatory)

This parameter is known as Transaction ID (or Order ID). It is the order reference

number generated at your (Merchant’s) end. It is an identifier which you (merchant)

would use to track a particular order. If a transaction using a particular transaction

ID has already been successful at PayU, the usage of same Transaction ID again

would fail. Hence, it is essential that you post us a unique transaction ID for every

new transaction.

(Please make sure that the transaction ID being sent to us hasn’t been successful

earlier. In case of this duplication, the customer would get an error of ‘duplicate

Order ID’).

Data Type – Varchar
Character Limit – 25 characters
Example: fd3e847h2

3)
amount

(Mandatory)

This parameter should contain the payment amount of the particular transaction.

Note: Please type-cast the amount to float type

Example: 10.00

4)
productinfo

(Mandatory)

This parameter should contain a brief product description. It should be a string

describing the product (The description type is entirely your choice).

Data type - Varchar
Character Limit – 100 characters
Example: tshirt100

5)
firstname

(Mandatory)

Self-Explanatory (Must contain the first name of the customer)

Data Type – Varchar
Character Limit – 60 characters

PayU Integration Document - Version 2.6 Page 9

Example: Ankit

6) email (Mandatory)

Self-explanatory (Must contain the email of the customer)

Data type – Varchar
Character Limit – 50
Example: test@gmail.com

7) phone (Mandatory)

Self-explanatory (Must contain the phone number of the customer)

Data type – Varchar
Character Limit – 50 (numeric value only)
Example: 9999999999

8) lastname

Self-Explanatory (only alphabets a-z are allowed)

Data Type – Varchar
Character Limit – 20 characters
Example: Verma

9) address1

Self-Explanatory

Data Type – Varchar
Character Limit – 100
Characters allowed : A to Z, a to z, 0 to 9, @, - (Minus), _ (Underscore), / (Backslash),
(Space), (Dot)

10) address2

Self-explanatory

Data Type – Varchar
Character Limit – 100
(Allowed characters are same as for address1 parameter)

11) city

Self-explanatory

Data type – Varchar
Character Limit – 50
(Allowed characters are same as for address1 parameter)

12) state

Self-explanatory

Data type – Varchar
Character Limit – 50
(Allowed characters are same as in address parameter)

13) country

Self-explanatory

Data type – Varchar
Character Limit – 50
(Allowed characters are same as in address parameter)

14) zipcode

Self-explanatory

Data type – Varchar
Character Limit – 20
(Only numeric value allowed)

15) udf1
User defined field 1 – This parameter has been made for you to keep any

information corresponding to the transaction, which may be useful for you to keep

mailto:test@gmail.com

PayU Integration Document - Version 2.6 Page 10

in the database. UDF1-UDF5 fields are for this purpose only. It’s completely for your

usage and you can post any string value in this parameter. udf1-udf5 are optional

parameters and you may use them only if needed

Data type – Varchar
Character Limit – 255

16) udf2

User defined field 2 – Same description as UDF1

Data type – Varchar
Character Limit – 255

17) udf3

User defined field 3 – Same description as UDF1

Data type – Varchar
Character Limit – 255

18) udf4

User defined field 4 – Same description as UDF1

Data type – Varchar
Character Limit – 255

19) udf5

User defined field 5 – Same description as UDF1

Data type – Varchar
Character Limit – 255

20) surl (Mandatory)

Success URL - This parameter must contain the URL on which PayU will redirect the

final response if the transaction is successful. The response handling can then be

done by you after redirection to this URL

21) furl (Mandatory)

Failure URL - This parameter must contain the URL on which PayU will redirect the

final response if the transaction is failed. The response handling can then be done by

you after redirection to this URL

22) curl

Cancel URL - This parameter should contain the URL on which PayU will redirect the

response if the transaction is cancelled by the customer on PayU page. The response

handling can then be done by you after redirection to this URL

23)
hash (Checksum)

(Mandatory)

Hash is a crucial parameter – used specifically to avoid any tampering during the

transaction. There are two different methods to calculate hash. Please follow

method 1 only. Method 2 is just there for the documentation and is not to be used.

Method 1 - This is the simplest way of calculating the hash value. Here, please make

sure that the api_version parameter is NOT POSTED from your end.

For hash calculation, you need to generate a string using certain parameters and

apply the sha512 algorithm on this string. Please note that you have to use pipe (|)

character in between these parameters as mentioned below. The parameter order is

mentioned below:

sha512(key|txnid|amount|productinfo|firstname|email|udf1|udf2|udf3|udf4|u

df5||||||SALT)

All these parameters (and their descriptions) have already been mentioned earlier in

this table. Here, SALT (to be provided by PayU), key, txnid, amount, productinfo,

PayU Integration Document - Version 2.6 Page 11

firstname, email are mandatory parameters and hence can’t be empty in hash

calculation above. But, udf1-udf5 are optional and hence you need to calculate the

hash based upon the fact that whether you are posting a particular udf or not. For

example, if you are NOT posting udf1. Then, in the hash calculation, udf1 field will be

left empty. Following examples will clarify various scenarios of hash calculation:

Case 1: If all the udf parameters (udf1-udf5) are posted by the merchant. Then,

hash=sha512(key|txnid|amount|productinfo|firstname|email|udf1|udf2|udf3|u

df4|udf5||||||SALT)

Case 2: If only some of the udf parameters are posted and others are not. For

example, if udf2 and udf4 are posted and udf1, udf3, udf5 are not. Then,

hash=sha512(key|txnid|amount|productinfo|firstname|email||udf2||udf4|||||

||SALT)

Case 3: If NONE of the udf parameters (udf1-udf5) are posted. Then,

hash=sha512(key|txnid|amount|productinfo|firstname|email|||||||||||SALT)

Example: If key=C0Dr8m, txnid=12345, amount=10, productinfo=Shopping,

firstname=Test, email=test@test.com, udf2=abc, udf4=15, SALT=3sf0jURk and udf1,

udf3, udf5 are not posted. Then, hash would be calculated as Case 2 above:

sha512(C0Dr8m|12345|10|Shopping|Test|test@test.com||abc||15|||||||3sf0j

URk)

(This value comes out to be

ffcdbf04fa5beefdcc2dd476c18bc410f02b3968e7f4f54e8f43f1e1a310bb32e3b4de

c9305232bb89db5b1d0c009a53bcace6f4bd8ec2f695baf3d43ba730ce)

IMPORTANT: For details related to hash at the time of post back from PayU to the

merchant, please refer to later section. This is also absolutely mandatory to avoid

any tampering.

Method 2- Second method for hash calculation (Don’t use this method. It is only for

internal documentation).

Here, parameter api_version should be equal to 2.

hash = sha512(key|txnid|amount|offer_key|api_version|SALT)

24) pg

This parameter signifies the payment category (tab) that you want the customer to

see by default on the PayU page. Hence if PG=’NB’, then after redirection to PayU’s

payment page, the Net Banking option would be opened by default.

(PG parameter may take different values like : NB for Net Banking tab, CC for Credit

Card tab, DC for Debit Card tab, CASH for Cash Card tab and EMI for EMI tab)

Note: PG = CC, i.e. Credit Card tab is recommended. If PG is left empty, CC will be

mailto:test@test.com
mailto:test@test.com

PayU Integration Document - Version 2.6 Page 12

taken as default.

25) codurl

Cash on delivery URL – This parameter is used when a transaction attempt fails. In

this case, if retries have been enabled for you (done by PayU for your merchant

account), our PayU page is shown (to provide another attempt to customer to

complete the transaction) with the ‘failed transaction message’ to the customer and

also ‘Pay by COD’ option. To handle this ‘Pay by COD’ option, you can fill the COD

URL parameter with a URL which we will redirect to, when the customer selects this

option. This way, you can then provide the customer another attempt at the

transaction through this URL.

27) drop_category

This parameter is used to customize the payment options for each individual

transaction. For example, if we consider the categories Credit Card, Debit Card and

Net Banking for a merchant. If there are 30 net banking options available and the

merchant wants to drop 2 of those net banking options (i.e. do not display those 2

options on PayU page), then drop_category parameter can be used effectively.

Below table denotes example of category and sub-categories at PayU

Category Sub-category

Credit Card MasterCard, Amex, Diners etc

Debit Card Visa, Mastercard, Maestro etc

Net Banking SBI Net Banking, HDFC Net Banking etc

EMI CITI 3 Months EMI, HDFC 6 Months EMI etc

Cash Card AirtelMoney, YPay, ITZ Cash card etc

Now, to drop the whole category, please use the following values:

Category Value of 'drop_category' parameter

Credit Card CC

Debit Card DC

Net Banking NB

EMI EMI

Cash Card CASH

To drop sub-categories, please use the respective bank codes for them. Please

contact PayU to get the respective bank codes. Also note that the delimiter for

categories is comma (,) character and for sub-categories it is the pipe (|) character.

Examples for usage:

drop_category - DC|VISA|MAST, NB|ICIB : Here, for debit card category, only Visa

PayU Integration Document - Version 2.6 Page 13

and Master Card options would be dropped (and hence not displayed on the PayU

page). In Net Banking option, only ICICI Net Banking would be dropped. All other

active payment options would be displayed.

drop_category - CC|AMEX, DC|VISA, EMI|EMI6 : Here, for credit card category,

only AMEX option would be dropped (and hence not displayed). In debit card

category, only VISA option would be dropped. And in EMI category, only HDFC 6

months EMI option (bank code – EMI6) would be dropped. All the other active

payment options would be displayed.

Note: Please make sure to use this parameter only after testing properly as an

incorrect string will lead to undesirable payment options being displayed.

28) enforce_paymethod

This parameter allows you to customize the payment options for each individual

transaction. For example, if we consider the categories Credit Card, Debit Card and

Net Banking. If the merchant wants to display only 4 debit card options and only 2

Net Banking options for a transaction A and wants to display only 2 debit card

option and 5 Net Banking options for another transaction B, the customization is

needed and this parameter (enforce_paymethod) provides exactly that feature.

The merchant needs to put the necessary payment options in this parameter and

post it to us at the time of transaction. All the categories and sub-categories have

specific values which need to be put in this string. The categories/subcategories are

as follows:

Category Sub-category

Credit Card MasterCard, Amex, Diners etc

Debit Card Visa, Mastercard, Maestro etc

Net Banking SBI Net Banking, HDFC Net Banking etc

EMI CITI 3 Months EMI, HDFC 6 Months EMI etc

Cash Card AirtelMoney, YPay, ITZ Cash card etc

Now, to enforce complete categories, please use the following values:

Category Value of enforced_paymethod

Credit Card creditcard

Debit Card debitcard

Net Banking netbanking

EMI emi

Cash Card cashcard

PayU Integration Document - Version 2.6 Page 14

To enforce sub-categories, please use the respective bank codes for them. Please

contact PayU to get the respective bank codes. Please note that the delimiter is pipe

(|) character here. Examples:

creditcard|debitcard|HDFB|AXIB – Here, all the credit card and debit card options

would be displayed (as the whole category is enforced). In Net Banking category,

only HDFC and AXIS Net Banking would be displayed. Rest of the categories would

not be displayed at all (EMI, Cash card etc – as they are not being mentioned in the

string).

creditcard|VISA|SMAE|netbanking|EMI6|EMI9|cashcard – Here, all the credit

card options, net banking options and cash card options would be displayed (as the

whole category is enforced for these). In Debit card category, Visa and SBI Maestro

payment options would be displayed (as bank codes for only these options are

mentioned in the string). In EMI category, only HDFC EMI (for 6 and 9 months)

would be displayed.

Note: Please make sure to use this parameter only after testing properly as an

incorrect string will lead to undesirable payment options being displayed.

29) custom_note

This parameter is useful when you want to display a message string on the PayU

Payment page. For example, if for a particular product X, you want your customer to

know that an extra amount of Rs 100 would be charged afterwards, you can show

the corresponding message on payment page. For this, you need to post that

message in this parameter – custom_note. The note would be displayed just below

the payment tabs (Credit Card/Debit Cards/Net Banking)

For Example:

custom_note = You will be charged an extra amount of Rs 100 on this transaction

Characters allowed: A to Z, a to z, 0 to 9, % (percentage), , (comma), . (decimal), '

(apostrophe)

30) note_category

This parameter gives you an option of showing the message string passed in

custom_note parameter for only the selected Payment categories. Hence, this

parameter should contain the comma separated list of the payment options for

which the custom_note will appear.

For example: note_category = CC,NB will show the custom_note for Credit Card &

Net banking only

31) api_version
Please don’t use this parameter while posting the data. This is a deprecated

parameter.

32) shipping_firstname

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (Constraints same as firstname parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form under

COD tab on PayU payment page

PayU Integration Document - Version 2.6 Page 15

33) shipping_lastname

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (Constraints same as lastname parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form under

COD tab on PayU payment page

34) shipping_address1

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (Constraints same as address1 parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form under

COD tab on PayU payment page

35) shipping_address2

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (Constraints same as address2 parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form under

COD tab on PayU payment page

36) shipping_city

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (Constraints same as city parameter). If this parameter is posted,

the corresponding value would be filled up automatically in the form under COD tab

on PayU payment page

37) shipping_state

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (Constraints same as state parameter). If this parameter is posted,

the corresponding value would be filled up automatically in the form under COD tab

on PayU payment page

38) shipping_country

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (constraints same as country parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form under

COD tab on PayU payment page

39) shipping_zipcode

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (constraints same as zipcode parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form under

COD tab on PayU payment page

40) shipping_phone

This parameter has to used in case of COD (Cash on Delivery) Only

Self-Explanatory (constraints same as phone parameter). If this parameter is posted,

the corresponding value would be filled up automatically in the form under COD tab

on PayU payment page

41) offer_key

This parameter is useful when the merchant wants to give the customer a discount

offer on certain transactions based upon a pre-defined combination. This

combination can be based upon payment options/bins etc. For each new offer

created, a unique offer_key is generated. At the time of a transaction, this offer_key

needs to be posted by the merchant.

Table 1: Post Parameters from Merchant to PayU

PayU Integration Document - Version 2.6 Page 16

For your reference, please find sample code below which shows the basic set of parameters being

posted. Please execute this piece of code in browser to observe the POST request being re-directed

to PayU page and then you can form the complete transaction request in your code base (with the

mandatory and optional parameters)

<html>

<head>

</head>

<body>

<form action='https://test.payu.in/_payment' method='post'>

<input type="hidden" name="firstname" value="Vikas Kumar" />

<input type="hidden" name="lastname" value="" />

<input type="hidden" name="surl" value="https://www.google.com" />

<input type="hidden" name="phone" value="9999999999" />

<input type="hidden" name="key" value="C0Dr8m" />

<input type="hidden" name="hash" value =

"c2522a8d561e7c52f7d6b2d46c96b924afac8554313af4b80edef3e237e179bd6e2020e8c5480

60306d9fa2cf5c75c35205bcc4b09bcf5b9a9becec8de2952d0" />

<input type="hidden" name="curl" value="http://www.google.com" />

<input type="hidden" name="furl" value="https:/www.yahoo.in" />

<input type="hidden" name="txnid" value="PLS-10061-3" />

<input type="hidden" name="productinfo" value="SAU Admission 2014" />

<input type="hidden" name="amount" value="600.000" />

<input type="hidden" name="email" value="vikaskumarsre@gmail.com" />

<input type= "submit" value="submit">

</form>

</body></html>

PayU Integration Document - Version 2.6 Page 17

Seamless Integration – Parameters in Transaction Request

For seamless mode, 7 extra parameters are required in the transaction Post Request from your

end – along with the parameters mentioned in the above table. These are mentioned below:

S No Variable Description

1) pg

(Mandatory)

This parameter is the same as the one mentioned in the POST Parameters

mentioned above. It must be set as the payment category.

Please set its value to ‘NB’ for Net Banking , ‘CC’ for Credit Card , ‘DC’ for

Debit Card , ‘CASH’ for Cash Card and ‘EMI’ for EMI

2) bankcode

(Mandatory)

Each payment option is identified with a unique bank code at PayU. You

would need to post this parameter with the corresponding payment

option’s bankcode value in it.

For example, for ICICI Net Banking, the value of bankcode parameter value

should be ICIB. For detailed list of bank codes, please contact PayU team

3) ccnum

(Mandatory)

This parameter must contain the card (credit/debit) number entered by

the customer for the transaction.

4) ccname

(Mandatory)

This parameter must contain the name on card – as entered by the

customer for the transaction.

5) ccvv

(Mandatory)

This parameter must contain the cvv number of the card – as entered by

the customer for the transaction.

6) ccexpmon

(Mandatory)

This parameter must contain the card’s expiry month - as entered by the

customer for the transaction. Please make sure that this is always in 2

digits. For months 1-9, this parameter must be appended with 0 – like 01,

02…09. For months 10-12, this parameter must not be appended – It

should be 10, 11 and 12 respectively.

7) ccexpyr

(Mandatory)

The customer must contain the card’s expiry year – as entered by the
customer for the transaction. It must be of 4 digits. For example - 2017,
2029 etc.

Table 2: Additional Parameters for Seamless Mode

PayU Integration Document - Version 2.6 Page 18

Additional Charges – Convenience Fee Model (To be used only if

recommended by Account Manager at PayU)

There are 2 different methods to implement Additional Charges on PayU.

Method 1: Enabled from backend at PayU

The merchant would be posting the transaction amount of the product in the transaction request.

1) Once the customer lands on PayU payment page and clicks on 'Pay Now' option,

the additional amount would be added to the amount of the product by PayU (based upon

the TDR values) and the total amount would be passed on to the bank’s page while re-

directing.

2) After PayU receives the status of transaction from the bank, it sends the response of back to

the merchant. In this response, the amount and additional amount can be differentiated

with the below parameters.

 Original Transaction Amount - amount

 Additional Amount - additionalCharges

3) Once you receive the response from PayU, you need to check for reverse hash. If you are

verifying the reverse hash at your end (which is strictly recommended to avoid any tamper

cases), its formula will also change in case additionalCharges value is sent.

Here, if the additionalCharges parameter is posted in the transaction response, then hash

formula is:

sha512(additionalCharges|SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstname

|productinfo|amount|txnid|key)

4) If additionalCharges parameter is not posted in the transaction response, then hash formula

is the generic reverse hash formula:

sha512(SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstname|productinfo|amo

unt|txnid|key)

Method 2: Merchant Calculates and Posts Additional Charges to PayU

1) The merchant would be posting both the transaction amount and additional charges in the

transaction request. The parameters used for these are amount and additional_charges

respectively. The way to pass the additional_charges parameter is as below:

PayU Integration Document - Version 2.6 Page 19

<bankcode1> :< additional charge value>, < bankcode2> :< additional charge value>

Example: CC:12,AMEX:19,SBIB:98,DINR:2,DC:25,NB:55

2) In this method of applying additional charges, hash sequence would be affected for both

Pre-Transaction and Post-Transaction.

Pre-Transaction hash sequence:

Merchant needs to form the below hash sequence before posting the transaction to PayU:

sha512(key|txnid|amount|productinfo|firstname|email|udf1|udf2|udf3|udf4|udf5||||

||SALT|additional_charges)

Where additional_charges value would be same as the value posted in transaction request.

For example, CC:12,AMEX:19,SBIB:98,DINR:2,DC:25,NB:55

3) Now, once the transaction request hits PayU server and re-direction happens, the customer

lands upon PayU payment page. Here, depending on the payment option selection by the

customer, the additional charge value would be added to transaction amount. For example,

for the above example, if the customer selects Credit Card, Rs 12 would be added to the

transaction amount. If the customer selects AMEX option, Rs 19 would be added to the

transaction amount. For SBI Net Banking, Rs 98 would be added to the transaction amount

and so on. Please note that the additional charges would be added only once the customer

clicks on ‘Pay Now’ option.

4) When PayU receives the response from Bank, a POST Response is sent to the merchant.

Here also, the hash sequence needs to be changed.

Post-Transaction hash sequence:

Merchant needs to form the below hash sequence and verify it with the hash sent by PayU

in the Post Response:

sha512(additionalCharges|SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstname

|productinfo|amount|txnid|key)

Where, additionalCharges value must be same as the value Posted from PayU to the

merchant in the response.

5) This hash value must be compared with the hash value posted by PayU to the merchant. If

both match, then only the order should be processed. If they don’t match, then the

transaction has been tampered with by the user and hence should not be processed further.

PayU Integration Document - Version 2.6 Page 20

Important Things to remember: Characters allowed for parameters

 For parameters address1, address2, city, state, country, product info, email, and phone

following characters are allowed:

 Characters: A to Z, a to z, 0 to 9

 -(Minus)

 _ (Underscore)

 @ (At the Rate)

 / (Slash)

 (Space)

 . (Dot)

If the merchant sends any other special characters then they will be automatically removed. The

address parameter will consider only first 100 characters.

Formula for hash (checksum) before transaction
This has already been covered in the description of hash in the table containing the POST

Parameters above.

Formula for hash (checksum) after transaction
This time the variables are in reverse order and status variable is added between salt and udf1.

sha512(SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstname|productinfo|amount|txni

d|key)

It is absolutely mandatory that the hash (or checksum) is computed again after you receive

response from PayU and compare it with post back parameters below. This will protect you from

any tampering by the user and help in ensuring safe and secure transaction experience.

Hash (Checksum) Algorithm Example codes
The Checksum algorithm used is SHA512 which is globally well known algorithm. To need help with

implementation, feel free to call us, mail us or use Google to find the desired function library for

your implementation. Some example codes are also mentioned below:

For PHP

Example code:

$output = hash ("sha512", $text);

For .NET

Link: http://msdn.microsoft.com/en- us/library/system.security.cryptography.sha512.aspx

Example code:

http://msdn.microsoft.com/en-%20us/library/system.security.cryptography.sha512.aspx

PayU Integration Document - Version 2.6 Page 21

byte[] data = new byte[DATA_SIZE];

 byte[] result;

 SHA512 shaM = new SHA512Managed();

 result = shaM.ComputeHash(data);

For JSP

Example code:

import java.io.FileInputStream;

 import java.security.MessageDigest;

 public class SHACheckSumExample

 {

 public static void main(String[] args)throws Exception

 {

 MessageDigest md = MessageDigest.getInstance("SHA-512");

 FileInputStream fis = new FileInputStream("c:\\loging.log");

 byte[] dataBytes = new byte[1024];

 int nread = 0;

 while ((nread = fis.read(dataBytes)) != -1)

 {

 md.update(dataBytes, 0, nread);

 };

 byte[] mdbytes = md.digest();

 //convert the byte to hex format method

 StringBuffer sb = new StringBuffer();

 for (int i = 0; i < mdbytes.length; i++)

 {

 sb.append(Integer.toString((mdbytes[i] & 0xff) + 0x100,

 16).substring(1));

 }

 System.out.println("Hex format : " + sb.toString());

 //convert the byte to hex format method 2

 StringBuffer hexString = new StringBuffer();

 for (int i=0;i<mdbytes.length;i++)

 hexString.append(Integer.toHexString(0xFF & mdbytes[i]));

 }

 System.out.println("Hex format : " + hexString.toString());

 }

PayU Integration Document - Version 2.6 Page 22

Response Parameters posted by PayU to Merchant

Sr.No Variable Name Description

1 mihpayid

It is a unique reference number created for each transaction at

PayU’s end. For every new transaction request that hits PayU’s

server (coming from any of our merchants), a unique reference ID is

created and it is known as mihpayid (or PayU ID)

2 mode

This parameter describes the payment category by which the

transaction was completed/attempted by the customer. The values

are mentioned below:

Category used by Customer Value of Mode Parameter

Credit Card CC

Debit Card DC

NetBanking NB

Cash Card CASH

EMI EMI

IVR IVR

Cash On Delivery COD

3 status

This parameter gives the status of the transaction. Hence, the value

of this parameter depends on whether the transaction was

successful or not. You must map the order status using this

parameter only. The values are as below:

If the transaction is successful, the value of ‘status’ parameter

would be ‘success’.

The value of ‘status’ as ‘failure’ or ‘pending’ must be treated as a

failed transaction only.

4 key

This parameter would contain the merchant key for the merchant’s

account at PayU. It would be the same as the key used while the

transaction request is being posted from merchant’s end to PayU.

5 txnid
This parameter would contain the transaction ID value posted by

the merchant during the transaction request.

6 amount
This parameter would contain the original amount which was sent

in the transaction request by the merchant.

PayU Integration Document - Version 2.6 Page 23

7 discount
This parameter would contain the discount given to user - based on

the type of offer applied by the merchant.

8 offer
This parameter would contain the offer key which was sent in the

transaction request by the merchant.

9 productinfo
This parameter would contain the same value of productinfo which

was sent in the transaction request from merchant’s end to PayU

10 firstname
This parameter would contain the same value of firstname which

was sent in the transaction request from merchant’s end to PayU

11 lastname
This parameter would contain the same value of lastname which

was sent in the transaction request from merchant’s end to PayU

12 address1
This parameter would contain the same value of address1 which

was sent in the transaction request from merchant’s end to PayU

13 address2
This parameter would contain the same value of address2 which

was sent in the transaction request from merchant’s end to PayU

14 city
This parameter would contain the same value of city which was

sent in the transaction request from merchant’s end to PayU

15 state
This parameter would contain the same value of state which was

sent in the transaction request from merchant’s end to PayU

16 country
This parameter would contain the same value of country which was

sent in the transaction request from merchant’s end to PayU

17 zipcode
This parameter would contain the same value of zipcode which was

sent in the transaction request from merchant’s end to PayU

18 email
This parameter would contain the same value of email which was

sent in the transaction request from merchant’s end to PayU

19 phone
This parameter would contain the same value of phone which was

sent in the transaction request from merchant’s end to PayU

20 udf1
This parameter would contain the same value of udf1 which was

sent in the transaction request from merchant’s end to PayU

21 udf2
This parameter would contain the same value of udf2 which was

sent in the transaction request from merchant’s end to PayU

22 udf3
This parameter would contain the same value of udf3 which was

sent in the transaction request from merchant’s end to PayU

23 udf4
This parameter would contain the same value of udf4 which was

sent in the transaction request from merchant’s end to PayU

24 udf5
This parameter would contain the same value of udf5 which was

sent in the transaction request from merchant’s end to PayU

PayU Integration Document - Version 2.6 Page 24

25 hash

This parameter is absolutely crucial and is similar to the hash

parameter used in the transaction request send by the merchant to

PayU. PayU calculates the hash using a string of other parameters

and returns to the merchant. The merchant must verify the hash

and then only mark a transaction as success/failure. This is to make

sure that the transaction hasn’t been tampered with. The

calculation is as below:

sha512(SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|first

name|productinfo|amount|txnid|key)

The handling of udf1 – udf5 parameters remains similar to the hash

calculation when the merchant sends it in the transaction request

to PayU. If any of the udf (udf1-udf5) was posted in the transaction

request, it must be taken in hash calculation also.

If none of the udf parameters were posted in the transaction

request, they should be left empty in the hash calculation too.

26 error

For the failed transactions, this parameter provides the reason of

failure. Please note that the reason of failure depends upon the

error codes provided by different banks and hence the detailing of

error reason may differ from one transaction to another. The

merchant can use this parameter to retrieve the reason of failure

for a particular transaction.

27 bankcode

This parameter would contain the code indicating the payment

option used for the transaction. For example, in Debit Card mode,

there are different options like Visa Debit Card, Mastercard,

Maestro etc. For each option, a unique bankcode exists. It would be

returned in this bankcode parameter. For example, Visa Debit Card

– VISA, Master Debit Card – MAST.

28 PG_TYPE

This parameter gives information on the payment gateway used for

the transaction. For example, if SBI PG was used, it would contain

the value SBIPG. If SBI Netbanking was used for the transaction, the

value of PG_TYPE would be SBINB. Similarly, it would have a unique

value for all different type of payment gateways.

29 bank_ref_num
For each successful transaction – this parameter would contain the

bank reference number generated by the bank.

30 shipping_firstname

This parameter would contain the same value of

shipping_firstname which was sent in the transaction request from

merchant’s end to PayU

PayU Integration Document - Version 2.6 Page 25

31 shipping_lastname

This parameter would contain the same value of

shipping_lastname which was sent in the transaction request from

merchant’s end to PayU

32 shipping_address1

This parameter would contain the same value of shipping_address1

which was sent in the transaction request from merchant’s end to

PayU

33 shipping_address2

This parameter would contain the same value of shipping_address2

which was sent in the transaction request from merchant’s end to

PayU

34 shipping_city

This parameter would contain the same value of shipping_city

which was sent in the transaction request from merchant’s end to

PayU

35 shipping_state

This parameter would contain the same value of shipping_state

which was sent in the transaction request from merchant’s end to

PayU

36 shipping_country

This parameter would contain the same value of shipping_country

which was sent in the transaction request from merchant’s end to

PayU

37 shipping_zipcode

This parameter would contain the same value of shipping_zipcode

which was sent in the transaction request from merchant’s end to

PayU

38 shipping_phone

This parameter would contain the same value of shipping_phone

which was sent in the transaction request from merchant’s end to

PayU

39 unmappedstatus

This parameter contains the status of a transaction as per the

internal database of PayU. PayU’s system has several intermediate

status which are used for tracking various activities internal to the

system. Hence, this status contains intermediate states of a

transaction also - and hence is known as unmappedstatus.

For example:

dropped/bounced/captured/auth/failed/usercancelled/pending

Table 3: Response parameters from PayU to Merchant

PayU Integration Document - Version 2.6 Page 26

Shopping Cart Integration Kits
Shopping Cart Kits currently available with PayU are:

 Interspire

 Opencart

 Jhoomla Virtue Mart

 Magento

 Prestashop

 Tomatocart

 Zencart

 CS-Cart

 OSCommerce

 Wordpress ecommerce

 WordPress Woo-commerce

 Wordpress - Paid Membership Pro

 Drupal Ubercart

 X-Cart

Platform based Integration kits
PayU Integration Kits are available in the following environments:

 PHP

 JSP

 .NET

 ROR

NOTE: Kindly contact your account manager in case you are using some other shopping cart and

want us to develop a kit for the same.

NOTE: In case of any integration queries, please drop a mail at tech@payu.in

PayU Integration Document - Version 2.6 Page 27

SECTION II: WEB SERVICES – APIs

PayU has made many web-services for you. Each web-service has a specific function and hence can

be used to automate different features. The basic format and execution of all web-services remains

the same. Each web-service is a server-to-server call from your server to PayU’s server.

Web services can be accessed by making a server to server call on the below mentioned PayU URLs:

URL to be used:

For Production Server:

https://info.payu.in/merchant/postservice.php?form=1
(form=1 shall return output in array form)

https://info.payu.in/merchant/postservice.php?form=2
(form=2 shall return output in json form)

For Test Server:

https://test.payu.in/merchant/postservice.php?form=1
(form=1 shall returns output in array form)

https://test.payu.in/merchant/postservice.php?form=2
(form=2 shall return output in json form)

Web Service Request Format:
The input request format for executing a web-service is as follows:

Mandatory Input Parameters

Parameter Description Sample Value

 key
Merchant key provided by PayU. Please refer to the first

entry in the Post Parameters table for detailed description of

this parameter

Ibibo

command
This parameter must have name of the web-service. The

names and definitions of all web-services will be covered

later in detail

verify_payment

hash

This parameter must contain the hash value to be calculated

at your end. The string used for calculating the hash is

mentioned below:

sha512(key|command|var1|salt)

sha512 is the encryption method used here.

ajh84ba8abvav

https://info.payu.in/merchant/postservice.php?form=1
https://info.payu.in/merchant/postservice.php?form=2
https://test.payu.in/merchant/postservice.php?form=1
https://test.payu.in/merchant/postservice.php?form=2

PayU Integration Document - Version 2.6 Page 28

var1, var2, var3

... up to var15

These are the variable parameters, whose values depend on

the particular web-service. The definition of these

parameters will be covered in the (Read command

explanations mentioned later for this)

Abc

Web Service Response Format
Web Service API responds back in PHP serialized string by default.

Parameter Description Sample Value

status Status of web service call 0 if web service call failed

1 if web service call succeeded

msg Reason String
Parameter missing or token is

empty or amount is empty or

transaction not exists

transaction_details May or may not be returned depending

on the web service being called

mihpayid,request_id,

bank_ref_num etc

request_id
PayU Request ID for a request in a

Transaction. eg. A transaction can have

a refund request.

7800456

bank_ref_num Bank Reference Number. If bank

provides after a successful action.
204519474956

LIST OF APIs AND THEIR DESCRIPTION

1) verify_payment

This web-service is used to reconcile the transaction with PayU. When we post back the final

response to you (merchant), we provide a list of parameters (including the status of the transaction

– For example, success, failed etc). On a few occasions, the transaction response is initiated from

our end, but it doesn’t reach you due to network issues or user activity (like refreshing the browser

etc).

This API is helpful to tackle such cases - where you can execute it to get the status of the transaction.

Since you already have the txnID (Order ID generated at your end) value for such cases, you simply

need to execute the verify_payment API with the necessary input parameters. The output would

return you the transaction status and various other parameters also.

Another usage of this API is to provide an additional layer of verification of the transaction (in

addition to checksum). You can verify the status and other parameters received in the post response

via this API.

We strongly recommend that this API is used to reconcile with PayU’s database once you receive

the response. This will protect you from any tampering by the user and help in ensuring safe and

secure transaction experience.

PayU Integration Document - Version 2.6 Page 29

The return parameters are MIHPayID, Amount, Discount, Mode and Status of transaction.

Input Variables Description:

Parameter Description Sample Value

var1
In this parameter, you can put all the

txnid(Your transaction ID/order ID) values in a

pipe separated form.

100123|100124|100125|100126

Web Service Responses:

 If successfully fetched

Array

(

 [status] => 1

 [msg] => 1 out of 1 Transactions Fetched Successfully

 [transaction_details] => Array

 (

 [100123] => Array

 (

 [mihpayid] => 403993715511385302

 [request_id] =>

 [bank_ref_num] => 3465241441650741

 [amt] => 63050.00

 [txnid] => 100123

 [additional_charges] => 0.00

 [productinfo] => book

 [firstname] => uday

 [bankcode] => CC

 [udf1] =>

 [udf3] =>

 [udf4] =>

 [udf5] =>

 [field9] => SUCCESS

 [error_code] => E000

 [error_Message] => NO ERROR

 [net_amount_debit] => 63050

 [disc] => 0.00

 [mode] => CC

 [PG_TYPE] => HDFCPG

 [card_no] => 512345XXXXXX2346

 [name_on_card] => shop

 [udf2] =>

 [addedon] => 2015-03-15 16:44:21

 [status] => success

 [unmappedstatus] => captured

)

)

)

 If txnID not found

Array

(

 [status] => 0

 [msg] => 0 out of 1 Transactions Fetched Successfully

PayU Integration Document - Version 2.6 Page 30

 [transaction_details] => Array

 (

 [ecc5tashi] => Array

 (

 [mihpayid] => Not Found

 [status] => Not Found

)

)

)

2) check_payment

This API functions similar to verify_payment API mentioned above. The only difference is that the

input parameter in this API is the PayUID (MihpayID) generated at PayU’s end whereas the input

parameter in verify_payment API is the TxnID (Transaction ID generated at your end). It returns all

the parameters for a given transaction.

Input Variables Description:

Parameter Description Sample Value

var1 In this parameter, you need to pass the Payu id (mihpayid)

of the transaction.
8000123

Web Service Responses:

 If mihpayid is missing

Array

(

 [status] => 0

 [msg] => Parameter missing

)

 If successfully fetched

Array

(

 [status] => 1

 [msg] => Transaction Fetched Successfully

 [transaction_details] => Array

 (

 [request_id] => 124755210

 [bank_ref_num] => 3465241441650741

 [net_amount] => 63050.00

 [mihpayid] => 403993715511385302

 [amt] => 63050.00

 [disc] => 0.00

 [mode] => CC

 [txnid] => ecc5tashiv

 [amount] => 63050.00

 [amount_paid] => 63050.00

 [discount] => 0.00

 [additional_charges] => 0.00

 [udf1] =>

 [udf2] =>

 [udf3] =>

PayU Integration Document - Version 2.6 Page 31

 [udf4] =>

 [udf5] =>

 [field1] => 507442425118

 [field2] => 999999

 [field3] => 3465241441650741

 [field4] => -1

 [field5] =>

 [field6] =>

 [field7] =>

 [field8] =>

 [field9] => SUCCESS

 [status] => success

 [net_amount_debit] => 63050

 [unmappedstatus] => captured

 [firstname] => uday

 [bankcode] => CC

 [productinfo] => book

 [name_on_card] => shop

 [card_no] => 512345XXXXXX2346

 [PG_TYPE] => HDFCPG

)

)

3) cancel_refund_transaction

This command can be used for 2 different purposes:

 To cancel a transaction which is in ‘auth’ state at the moment

 To refund a transaction which is in ‘captured’ state at the moment

Input Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2

This parameter should contain the Token ID (unique token from

merchant) for the refund request. Token ID has to be generated at

your end for each new refund request. It is an identifier for each new

refund request which can be used for tracking it. It must be unique

for every new refund request generated – otherwise the refund

request would not be generated successfully.

7800456

var3

This parameter should contain the amount which needs to be

refunded. Please note that both partial and full refunds are allowed.

Hence, for partial refund, this var3 value would be less than the

amount with which the transaction was made. For full refund, var3

value would be equal to the amount with which the transaction was

made.

500

Web Service Responses:

 if token is missing

PayU Integration Document - Version 2.6 Page 32

Array

(

 [status] => 0

 [msg] => token is empty

)

 if amount is missing

Array

(

 [status] => 0

 [msg] => amount is empty

)

 if transaction isn't found

Array

(

 [status] => 0

 [msg] => transaction not exists

)

 on successful processing at our end

Array

(

 [status] => 1

 [msg] => Cancel Request Queued

 [txn_update_id] => Request ID

 [bank_ref_num] => Bank Reference Number

 [mihpayid] => PayU Transaction id

)

 on successful processing on our end for captured transactions

Array

(

 [status] => 1

 [msg] => Refund Request Queued

 [request_id] => Request ID

 [bank_ref_num] => Bank Reference Number

 [mihpayid] => PayU Transaction id

)

 if failed to refund

Array

(

 [status] => 0

 [msg] => Refund request failed

)

 if capture is done on the same day

PayU Integration Document - Version 2.6 Page 33

Array

(

 [status] => 1

 [msg]=> Capture is done today, please check for refund status tomorrow

 [request_id] => Request ID

 [bank_ref_num] => Bank Reference Number

 [mihpayid] => PayU ID

)

 if invalid token

Array

(

 [status] => 0

 [msg] => token already used or request pending.

)

 on successful processing at PayU end for auth transactions

Array

(

 [status] => 1

 [msg] => Cancel Request Queued

 [txn_update_id] => Request ID

 [bank_ref_num] => Bank Reference Number

)

 if failed to cancel a transaction

Array

(

 [status] => 0

 [msg] => Cancel request failed

)

4) check_action_status (1ST Usage)

This API is used to check the status of refund/cancel requests. Whenever the

cancel_refund_transaction API is executed successfully, a Request ID is returned in the output

parameters for that particular request. In check_action_status API, you need to input this Request ID

to get the current status of the request. The return parameters are MIHPayID, Amount, Discount,

Mode and Status of transaction.

Input Variables Description:

Parameter Description Sample Value

var1 request_id 7800456

Web Service Responses:

 if mihpayid is missing

PayU Integration Document - Version 2.6 Page 34

Array

(

 [status] => 0

 [msg] => Parameter missing

)

 if mihpayid isn't found

Array

(

 [status] => 0

 [msg] => 0 out of 1 Transactions Fetched Successfully

 [transaction_details] => Array

 (

 [1247498364] => No action status found

)

)

 if successfully fetched

Array

(

 [status] => 1

 [msg] => 1 out of 1 Transactions Fetched Successfully

 [transaction_details] => Array

 (

 [124749836] => Array

 (

 [124749836] => Array

 (

 [mihpayid] => 403993715511370816

 [bank_ref_num] =>

 [request_id] => 124749836

 [amt] => 10.00

 [mode] => DC

 [action] => refund

 [token] => recon_40399371551137081

 [status] => failure

 [bank_arn] =>

 [settlement_id] =>

 [amount_settled] => -10.00

 [UTR_no] =>

 [value_date] =>

)

)

)

)

5) check_action_status (2nd Usage)

This command has a second usage also. For a particular PayUID, it returns the status of all requests

(capture/refund/cancel).

Input Variables Description:

PayU Integration Document - Version 2.6 Page 35

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2 String Payuid i.e. 'payuid' payuid

 If successfully fetched

You will get both 1) Transaction success information and 2) Refund information as well

Array

(

 [status] => 1

 [msg] => 1 out of 1 Transactions Fetched Successfully

 [transaction_details] => Array

 (

 [403993715510993714] => Array

 (

 [124508550] => Array

 (

 [mihpayid] => 403993715510993714

 [bank_ref_num] => 114952

 [request_id] => 124508550

 [amt] => 1.00

 [mode] => CC

 [action] => auth

 [token] =>

 [status] => SUCCESS

 [bank_arn] =>

 [settlement_id] =>

 [amount_settled] => 1.00

 [UTR_no] =>

 [value_date] =>

)

 [124508552] => Array

 (

 [mihpayid] => 403993715510993714

 [bank_ref_num] =>

 [request_id] => 124508552

 [amt] => 1.00

 [mode] => CC

 [action] => capture

 [token] => 1422619587

 [status] => failure

 [bank_arn] =>

 [settlement_id] =>

 [amount_settled] => 1.00

 [UTR_no] =>

 [value_date] =>

)

 [124538030] => Array

 (

 [mihpayid] => 403993715510993714

 [bank_ref_num] =>

 [request_id] => 124538030

 [amt] => 1.00

PayU Integration Document - Version 2.6 Page 36

 [mode] => CC

 [action] => capture

 [token] => 1422619587

 [status] => requested

 [bank_arn] =>

 [settlement_id] =>

 [amount_settled] => 1.00

 [UTR_no] =>

 [value_date] =>

)

)

)

)

6) getAllRefundsFromTxnIds

This command is used to retrieve status of all the refund requests fired for a particular Transaction

ID. The output of this API provides the request ID, the PG used, the status of refund request and

creation of refund date information.

Input Variables Description:

Parameter Description Sample Value

var1 In this parameter, you need to pass the Transaction ID

(txnid) of the transaction.
8000123

 If successfully fetched

Array

(

 [status] => 1
 [msg] => Refunds fetched successfully.

 [Refund Details] => Array

 (

 [8000123] => Array

 (

 [0] => Array

 (

 [PayuID] => 8000123

 [RequestID] => 124748442

 [RefundToken] => 2348596079

 [PaymentGateway] => HDFCPG

 [Amount] => 10.00

 [Status] => failure

 [RefundCreationDate] => 2015-03-13 19:01:55

)

 [1] => Array

 (

 [PayuID] => 8000123

 [RequestID] => 124748448

 [RefundToken] => 2488596981

 [PaymentGateway] => HDFCPG

 [Amount] => 10.00

 [Status] => success

 [RefundCreationDate] => 2015-03-13 19:02:28

)

PayU Integration Document - Version 2.6 Page 37

 [2] => Array

 (

 [PayuID] => 8000123

 [RequestID] => 124749836

 [RefundToken] => 2423456782

 [PaymentGateway] => HDFCPG

 [Amount] => 14.00

 [Status] => success

 [RefundCreationDate] => 2015-03-14 01:13:25

)

)

)

)

 If no refunds found

Array

(

 [status] => 1

 [msg] => No Refunds Found for the transaction.

)

7) capture_transaction

This command is used to update the status of a transaction which is in auth (authorized) state at the

moment. Please note that this API is applicable only for transactions in ‘auth’ status and nothing

else. ‘auth’ and ‘capture’ model is followed for transactions routed through CITI PG. So, if a

transaction through CITI PG is successful, it will be marked as ‘auth’ at that instant. The merchant

has an option of capturing or cancelling this transaction till end of that day. This API can be executed

to capture the transaction. For cancelling, please refer to cancel_refund_transaction API mentioned

above. Please note that we automatically capture all the ‘auth’ transactions at end of day (if you

haven’t already ‘cancelled’ or ‘captured’ it). Also, this auth and capture model is strictly applicable

for CITI PG only. The return parameters are: request_id, bank_ref_num.

Input Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2 token ID(unique token from merchant) 7800456

Web Service Responses:

 If token is missing

Array

(

 [status] => 0

 [msg] => token is empty

PayU Integration Document - Version 2.6 Page 38

)

 If transaction isn't found

Array

(

 [status] => 0

 [msg] => transaction not exists

)

 On successful processing at our end

Array

(

 [status] => 1

 [msg] => Capture Request Queued

 [request_id] => Request ID

 [bank_ref_num] => Bank Reference Number

)

 If invalid token

Array

(

 [status] => 0

 [msg] => token already used or request pending.

)

 If failed to refund

Array

(

 [status] => 0

 [msg] => Capture request failed

)

8) update_requests

This command is used to update a requested refund, cancel, or capture transaction. The return

parameters are status and msg. For example, in case of COD transaction, if a refund is initiated its

status goes to ‘requested’ state. Once the refund is done, then its status can be changed to ‘refund’

by calling this API.

Input Variables Description:

Parameter Description Sample Value

var1 Payu id (mihpayid) of transaction 8000123

var2
Request ID (unique id given to merchant) provided when

cancel_transaction or refund_transaction or capture_transaction

was called)

7800456

var3 Bank Ref Id for the requested transaction Abc123

PayU Integration Document - Version 2.6 Page 39

var4 Amount of the requested transaction 5000

var5 Action (cancel/capture/refund) Refund

var6 New Status to be set Success/failure

Web Service Responses:

 If bank_ref_no is missing

Array

(

 [status] => 0

 [msg] => bank_ref_no is empty

)

 If amount is missing

Array

(

 [status] => 0

 [msg] => amount is empty

)

 If transaction isn't found

Array

(

 [status] => 0

 [msg] => transaction not exists

)

 If action is not valid

Array

(

 [status] => 0

 [msg] => action is not valid

)

 If status is not correct

Array

(

 [status] => 0

 [msg] => status is not correct

)

 On success

Array

(

 [status] => 1

 [msg] => Status updated to success.

)

PayU Integration Document - Version 2.6 Page 40

 On failure

Array

(

 [status] => 0

 [msg] => Status could not be updated. Please verify the parameters.

)

9) cod_verify

This command is used to verify a COD request. When a transaction is successful through PayU, it is

marked as ‘in progress’ at that moment. The reason is that the money hasn’t been received yet and

hence we mark it in this intermediary state. Once you verify the transaction with the customer, you

can execute this API to update the status in PayU Database from ‘in progress’ to ‘pending’. The

return parameters are status, message and transaction ID.

Input Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2 Token ID(unique token from merchant) 7800456

var3 Amount 500

Web Service Responses:

 If token is missing

Array

(

 [status] => 0

 [msg] => token is empty

)

 If amount is missing

Array

(

 [status] => 0

 [msg] => amount is empty

)

 If amount is invalid

Array

(

 [status] => 0

 [msg] => Invalid amount

)

 If transaction isn't found

PayU Integration Document - Version 2.6 Page 41

Array

(

 [status] => 0

 [msg] => transaction not exists

)

 On successful processing at PayU end

Array

(

 [status] => 1

 [msg] => Queued

 [transaction_id] => $mihpayid

)

 If failed to verify a request

Array

(

 [status] => 0

 [msg] => Failed

 [error_code] => $verifyReturn['status']

)

10) cod_cancel

This command is used to cancel a cod request. When a COD transaction is successful at PayU’s end

in real time, its status is marked as ‘in progress’ at that moment. This API can be executed to change

the transaction status from ‘in progress’ to ‘cancelled’ in the PayU database. It is suggested to

execute this API only when you are sure you want to cancel the transaction. Updating this way in

PayU Database would help you in tracking such orders for future purpose – through the merchant

panel provided to you. The return parameters are status message and transaction ID.

Additional Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2 Token ID(unique token from merchant) 7800456

var3 Amount 500

Web Service Responses:

 If token is missing

Array

(

 [status] => 0

 [msg] => token is empty

)

 If amount is missing

PayU Integration Document - Version 2.6 Page 42

Array

(

 [status] => 0

 [msg => amount is empty

)

 If amount is invalid

Array

(

 [status] => 0

 [msg] => Invalid amount

)

 If transaction isn't found

Array

(

 [status] => 0

 [msg] => transaction not exists

)

 On successful processing at PayU end

Array

(

 [status] => 1

 [msg] => Queued

 [transaction_id] => $mihpayid

)

 If failed to cancel a request

Array

(

 [status] => 0

 [msg] => Failed

 [error_code] => $cancelReturn['status']

)

11) cod_settled

This command is used to settle a COD request. cod_settled API should be executed on a transaction

only when cod_verify has already been executed. cod_settled updates the transaction status from

‘pending’ to ‘captured’. It is suggested, that you execute this API only when you are sure that money

has been successfully received from the customer at your end. Doing it this way would ensure you

can track such orders in the future through the merchant panel provided to you. The return

parameters are status message and Transaction ID.

Input Variables Description:

Parameter Description Sample Value

var1 Payu id (mihpayid) of transaction 8000123

var2 token ID(unique token from merchant) 7800456

PayU Integration Document - Version 2.6 Page 43

var3 amount 500

Web Service Responses:

 If token is missing

Array

(

 [status] => 0

 [msg] => token is empty

)

 If amount is missing

Array

(

 [status] => 0

 [msg] => amount is empty

)

 If amount is invalid

Array

(

 [status] => 0

 [msg] => Invalid amount

)

 If transaction isn't found

Array

(

 [status] => 0

 [msg] => transaction not exists

)

 On successful processing at PayU end

Array

(

 [status] => 1

 [msg] => Queued

 [transaction_id] => $mihpayid

)

 If failed to settled a request

Array

(

 [status] => 0

 [msg] => Failed

 [error_code] => $settledReturn['status']

)

PayU Integration Document - Version 2.6 Page 44

12) get_TDR

This command is used to get the TDR value of a transaction with PayU. It is a simple API for which

you need to provide the PayU ID of the transaction as input and the TDR value is returned in the

output.

Input Variables Description:

Parameter Description Sample Value

var1 Payu id (mihpayid) of transaction 8000123

Web Service Responses

 If mihpayid is not found

Array

(

 [status] => 0

 [msg] => Invalid PayU ID

)

 If successfully fetched

Array

(

 [status] => 1

 [msg] => Transaction Fetched Successfully

 [TDR_details] => Array

 (

 [TDR] => <Value>

)

)

13) udf_update

This command is used to update the UDF1-UDF5 values of a transaction. UDFs are the user-defined

fields which are posted from the merchant to PayU. This API is specifically used to update the values

in these fields in PayU Database. The return parameters are the updated UDF values of transaction.

Input Variables Description:

Parameter Description Sample Value

var1 transaction ID(txnid) 7cf3f43146da5a319ccc

var2 udf1 of transaction 8000123

var3

udf2 of transaction 4334343

var4 udf3 of transaction 434343

var5 udf4 of transaction Abcd123

PayU Integration Document - Version 2.6 Page 45

var6 udf5 of transaction Efgh1234

Web Service Responses

 If transaction ID is empty

Array

(

 [status] => 0

 [msg] => Parameter missing

)

 If transaction ID is invalid

Array

(

 [status] => 0

 [msg] => Invalid TXN ID

)

 If successfully updated

Array

(

 [status] => UDF values updated

 [transaction_id] => 7cf3f43146da5a319ccc

 [udf1] => 8000123

 [udf2] => 4334343

 [udf3] => 434343

 [udf4] => Abcd123

 [udf5] => Efgh1234

)

14) create_invoice

This API is provided to the merchant to create an email invoice for a customer and gives the

merchant an option of sending the email invoice immediately to the customer or it can be

automated to be sent later.

Input Variables Description:

Parameter Sample Value

var1 {"amount":"10","txnid":"abaac3332","productinfo":"jnvjrenv","firstname":"test","e
mail":"test@test.com","phone":"1234567890","address1":"testaddress","city":"test"
,"state":"test","country":"test","zipcode":"122002","template_id":"14","validation_
period":6,"send_email_now":"1"}

Here, the input var1 parameter has to be generated in the json string format mentioned in the

sample value string above. This string shows each parameter and its corresponding value separated

by the delimiter colon (:). The parameters are also separated by the comma delimiter (,)

PayU Integration Document - Version 2.6 Page 46

Following is the description of the parameters in the above mentioned string:

Parameter Description

amount

(Mandatory)
Payment Amount

txnid

(Mandatory)

Merchant generated transaction number which is used to track a particular

order. (Must be unique every time if already successful, otherwise you get an

error of duplicate transaction)

productinfo

(Mandatory)
Product Description

firstname

(Mandatory)
Self-Explanatory (only alphabets a-z are allowed)

email

(Mandatory)
Self-explanatory

phone

(Mandatory)
Self-explanatory (Numeric Value only)

address1

Self-Explanatory (Length of Address1 must not be more than 100 characters

and the allowed characters are only) A TO Z, a to z, 0 to 9, @, - (Minus), _

(Underscore), / (Backslash), (Space), (Dot)

city Self-explanatory (allowed characters are same as in address1)

state Self-explanatory (allowed characters are same as in address1)

Country Self-explanatory (allowed characters are same as in address1)

Zipcode Self-explanatory (numeric value only)

template_id

Template ID to be provided in case of more than one email invoice templates.

Merchant can decide which template to use and provide that particular

template ID in this parameter

validation_period
Number of days for which the email invoice usage is valid (If this field is left

empty, then default value will be taken as 7 days)

send_email_now

1 - If the merchant wants to automatically send the email invoice request to

the customer at the time of creation of email invoice itself

0 - If the merchant doesn't want to send the email invoice request to the

customer at the creation time itself. In this case, the email would be sent later

automatically

Web Service Responses

 If successfully executed

Array

(

 [Transaction Id] => abaac3332

 [Email Id] => test@test.com

 [Phone] => 1234567890

 [Status] => Success

PayU Integration Document - Version 2.6 Page 47

 [URL] =>

https://test.payu.in/processInvoice?invoiceId=9eec02ac9e2efc335bdda2d748612

1ce03de24c2fa7d32d17462ad5a6a9058db

)

 If duplicate transaction id is used

Invoice for this transaction ID already exists.

 If invalid parameter is sent*

Invalid <parameter>

Note*: Here <parameter> value displayed would be the incorrect parameter provided

15) expire_invoice

This API is used to expire an invoice link corresponding to the txnID. In a few cases – an invoice might

be sent to an incorrect email ID by the merchant. In such scenario, merchant might want to discard

the invoice by expiring it. This API can be useful in such scenario.

 If invoice is successfully expired, and the transaction isn’t already in progress

Array

(

 [status] => 1

 [msg] => Invoice expired

)

 If invoice is successfully expired, but the transaction is already in progress

Array

(

 [status] => 1

 [msg] => Invoice expired, Transaction is already in progress

)

 If invoice doesn’t exist for txnID

Array

(

 [status] => 0

 [msg] => Invoice does not exist for this txnid

)

16) check_offer_status (1st Usage)

This API is used to check the status of an offer for a particular merchant when all the details are

passed. The return parameters are status, msg, discount/error_code, category, offer_key,

offer_type(instant/ cashback) , offer_availed_count, offer_remaining_count.

Input Variables Description:

PayU Integration Document - Version 2.6 Page 48

Parameter Description Sample Value

var1 Offer Key(mandatory) offer@123

var2 Amount 100

var3 Category CC

var4 Bank Code CC

var5 Card Number(mandatory) 5432112345678901

var6 Name on Card Nitesh

var7 Phone Number 91234567890

var8 Email Id abc@xyz.com

Error Codes:

 'INVALID_OFFER'=>'E001',

 'INVALID_PAYMENT_METHOD'=>'E002'

In the Output:

 Parameter ‘status’ = 1, means offer is valid

 Parameter ‘status’ = 0, means offer is invalid.

Web Service Responses:

Note: In the response, category will be the passed Category.

 If the offer is a valid offer

Array

(

 [status] => 1

 [msg] => Valid offer

 [discount] => 15

 [category] => creditcard

 [offer_key] => testoffer12312@5788

 [offer_type] => instant

 [offer_availed_count] => 5

 [offer_remaining_count] => 3

)

 If the offer is expired

Array

(

 [status] => 0

 [msg] => Offer expired.

 [error_code] => E001

 [category] => creditcard

 [offer_key] => newoffer1@5686

 [offer_type] => instant

mailto:abc@xyz.com

PayU Integration Document - Version 2.6 Page 49

 [offer_availed_count] => Unknown

 [offer_remaining_count] => Unknown

)

 If the card limit is exhausted

Array

(

 [status] => 0

 [msg] => Offer Exhausted

 [error_code] => E001

 [category] => creditcard

 [offer_key] => newoffer1@568

 [offer_type] => Unknown

 [offer_availed_count] => Unknown

 [offer_remaining_count => Unknown

)

 If offerKey is invalid

Array

(

 [status] => 0

 [msg] => Invalid offer Key

 [error_code] => E001

 [offer_key] => newoffer1@568

 [offer_type] => Unknown

 [offer_availed_count] => Unknown

 [offer_remaining_count] => Unknown

)

17) check_offer_status (2nd Usage)

This API is used to check the status of an offer when only the parameters Offer Key and card number

are passed as input. This API can be used to check the offer status when offer is created using bin

only. In this case we can depict that the offer has been created for which category (like

CC/DC/NB/EMI). Hence, for using this API, you need to pass the Offer Key and Card Number in var1

and var5 field as inputs and leave the rest field empty.

The return parameters are status, msg, error_code (In case of error), category, offer_key, offer_type

(instant/cashback), offer_availed_count, ‘offer_remaining_count'.

Input Variables Description:

Parameter Description Sample Value

var1 Offer Key(mandatory) offer@123

var2 Empty -

var3 Empty -

var4 Empty -

var5 Card Number(mandatory) 5432112345678901

PayU Integration Document - Version 2.6 Page 50

Error Codes:

 'INVALID_OFFER'=>'E001',

 'INVALID_PAYMENT_METHOD'=>'E002'

Output:

 Parameter ‘Status’ = 1, means offer is valid

 Parameter ‘Status’ = 0, means offer is invalid

Web Service Responses:

 If the offer is a valid offer for the given card number(bin)

Array

(

 [status] => 1

 [msg] => Valid offer

 [category] => creditcard

 [offer_key] => abc@123

 [offer_type] => instant

 [offer_availed_count] => 5

 [offer_remaining_count => 1

)

 If the offer is expired

Array

(

 [status] =>0

 [msg] => Offer Expired

 [error_code] => E001

 [category] => Unknown

 [offer_key] => offerKey

 [offer_type] => Unknown

 [offer_availed_count] => Unknown

 [offer_remaining_count] => Unknown

)

 If the card limit is exhausted

Array

(

 [status] => 0

 [msg] => Offer Exhausted

 [error_code] => E001

 [category] => Unknown

 [offer_key] => offerKey

 [offer_type] => Unknown

 [offer_availed_count] => Unknown

 [offer_remaining_count] => Unknown

)

)

PayU Integration Document - Version 2.6 Page 51

 If the offer is an invalid offer for the given card number(bin)

Array

(

 [status] => 0

 [msg] => Invalid offer

 [error_code] => E001/E002

 [offer_key] => abc@123

 [offer_type] => Unknown

 [offer_availed_count] => Unknown

 [offer_remaining_count] => Unknown

)

18) getNetbankingStatus

This API is used to help you in handling the NetBanking Downtime. A few times, one or more Net

Banking options may be facing downtime due to issues observed at Bank’s end. This API is used to

tell the status of one or all the net banking options. The status can be either up or down. If you want

to know the status of a specific Net Banking option, the input parameter should contain the

corresponding ibibo_code. If you want to know the status of all the Net Banking options, the input

parameter should contain the value ‘default’.

Input variable description:

Parameter Description Sample Value

var1 ibibo_code or “default” AXIB/“default”

Web Service Responses:

Case a: To get status of one Net Banking Option (The specific ibibo_code is passed in input)

Response:

Array

(

 [AXIB] => array

 (

 [ibibo_code] => AXIB

 [title] => AXIS Bank NetBanking

 [up_status] => 0

)

)

Note:

 up_status = 0 signifies that the particular Bank option is down at the moment.

 up_status=1 signifies that the particular Bank Banking option is up at the moment.

Case b: To get status of all Net Banking options. (The value “default” is passed in input)

Web Service Responses:

PayU Integration Document - Version 2.6 Page 52

Array

(

 [AXIB] => array

 (

 [ibibo_code] => AXIB

 [title] => AXIS Bank NetBanking

 [up_status] => 1

)

 [BOIB] => array

 (

 [ibibo_code] => BOIB

 [title] => Bank of India

 [up_status] => 1

)

 [BOMB] => array

 (

 [ibibo_code] => BOMB

 [title] => Bank of Maharashtra

 [up_status] => 1

)

 [CABB] => array

 (

 [ibibo_code] => CABB

 [title] => Canara Bank

 [up_status] => 1

)

 .

 .

 .

 . <All the other banks and their status>

Note:

 up_status = 0 signifies that the particular Bank option is down at the moment.

 up_status= 1 signifies that the particular Bank Banking option is up at the moment.

19) getIssuingBankStatus

This API is used to help you in handling the Credit Card/Debit Card Issuing Bank Downtime. It allows

you get the present status of an Issuing Bank using the specific Bank Identification Number (BIN). BIN

is identified as the first 6 digits of a credit/debit card. You need to provide the bin number as input

and the corresponding issuing bank’s status would be returned in the output (whether up or down).

Input variable description:

Parameter Description Sample Value

var1 Bank Identification Number(First 6 digits of a card) 512345

Web Service Responses:

PayU Integration Document - Version 2.6 Page 53

Array

(

 [issuing_bank] => HDFC

 [up_status] => 1

)

Note:

 up_status = 0 signifies that the particular Bank option is down at the moment.

 up_status= 1 signifies that the particular Bank Banking option is up at the moment.

20) getIssuingBankDownBins

This command is used to retrieve the card bins for all banks which are observing either full

downtime or partial downtime at an instant. The information related to full/partial downtime

depends on the input parameter values.

Input Variables Description:

Parameter Description Sample Value

var1 Bank Name code (To be Provided by PayU) or “default” Default

var2 1 if you want to extract information about partially down bins as

well and 0 if you want information about fully down bins only.
0/1

Web Service Responses:

 If successfully fetched

Array

(

 [0] => Array

 (

 [issuing_bank] => KOTAK

 [status] => 0

 [title] => KOTAK MAHINDRA BANK LTD

 [bins_arr] => Array

 (

 [0] => 429393

 [1] => 416644

 [2] => 416645

 [3] => 416643

 [4] => 416646

 [5] => 436390

)

)

 [1] => Array

 (

 [issuing_bank] => ALLBD

 [status] => 2

 [title] => ALLAHABAD BANK

 [bins_arr] => Array

 (

PayU Integration Document - Version 2.6 Page 54

 [0] => 430450

 [1] => 421337

)

)

)

The values referring to the array can be described below:

 [issuing_bank] => The bank which is down or partially down

 [bins_arr] => The card bins array

 [status] => 0 if the issuing bank is completely down and 2 if it is partially down

 [title] => title of the bank

21) get_Transaction_Details

This API is used to extract the transaction details between two given time periods. The API takes the

input as two dates (initial and final), between which the transaction details are needed. The output

would consist of the status of the API (success or failed) and all the transaction details in an array

format.

Input variable description:

Parameter Description Sample Value

var1 Starting Date (From when the transaction details

are needed) in yyyy-mm-dd format

2014-01-12

var2 End Date (Till when the transaction details are

needed) in yyyy-mm-dd format

2014-01-13

Web Service Responses:

The status variable would be 1 for successful web-service execution and would be 0 in case of

unsuccessful web-service execution. Output would be returned in the following array format:

 For Successful Response, status=1:

 Array

 (

 [status] => 1

 [msg] => Transaction Fetched Successfully

 [Transaction_details] => Array

 (

 [0] => array

 (

 [id] => 403993715508970248

 [status] => failed

 [key] => C0Dr8m

 [merchantname] => test payu

 [txnid] => e1e8a8f4ace8506043e1

 [firstname] => John

 [lastname] => Moses

 [addedon] => 2014-02-04 01:25:38

 [bank_name] => Visa Debit Cards (All Banks)

PayU Integration Document - Version 2.6 Page 55

 [payment_gateway] => AXIS

 [phone] => 9585475883

 [email] => y.johnmoses@gmail.com

 [amount] => 100.00

 [discount] => 0.00

 [additional_charges] => 0.00

 [productinfo] => CSIIT Conference Registration

 [error_code] => E312

 [bank_ref_no] => 2000112693

 [ibibo_code] => VISA

 [mode] => DC

 [ip] => 117.206.82.90

 [card_no] => 414367XXXXXX0250

 [cardtype] => international

 [offer_key] =>

 [field2] => 403506432293

 [udf1] =>

 [pg_mid] => TESTIBIBOWEB

 [offer_type] =>

 [failure_reason] =>

 [mer_service_fee] =>

 [mer_service_tax] =>

)

 [1] => Array

 (

 [id] => 403993715508970268

 [status] => captured

 [key] => C0Dr8m

 [merchantname] => test payu

 [txnid] => 8613914632655135

 [firstname] => Hans Wurst

 [lastname] =>

 [addedon] => 2014-02-04 03:03:06

 [bank_name] => Credit Card

 [payment_gateway] => HDFC

 [phone] =>

 [email] => f606f938f64b499aa3fd952d6338aa54@example.com

 [amount] => 30.00

 [discount] => 0.00

 [additional_charges] => 0.00

 [productinfo] => 3752946

 [error_code] => E000

 [bank_ref_no] => 1953525040340351

 [ibibo_code] => CC

 [mode] => CC

 [ip] => 217.6.59.133

 [card_no] => 512345XXXXXX2346

 [cardtype] => domestic

 [offer_key] =>

 [field2] => 999999

 [udf1] =>

 [pg_mid] => 90000970

 [offer_type] =>

 [failure_reason] =>

 [mer_service_fee] => 0.70

 [mer_service_tax] => 0.09

)

)

)

PayU Integration Document - Version 2.6 Page 56

 For successful web-service execution, but empty response (i.e. No transactions found):

 Array

 (

 [status] => 1

 [msg] => Transaction Fetched Successfully

 [Transaction_details] => Array

 (

)

)

 Failed case:

In case of invalid input date format, output would be of the following form:

 Array

 (

 [status] => 0

 [msg] => Invalid Date Entered. Date format should be yyyy-mm-dd

)

22) get_transaction_info

This API works exactly the same way as get_Transaction_Details API. The only enhancement is that

this API can take input as the exact time in terms of minutes and seconds also. Output would be in

the same format as get_Transaction_Details API output.

Input variable description:

Parameter Description Sample Value

var1 Starting Time (From when the transaction details are

needed) in yyyy-mm-dd hh:mm:ss format

2014-01-12 16:00:00

var2 End Time (Till when the transaction details are

needed) in yyyy-mm-dd hh:mm:ss format

2014-01-12 16:15:00

Web Service Responses:

The status variable would be 1 for successful web-service execution and would be 0 in case of

unsuccessful web-service execution. Output would be returned in the following array format:

a) For Successful Response, status=1:

 Array

 (

 [status] => 1

 [msg] => Transaction Fetched Successfully

 [Transaction_details] => Array

 (

 [0] => array

 (

 [id] => 403993715508970248

PayU Integration Document - Version 2.6 Page 57

 [status] => failed

 [key] => C0Dr8m

 [merchantname] => test payu

 [txnid] => e1e8a8f4ace8506043e1

 [firstname] => John

 [lastname] => Moses

 [addedon] => 2014-02-04 01:25:38

 [bank_name] => Visa Debit Cards (All Banks)

 [payment_gateway] => AXIS

 [phone] => 9585475883

 [email] => y.johnmoses@gmail.com

 [amount] => 100.00

 [discount] => 0.00

 [additional_charges] => 0.00

 [productinfo] => CSIIT Conference Registration

 [error_code] => E312

 [bank_ref_no] => 2000112693

 [ibibo_code] => VISA

 [mode] => DC

 [ip] => 117.206.82.90

 [card_no] => 414367XXXXXX0250

 [cardtype] => international

 [offer_key] =>

 [field2] => 403506432293

 [udf1] =>

 [pg_mid] => TESTIBIBOWEB

 [offer_type] =>

 [failure_reason] =>

 [mer_service_fee] =>

 [mer_service_tax] =>

)

 [1] => Array

 (

 [id] => 403993715508970268

 [status] => captured

 [key] => C0Dr8m

 [merchantname] => test payu

 [txnid] => 8613914632655135

 [firstname] => Hans Wurst

 [lastname] =>

 [addedon] => 2014-02-04 03:03:06

 [bank_name] => Credit Card

 [payment_gateway] => HDFC

 [phone] =>

 [email] => f606f938f64b499aa3fd952d6338aa54@example.com

 [amount] => 30.00

 [discount] => 0.00

 [additional_charges] => 0.00

 [productinfo] => 3752946

 [error_code] => E000

 [bank_ref_no] => 1953525040340351

 [ibibo_code] => CC

 [mode] => CC

 [ip] => 217.6.59.133

 [card_no] => 512345XXXXXX2346

 [cardtype] => domestic

 [offer_key] =>

 [field2] => 999999

 [udf1] =>

 [pg_mid] => 90000970

PayU Integration Document - Version 2.6 Page 58

 [offer_type] =>

 [failure_reason] =>

 [mer_service_fee] => 0.70

 [mer_service_tax] => 0.09

)

 [2] => Array

 (

 [id] => 403993715508970270

 [status] => captured

 [key] => C0Dr8m

 [merchantname] => test payu

 [txnid] => 8813914632908201

 [firstname] => Hans Wurst

 [lastname] =>

 [addedon] => 2014-02-04 03:03:30

 [bank_name] => Credit Card

 [payment_gateway] => HDFC

 [phone] =>

 [email] => 89163cd22823449d89e6d5cd2346fea3@example.com

 [amount] => 30.00

 [discount] => 0.00

 [additional_charges] => 0.00

 [productinfo] => P172

 [error_code] => E000

 [bank_ref_no] => 261662040340351

 [ibibo_code] => CC

 [mode] => CC

 [ip] => 217.6.59.133

 [card_no] => 512345XXXXXX2346

 [cardtype] => domestic

 [offer_key] =>

 [field2] => 999999

 [udf1] =>

 [pg_mid] => 90000970

 [offer_type] =>

 [failure_reason] =>

 [mer_service_fee] => 0.70

 [mer_service_tax] => 0.09

)

)

)

b) For successful web-service execution, but empty response (i.e. No transactions found):

 Array

 (

 [status] => 1

 [msg] => Transaction Fetched Successfully

 [Transaction_details] => Array

 (

)

)

c) Failed case:

In case of invalid input date format, output would be of the following form:

 Array

PayU Integration Document - Version 2.6 Page 59

 (

 [status] => 0

 [msg] => Invalid Date Entered. Date format should be yyyy-mm-dd

hh:mm:ss

)

23) check_isDomestic

This API is used to detect whether a particular bin number is international or domestic. It is also

useful to determine the card’s issuing bank, the card type brand – i.e, Visa, Master etc and also the

Card Category – i.e. Credit/Debit etc. Bin number is the first 6 digits of a Credit/Debit card.

Input Variables description:

Parameter Description Sample Value

var1 Card Number/Bin(First 6 digits of a card) 512345

Web Service Responses:

Case a: If the card is domestic

Array

(

 [isDomestic] => Y

 [issuingBank] => HDFC

 [cardType] => MAST

 [cardCategory] => CC

)

Case b: If the card is international

Array

(

 [isDomestic] => N

 [issuingBank] => UNKNOWN

 [cardType] => UNKNOWN

 [cardCategory] => CC

)

Here in the output,

 isDomestic = Y signifies that the particular bin is domestic.

 isDomestic = N signifies that the particular bin is International.

 cardType = <value> which can be ['MAST','VISA','MAES','AMEX', 'DINR',’Unknown’]

 [issuingBank] = The issuing bank of the card used for transaction

 [cardCategory] = CC signifies that the particular bin is a Credit Card Bin

 [cardCategory] = DC signifies that the particular bin is a Debit Card Bin

Note: This API would give the output based upon PayU’s bin list which may not be

completely exhaustive.

PayU Integration Document - Version 2.6 Page 60

24) get_settlement_details

This command is used to retrieve Settlement Details for the merchant. The input is the date for

which Settlement Details are required.

Input Variables Description:

Parameter Description Sample Value

var1
Date for which Settlement Data is required - in

YYYY-MM-DD format
2015-08-01

Web Service Responses

 If date format is incorrect

Array

(

 [status] => 0

 [msg] => Please check date format it should be YYYY-MM-DD

)

 If no data found for the particular date

Array

(

 [status] => 1

 [msg] => 0 transactions settled on 2015-05-01

 [Txn_details] => Array

 (

)

)

 If successfully fetched

Array

(

 [status] => 1

 [msg] => 6565 transactions settled on 2015-08-01

 [Txn_details] => Array

 (

 [0] => Array

 (

 [payuid] => 204131224

 [txnid] => GOFLCF519911416076450

 [txndate] => 2014-11-16 00:08:40

 [mode] => DC

 [amount] => 2580.00

 [requestid] => 262698935

 [requestdate] => 2015-08-01 17:43:25

 [requestaction] => capture

 [requestamount] => 186.00

 [mer_utr] => CITIH15213701843

 [mer_service_fee] => 0.00000

 [mer_service_tax] => 0.00000

 [mer_net_amount] => 186.00000

PayU Integration Document - Version 2.6 Page 61

 [bank_name] => VISA

 [issuing_bank] => BOB

)

 [1] => Array

 (

 [payuid] => 206974239

 [txnid] => GOFLIae1e11416407957

 [txndate] => 2014-11-19 20:09:29

 [mode] => CC

 [amount] => 33972.00

 [requestid] => 262698908

 [requestdate] => 2015-08-01 12:45:03

 [requestaction] => refund

 [requestamount] => 4094.00

 [mer_utr] => CITIH15213701843

 [mer_service_fee] => 0.00000

 [mer_service_tax] => 0.00000

 [mer_net_amount] => -4094.00000

 [bank_name] => CC

 [issuing_bank] => CANA

)

)

)

25) get_merchant_ibibo_codes

This command is used to retrieve all the activated payment options for the merchant. In this API,

var1 needs to be left empty in the input and var2 needs to be kept as 1.

Input Variables Description:

Parameter Description Sample Value

var2 Has to be equal to 1 always 1

Web Service Responses

 If successfully fetched

Array

(

 [emi] => Array

 (

 [EMIK12] => KOTAK - 12 Months

 [SBI12] => SBI - 12 months

 [EMIHS12] => HSBC - 12 Months

 [EMIA12] => AXIS - 12 Months

)

 [cashcard] => Array

 (

 [AMON] => Airtel Money

 [ITZC] => ItzCash

)

PayU Integration Document - Version 2.6 Page 62

 [netbanking] => Array

 (

 [HDFB] => HDFC Bank

 [AXIB] => AXIS Bank NetBanking

 [ICIB] => ICICI Netbanking

 [UCOB] => UCO Bank

)

 [creditcard] => Array

 (

 [AMEX] => AMEX Cards

 [CC] => Credit Card

 [DINR] => Diners

)

 [debitcard] => Array

 (

 [MAST] => MasterCard Debit Cards (All Banks)

 [MAES] => Other Maestro Cards

)

)

26) eligibleBinsForEMI

This command is used only when the merchant needs the EMI feature of PayU. In case the merchant

is managing card details on its own website, this API can tell the issuing bank of the card bin. It also

provides the minimum eligible amount for a particular bank.

Input Variables Description (1st Method):

Parameter Description Sample Value

var1 Hardcoded as “bin” Bin

var2 Card bin number (First 6 digits) 434668

Web Service Responses

 If successfully fetched

Array

(

 [status] => 1

 [msg] => Details fetched successfully

 [details] => Array

 (

 [isEligible] => 1

 [bank] => KOTAK

 [minAmount] => 500

)

)

 If not found

PayU Integration Document - Version 2.6 Page 63

Array

(

 [status] => 1

 [msg] => Details fetched successfully

 [details] => Array

 (

 [isEligible] => 0

)

)

Input Variables Description (2nd Method):

Parameter Description Sample Value

var1 Hardcoded as “bin” Bin

var2 Card bin number (First 6 digits) 434668

var3 bankname KOTAK

 If successfully fetched

Array

(

 [status] => 1

 [msg] => Details fetched successfully

 [details] => Array

 (

 [isEligible] => 1

 [bank] => KOTAK

 [minAmount] => 500

)

)

 If var3 (input bank name) doesn’t match with the bank name in PayU Database, that means the
bin given in input is of a different bank name

Array

(

 [status] => 0

 [msg] => Invalid Bin

)

API’s 27-30 are related to PayU’s Store Card Feature

27) get_user_cards

This API is used to fetch all the cards corresponding to the user. In this API, card number and other

sensitive information is not returned.

Input Variables description:

Parameter Description Sample Value

var1 user_credentials (In the format- MerchantKey:UserIdentifier) JQBlG:abc

PayU Integration Document - Version 2.6 Page 64

Web Service Responses:

Case a: Cards are found in the vault.

Response:

Array

(

 [status] => 1

 [msg] => Cards fetched Succesfully

 [user_cards] => Array

 (

 [745d72e2fd9b7e88824fef4e7ed7dac1fe624b7] => Array

 (

 [name_on_card] => {name}

 [card_name] => nickname but if sent empty then

(cardType****last 4 digits of card) e.g. mastercard****2346

 [card_type] => CC(ibibo_code)

 [card_token] => 745d72e2fd9b7e88824fef4e7ed7dac1fe624b7

 [is_expired] => 1(1 when card is expired , 0 when not)

 [card_mode] => CC(card Category)

 [card_no] => 412345xxxxxx2356(masked Card Number)

 [card_brand] => VISA

 [card_bin] => 412345

 [expiry_year] => 2017

 [expiry_month] => 10

)

)

)

Case b: No cards are found for the user

Array

(

 [status] => 0

 [msg] => Card not found.

)

28) save_user_card

This API is used for saving a card to the vault. On successful storing of the card, it returns the

cardToken.

Input Variables description:

Parameter Description Sample Value

var1 user_credentials - merchantKey:userId JQBlG:abc

var2 cardName(nickname of the card) My_card

var3 cardMode CC

var4 cardType AMEX

var5 nameOnCard Nitesh Jindal

PayU Integration Document - Version 2.6 Page 65

var6 cardNo 5123456789012345

var7 cardExpMon 9

var8 cardExpYr 2014

Case a: When card is stored successfully

Web Service Responses:

Array

(

 [status] => 1

 [msg] => Card Stored Successfully.

 [cardToken] => 745d72e2fd9b7e88824fef4e7ed7dac1fe624b7

)

Case b: Any of the field is invalid

If card Number is invalid:

Web Service Response:

Array

(

 [status] => 0

 [msg] => CardNumber is invalid

)

29) edit_user_card

This API is used to edit the details of an existing stored card in the vault. In this case, along with all

the parameters that are required to save to the card, cardToken of the card to edit is also required

to be passed. On successfully editing the card, it returns the cardToken of the card.

Input Variables description:

Parameter Description Sample Value

var1 User Credentials - MerchantKey:UserId

MerchantName:UserId

JQBlG:abc

var2 cardToken(card token of the card to edit) 745d72e2fd9b7e88824fef4e7ed7dac1f

var3 cardName(nickname of the card) My_card

var4 cardMode CC

var5 cardType AMEX

var6 nameOnCard Nitesh Jindal

var7 cardNo 5123456789012345

var8 cardExpMon 9

PayU Integration Document - Version 2.6 Page 66

var9 cardExpYr 2014

Case a: On successful editing of card

Web Service Response:

Array

(

 [status] => 1

 [msg] => {cardName} Edited Successfully.

 [cardToken] => 745d72e2fd9b7e88824fef4e7ed7dac1fe624b74

)

Case b: If the wrong card token is given to edit

Web Service Response:

Array

(

 [status] => 0

 [msg] => Card not found to edit

)

30) delete_user_card

This API is used to delete a card.

Input Variables description:

Parameter Description Sample Value

var1 user_credentials - merchantKey:userId

MerchantName:UserId

JQBlG:abc

var2 cardToken (cardtoken of the card to delete) 745d72e2fd9b7e88824fef4e7ed

Web Service Responses:

Case a: On successful deletion of card

Array

(

 [status] => 1

 [msg] => {cardName} deleted successfully

)

Case b: on failure of deletion

Array

(

 [status] => 0

 [msg] => error reason

)

