
Studying Software Developer Expertise and
Contributions in Stack Overflow and GitHub

Sri Lakshmi Vadlamani
School of Computer Science

Carleton University
Ottawa, Canada

Sri.Vadlamani@carleton.ca

Olga Baysal
School of Computer Science

Carleton University
Ottawa, Canada

Olga.Baysal@carleton.ca

Abstract—Knowledge and experience are touted as both the
necessary and sufficient conditions to make a person an expert.
This paper attempts to investigate this issue in the context of
software development by studying software developer’s expertise
based on their activity and experience on GitHub and Stack
Overflow platforms. We study how developers themselves define
the notion of an “expert”, as well as why or why not developers
contribute to online collaborative platforms. We conducted an
exploratory survey with 73 software developers and applied a
mixed methods approach to analyze the survey results. The
results provided deeper insights into how an expert in the
field could be defined. Further, the study provides a better
understanding of the underlying factors that drive developers
to contribute to GitHub and Stack Overflow, and the challenges
they face when participating on either platform.

The quantitative analysis showed that JavaScript remains a
popular language, while knowledge and experience are the key
factors driving expertise. On the other hand, qualitative analysis
showed that soft skills such as effective and clear communication,
analytical thinking are key factors defining an expert. We found
that both knowledge and experience are only necessary but not
sufficient conditions for a developer to become an expert, and
an expert would necessarily have to possess adequate soft skills.
Lastly, an expert’s contribution to GitHub seems to be driven
by personal factors, while contribution to Stack Overflow is
motivated more by professional drivers (i.e., skills and expertise).
Moreover, developers seem to prefer contributing to GitHub as
they face greater challenges while contributing to Stack Overflow.

Index Terms—Software developer expertise, developer contri-
butions, developer profiles, GitHub, Stack Overflow, qualitative
study, survey, developer perception.

I. INTRODUCTION

Wikipedia defines an expert as “. . . someone who has a

broad and deep competence in terms of knowledge, skill,

and experience through practice and education in a particular

field”. In other words, an expert is an individual who has

demonstrated their special skills or knowledge in solving prob-

lems. An expert can have these abilities innate in them or they

could have possibly inculcated them over time and through

conscious deliberate practice. While there is some correlation

between amount of experience and level of expertise, it is

rather weak [1]. For example, one may spend years or decades

trying to learn how to play the piano, and still achieve a rather

low level of proficiency.

In some fields it is easy to identify experts and to measure

and rank their expertise because there are objective measures

to identify and measure expertise. For example, in sports,

there are numerous objective measures (e.g., the time to

run a marathon) that can be used to reliably rank experts.

However, in software engineering, it is much more difficult to

find reliable and objective metrics to measure expertise, and

this has been previously reported in the software engineering

literature [2], [3].

Traditionally, software development is considered to be a

collection of many tasks: design, coding, testing, maintenance.

However, software development field has evolved quite rapidly

since the early 21st century and has created various avenues for

specialization and expertise, such as expertise in programming

languages (e.g., JavaScript, C/C++, Python, JavaScript, SQL),

frameworks and libraries (e.g., Node.js, Angular.js, Spring,

ASP, Django, JSF, Cocoa, React, Hadoop, Spark), technologies

(e.g., IoT, deep learning, ML, computer vision, blockchain,

quantum computing, cloud computing, augmented/VR) and

databases (e.g., MySQL, PostgreSQL, Oracle, Redis, Cassan-

dra).

This paper attempts to understand whether knowledge and

experience are both necessary and sufficient conditions to

become an expert. We are also interested in understanding

developer behaviour and decisions on why they contribute

to different online collaborative platforms. While software

research community offers a plethora of studies on how

developers participate, contribute to and interact with each

other on various collaborative platforms [4]–[10], there is a

lack of qualitative research studying developer motivation and

behaviour that drives their contributions to these platforms.

Therefore, our research is organized around an exploratory

survey that we design based on the state-of-the-art qualitative

research [4], [11], [12] and our observation on how developers

interact and participate on Stack Overflow and GitHub. To

analyze the survey data, we applied a mixed methods research

approach that involves both quantitative and qualitative anal-

yses.

Although, there are numerous ways to identify experts and

their expertise, this paper however, focuses only on two plat-

forms to help measure the expertise of a software developer:

GitHub (GH) and Stack Overflow (SO). GitHub is the most

312

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00038

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

popular social coding platform that allows massive worldwide

collaboration for software developers on open source projects

[6], [7]. On the other hand, Stack Overflow is the most popular

question answering website for software developers, providing

a large number of code snippets and text on a wide variety of

topics [13], [14]. SO helps programmers and software develop-

ers to discuss their (technical) day-to-day problems with others

within the software development community and help solve

their problems. At a fundamental level, both platforms offer

very different set of features. However, both transcend physical

and language boundaries and serve as a valuable resource

to modern day developers across the globe in their quest to

become an expert software developer. This is evident from

the current usage of these platforms worldwide by developers.

In a most recent data dump from December 9th 20181, Stack

Overflow lists over 42 million discussion posts from almost 10

million registered users, while GitHub’s search results report

over 45.5 million users as of May 28, 20202.

This research study could benefit multiple stakeholders.

Employers could benefit from knowing trends in specialization

and understanding characteristics of an expert as it would help

them hire the right expert at lower search-costs. Researchers,

on the other hand, could benefit by designing studies and

developing theories related to multi-layered expertise and

possibly expand the number of platforms to included developer

profiles and contributions from Twitter and LinkedIn. Software

developers themselves could possibly benefit by learning the

various factors that lead to becoming an expert software

developer and the various clusters of specialization that they

ought to focus on. Knowing the trends in specialization would

help developers formulate their goals and acquire the right set

of tools to be successful at the job. Also, understanding the

motivations that drive developers to contribute and participate

to different online platforms can help the platform’s UX and

user success teams to further improve platforms by eliminating

some of the current challenges that developers face.

This paper makes the following contributions:

• A qualitative study with the developers active on both SO

and GH who participated in our survey on the topic of

developer expertise and their motivation for contributing

to each platform.

• A survey analysis that offers insights into the developer

perception of what constitutes to the notion of an expert

developer, as well as what factors drive their contribution

on both platforms.

• A publicly available replication package [15].

II. RELATED WORK

Software development is divided into a collection of tasks,

of which the important ones are: programming/coding, testing

and debugging. Bergernsen et al. [16] proposed an instrument

to measure the first aspect (programming), based on a fixed set

of tasks pertaining to it. However, this measure might not help

1https://zenodo.org/record/2273117
2https://github.com/search?q=type:user&type=Users

in identifying expertise in software development, as modern-

day software developers have diversified their expertise across

multi-specialties and the importance of soft skills has increased

over time, i.e., this measure has no objective manner to

measure their expertise in these multiple facets of software

development.

Baltes and Diehl [2] have presented the first conceptual

theory of software development expertise that is grounded in

data from mixed methods survey of 335 software developers,

literature review on expertise and focused surveys to come

up with a comprehensive conceptual theory of expertise. They

note that experts’ performance may be inversely proportional

to time and that experience and expertise may not necessarily

be correlated. However, their study only focused on expertise

in Java programming language.

Montandon et al. [17] have studied the question of identify-

ing experts in software development by focusing their efforts

on identifying experts in usage of libraries and frameworks

among GH users. Supervised and unsupervised ML classifiers

were used to identify experts in the three most popular

JavaScript libraries (facebook/react; mongodb/nobe-mogodb;

& socketio/ socket.io). A ground truth of expertise was built

on a self-reported survey of 575 developers on these libraries.

The paper tackles two research questions: 1) identifying the ac-

curacy of the ML classifiers in identifying experts in libraries,

and 2) the features that distinguish an expert from a novice in

the studied libraries. The ML classifiers F-measure turned out

to be low and the authors interpreted this performance might

be due to usage of GitHub as a full proxy for expertise and they

note that experts rarely contribute to public GitHub projects.

On the second question, they rely on clustering to identify

experts with similar feature values. Their results suggest that

GitHub could be a partial proxy for expertise in frameworks

and libraries. This paper differs from Montandon et al. [17]

by allowing the respondents to self-select themselves and by

choosing two platforms (GH and SO) to help cross-validate.

Xiong et al. [5] studied developer behavior across GH and SO

by mining accounts that were linked, using a CART decision

tree approach. Their results found high levels of correlation

between activity on the two platforms.

GH and SO have also been empirically studied for a

variety of topics. For example, some research focused on

analyzing topics that developers asked about in SO [18]–[23].

Similarly, an extensive research has analyzed programming

languages that developers used in GH and their relationships

to GH contributions [4], [8], [24]–[29]. There are also studies

characterizing social network properties of GH and SO [22],

[30]–[33].

Many researchers have studied expertise in GH and SO

including (not limited to) Chen et al. [34] who recommend

experts based on an analysis of correlations between search

keywords in Google and SO. Silvestri et al. [35] conducts

a comparative study across SO, GH and Twitter to inves-

tigate correlations between interactions. Yan et al [36] use

heterogeneous information network analysis across various

online communities to draw a comprehensive picture of a

313

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Mixed methods research approach.

software developer and their expertise. Yu et al [37] using

feature matching developed a cross-domain developer recom-

mendation. Venkataramani et al. [38] built a recommendation

system on SO based on data mined from GH. Constantinou

et al. [39] measured developers’ commit activity on GH and

validated that by checking on their activity on SO. Huang

et al. [40] provides skill scoring by correlating developer

activity on GH and SO. Zhang et al. [41] proposed DevRec, a

recommendation system on GH and SO, based on association

matrix is proposed. However, the system does not consider

user attributes and weighting mechanism.

III. METHODOLOGY

We conducted an exploratory qualitative study that involved

data collection through a survey with SO and GH users. This

section describes the survey design, the participants, and the

survey analysis in detail.

A. Research Design

The research was designed in three phases as follows.

During Phase 1 we conduct an online survey which was sent to

a random sample of developers that are active on both GitHub

and Stack Overflow. In Phase 2, we perform a quantitative

analysis on the survey data, while in Phase 3, we applied

an open coding approach. Our goal is to better understand

how developers define, build and maintain their expertise via

contributions to two different collaborative platforms. Figure 1

summarizes the overall mixed methods research approach.

B. Research Questions

Prior to conducting an open coding approach, we had no

predefined notions nor specific research questions. Rather, our

survey design was focused on developers’ opinions about how

they may define an expert in the field, and what behaviour and

motivation drive their SO and GH contributions. Thus, our

research questions originated after the four concept categories

have emerged as a result of the open coding. Therefore, our

four research questions are reflective of the concept categories

(by choice) to be able to better discuss and discover these key

categories. The research questions are as follows:

• RQ1: How do developers define an expert?

• RQ2: What factors drive developers to contribute to GH?

• RQ3: What factors drive developers to contribute to SO?

• RQ4: What challenges do developers face when con-

tributing to each platform?

C. Survey Design (Phase 1)

The paper started with no preconceived notions about the

possible results (i.e., open-minded), and therefore the survey

mainly included open-ended questions for the purpose of data

collection. Furthermore, since this paper aims at understanding

expertise from a multi-specialty point of view, we did not

define any specific selection criteria (i.e., programming lan-

guage), instead we offered multiple choice to the respondents

for providing their input.

The survey questionnaire was divided into four sections:

1) Background information — Ten closed-ended questions

(main role, age, gender, education level, years of devel-

opment experience, etc.) were included in this section.

In particular, we were interested in asking the following

questions:

a) purpose of using GH,

b) purpose of using SO.

2) Expertise levels — Five closed-ended questions were

asked in this section (participants to rate on a 1 to 5

scale, with 5 being an expert):

a) expertise in programming languages,

b) expertise in frameworks and libraries,

c) expertise in technologies,

d) expertise in databases, and

e) consideration(s) given by respondents when rating their

expertise.

3) Expertise discussion — Two open-ended questions were

posed to respondents:

a) list 3 to 5 important skills of an expert software

developer,

b) asked if the respondents regularly monitored their

skills, if so how?

4) Contribution to GH and SO — Three open-ended ques-

tions were posed to respondents in this section:

a) how they decide to contribute on GH,

b) how they decide to participate on SO,

c) top 5 tags on SO they participated and whether these

tags reflected their expertise.

D. Survey Participants

The survey questionnaire was sent to a sample of software

developers. The survey sample for Phase 1 was randomly

drawn from users active on both GH and SO for the last

three years. An “active user” for the purpose of this study

was defined as the person who made 10 or more commits

in GH and similarly 3 or more comments on Stack Overflow

over the last three years (“Active Users”). From the GHTorrent

database a query was run to select the Active Users on GH.

314

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

This query resulted in 30,775 users qualifying as active users.

Similarly, a query was run on SO to collate a set of active

users from the publicly available dataset. This query on SO

resulted in 676 qualifying as active users. Thereafter, the users’

common on both platforms were matched, with their email

addresses, following the approach of Vasilescu et al. [9]. The

email addresses of SO users are only available from an old data

dump released on September 10, 2013; thereafter, they stopped

publishing the email addresses of the contributors. From these

two sources, a sample of 423 active users that were common

among both the lists was derived.

The university’s Ethics Review Board approval for the entire

experiment was obtained prior to sending out the survey to

the random sample of 423 active users. An online survey

platform (Qualtrics [42]) was used to conduct the survey and

data collection.

The first round of survey questionnaire was sent in Novem-

ber 2019 and was available to the respondents for two weeks.

A total of 423 emails were sent out inviting the participants;

of these, 30 respondents opted out of this survey and 8 emails

bounced back. Thus, leaving a final sample of 385 respondents.

Of these, 73 respondents started working on the survey (a

response rate of 18.9%). Finally, 41 of the 73 respondents

completed and submitted the survey, i.e., a submission rate

of 56%. In this study, we only consider the fully completed

survey responses, even though many of the incomplete ones

provided input to many of the questions.

The beginning of the survey consisted of background-related

questions. We summarize the characteristics of our population

of participants as follows:

1) Main role: The majority of the respondents have identified

themselves as software developers (33 out of 41, i.e., 80%

of the respondents). The other categories of respondents

include: software architects (2), team lead (2), consultant

(1), researchers (1) and others (2).

2) Age of respondents: Most of the respondents are in the

age group of 30 to 40 (23, 56.1%), followed by 40+ (14,

34.1%) and the remaining are between the age of between

20 and 30 (4, 9.8%).

3) Gender: 39 of the 41 respondents are male and the

remaining 2 have self-identified themselves as “other”.

4) Geographic location: 38 of the 41 respondents have

provided their geographic location; 44.7% (17) of the

respondents who answered are from Europe (including

UK), 36.8% (14) respondents are from North America,

13.2% (5) are from Australia and 5.3% (2) are from Asia.

E. Survey Data Analysis (Phase 2 and Phase 3)

We applied quantitative analysis on the multiple-choice

responses of the survey (Phase 2), while an open coding

approach was used to analyze the the open-ended survey

responses (Phase 3). Since we had no predefined groups or

categories, we used an open coding approach [43] to build

the theory. As we analyzed the quotes, themes and categories

emerged and evolved during the open coding process.

The first author created the “cards”, splitting 41 survey

responses into 324 individual quotes; these generally corre-

sponded to individual cohesive statements. In further analysis,

first and second authors acted as coders to group cards into

themes, merging themes into categories. For each open-ended

question, we proceeded with this analysis in three steps:

1) The two coders independently performed card sorting on

the 20% of the cards extracted from the survey responses

to identify initial card groups. The coders then met to

compare and discuss their identified groups.

2) The two coders performed another independent round,

sorting another 20% of the quotes into the groups that

were agreed-upon in the previous step. We then calculated

and report the inter-coder reliability to ensure the integrity

of the card sort process. We selected two of the most

popular reliability coefficients for nominal data: percent

agreement and Cohen’s Kappa. Coder reliability is a

measure of agreement among multiple coders for how

they apply codes to text data. To calculate agreement, we

counted the number of cards for each emerged group for

both coders and used ReCal2 [44] for calculations. The

coders achieved a substantial degree of agreement; on

average two coders agreed on the coding of the content

in 97% of the time (the average percent agreement varies

across the questions and is within the range of 86–100%;

while the average Cohen’s Kappa score is 0.6835).

3) The rest of the card sort for each open-ended question

(i.e., 60% of the quotes) was performed by both coders

together.

IV. RESULTS

In this section, we first present the results of our open coding

approach by presenting the overview of the concept categories

that emerged (in Section IV-A) and then offer results and

findings for each of our research question.

A. Overview of Concept Categories

In summary, we applied an open coding technique on

the 324 individual statements. During this process, 46 main

categories emerged. Each identified category consisted of

between one and forty-four comments or quotes. Further, these

categories were broadly grouped into four concept categories:

1) skills of an expert, 2) contribution to GH, 3) contribution

to SO, and 4) challenges faced by developers in contributing

to collaborative platforms. Table I presents these categories

in detail reporting the number of quotes, the number of

respondents, and the totals. Each of these concept categories

consists of a minimum of five to a maximum twenty three

categories.

The four concept categories that have emerged during the

card sort do not necessarily directly correspond to the tasks

performed by experts on the online collaborative platforms.

Instead, these categories are a combination of actions (i.e.,

behavior) and mental activities (e.g., motivation) performed

by experts contributing to the online collaborative platforms

under consideration (i.e., GH and SO).

315

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I
OVERVIEW OF CONCEPT CATEGORIES.

Concept Category Participants Quotes Categories
Experts’ skills 41 176 23
Contribution in GH 41 75 9
Contribution in SO 41 50 9
Challenges 20 23 5

1) Defining features of an expert. This concept category

identifies the essential skills and competencies of an

expert, as well as the characteristics and behavior that

an expert might possess.

2) Factors driving developers to contribute to GH. This

category offers insights into why developers decide to

contribute to GitHub and what factors facilitate their

activity on GitHub.

3) Factors driving experts to contribute to SO. This category

highlights the details on the developer motivation behind

their contribution to Stack Overflow.

4) Challenges faced by experts in contributing to online
collaborative platforms. This category addresses the chal-

lenges developers face when contributing to each plat-

form. Such challenges can be addressed by improving

current platforms to increase developer motivation and

engagement on these platforms. While all 41 participants

answered a “yes/no” question related to challenges, only

20 of them provided a rationale for their answer (as

reflected in Table I for “Challenges” category).

B. RQ1: How do developers define an expert?

Since we used both quantitative and qualitative analysis

methods on the survey data, we next present the results for

each of the method, respectively.

1) Quantitative Analysis: The software development ex-

perts were asked four closed-ended questions that asked them

to rank their expertise in various areas of software development

(programming language, frameworks & libraries, technologies

and databases). The respondents were given a list of options in

each of these modules and were asked to self-select their ex-

pertise level on a scale of 1 to 5 (with 1 being “no knowledge”

and 5 being an “expert”). Also, there was one closed-ended

question that asked the considerations given by the respondents

in rating their expertise in the areas of software development.

The respondents were given five options and were also given a

freedom to respond outside of these choices. These questions

aimed at uncovering whether the respondents would consider

their professional experience, their depth of knowledge, the

size of the projects for measuring their performance against

other developers. The respondents could choose more than one

option on this question.

The first question probed on expertise in programming

languages. Out of all the programming languages, JavaScript

turned out to be most popular among respondents and more

than 70% have self-identified themselves as expert (level 5) or

proficient (level 4). This was followed by SQL (50% combined

for both level 5 and level 4), C/C++ (49%), and then Python

(44%). It was somewhat surprising to see C/C++ to be towards

Fig. 2. Expertise determinants.

the top of this table. It could be also possible that this was a

popular language a few years ago and given that about 90%

of our respondents are above 30 years, it is likely that these

respondents might have previously acquired expertise in these

languages [45].

The second question pertained to expertise in frameworks

and libraries. Surprisingly, the response rate was low and also,

they have mainly marked as beginner (level 2) or intermediate

(level 3). When the responses for level 4 (proficient) and level

5 (expert) were combined, we found that about 29% of the

respondents have stated they are experts in React (Facebook)

and NodeJS.

The third question was about expertise in technologies. The

response was even lower here. Only 2 respondents noted that

they were experts in blockchain. Thereafter, about 6 respon-

dents have noted that they are proficient in IoT. Moreover, 2 of

the 41 respondents claimed that they were proficient in deep

learning, 4 claimed proficiency in machine learning and 3 in

computer vision. This is indeed a surprising result, especially

given that ML, deep learning and computer vision have been

recently gaining a momentum by becoming the hot trend in

expertise demand.

The fourth question was on database expertise. It was

observed that about 29% of our respondents have claimed

expertise in PostgreSQL, followed by 22% claiming expertise

in MySQL and SQLite, each.

The last question asked the respondents to answer the

factors they considered to be important to them when they

were answering the above questions about expertise. Depth

of knowledge (as supported by 26% of the responses) is the

top factor that developers believe to influence their answers

to the above four questions on expertise. The other factors

influencing their opinions are: breadth of general programming

(22%), professional experience (21%), performance compared

to others (15%) and project size (14%). Figure 2 presents the

overall summary of these results.

2) Qualitative Analysis: We now probe the developers

themselves to find the necessary and sufficient conditions that

define an “expert”. More specifically, the aim is to better

understand if knowledge and experience alone are sufficient

or if a requisite amount of soft skills are needed for a

software developer to become an expert. Moreover, the order

316

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

of importance of these three factors was further investigated

to understand if there is any normative difference between the

technical and social skills.

Technical skills (number of total participants (P): 21; num-

ber of total quotes (Q): 44 as shown in Table II), broad

knowledge (P:7; Q:8) and domain knowledge (P:2; Q:2) are

perceived to be the features that characterize expertise. On

the other hand, experience could be captured by features

such as planning & organization (P:9; Q:11), experience (P:2;

Q:4), and vision (P:1; Q:1). Lastly, communication skills

(P:15; Q:15), analytical thinking (P:24; Q:26), behavior which

includes tenacity and perseverance (P:9; Q:17) are some of

the features that characterize soft skills of an expert. Effec-

tive and clear communication is a key skill for an expert

software developer and was emphasized by the respondents.

One respondent added the need for clarity and “clear com-

munication” (P3Q21P4, where P3Q21P4 is the “code” we

assign to each individual statement meaning Participant 3,

Question 21, Phrase 4), while another noted the need for

“soft communication skills” (P31Q21P4). The other key con-

sideration is analytical thinking, which is a soft skill that

could be honed with experience. Analytical thinking not only

requires an expert to “think beyond technology” (P11Q21P3),

but also requires that they think abstractly about complex

problems (P38Q21P2) and also have an ability of “. . . breaking

down complex problems into simpler problems” (P40Q21P1).

Behavior or attitude has been identified as another critical

factor in identifying an expert. Some of the features iden-

tified are, being stubborn (P5Q21P3), patience (P13Q21P3,

P27Q21P3, P38Q21P4), tenacity (P13Q21P4, P27Q21P4), cu-

riosity (P27Q21P3) and “being empathetic about the needs of

other people” (P41Q21P1). Furthermore, based on the detailed

responses, Table II reports the features, emerged categories

and their response rate (i.e., number of participants and total

number of quotes) for each of these three factors.

Moreover, the survey asked respondents to list the important

factors in an order of importance. It is noted that even in that

ordering mostly the soft skills appeared quite prominently in

the beginning of a response, i.e., they were more important

features of an expert, as per the respondents. Furthermore,

from Table II, it is evident that the most important skills that

a software development expert ought to possess are perceived

to be soft skills, skills that are both necessary and sufficient

conditions to become an expert.

Within this same broad area, the respondents were asked

about the ways they monitor their own activities on a regular

basis (using software metrics or other statistics) and the

specific mechanism that they use to measure their software

development activities. The majority of the respondents (61%)

have noted that they do not monitor their activities and only

34% have responded affirmatively on this question. Three main

features that emerged from this category are self tracking (P:3;

Q:3), testing (P:7; Q:6), online collaborative tools (P:4; Q:5),

time tracking tools (P:3; Q:3), and dashboards (P:5; Q:7).

In summary, the results for this research question indicate

that:

TABLE II
FEATURES OF SOFTWARE DEVELOPER EXPERTISE.

Expertise Participants Quotes
Technical 21 44
Domain knowledge 2 2
Broad knowledge 7 8
Total 30 54
Experience
Experience 2 4
Critical thinking 3 3
Vision 1 1
Requirements 6 7
Teamwork 3 3
Teaching skills 2 2
Total 17 20
Soft Skills
Planning & organization 9 11
Analytical thinking 24 26
Creativity 3 3
Understanding 4 4
Behavior 9 17
Communication skills 15 15
Searching & seeking help 2 2
Total 66 78
Monitoring Skills
Self tracking 3 3
Dashboards 5 7
Testing tools 5 6
Online tools 4 5
Time tracking tools 3 3
Total 20 24

• JavaScript is perceived to be the leading programming

language within a software development expertise, in line

with the findings of Georgiou et al. [46];

• Surprisingly, the expertise diversification is lower than

what one would expect;

• Knowledge (48%, calculated as the sum of depth of

knowledge (26%) and breadth of general programming

(22%)) and experience (50%) are considered to be the key

“expert” characteristics. This finding is in line with the

high-level concept (relationships) of the expertise theory

by Baltes and Diehl [2].

Answer to RQ1: Soft skills together with adequate knowl-

edge and experience are the key characteristics that make

a software developer an expert. In other words, soft skills

are as important as knowledge and experience for software

developers to have and develop to be considered an expert

in the field.

C. RQ2: What factors drive developers to contribute to GH?

GitHub allows developers to contribute to projects in multi-

ple ways: submitting a bug report, a pull request, engaging

in the discussion on project’s features, etc. This research

question aims to understand how developers participate in

projects (private vs. public contributions), as well as what

motivates developers to contribute to GitHub. In other words,

this question seeks to provide insights into the possible drivers

behind developers’ contributions to GitHub.

To start with, our closed-ended question enquired how our

respondents used GH, i.e., either contributing to public or

private projects. The majority of respondents (28 out of 41

317

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Contribution visibility on GitHub.

or 68% of the participants) noted that they use it for both

private and public projects; while 29.7% contributed only to

public projects, and only 2.4% used GitHub for hosting private

projects (as shown in Figure 3).

Upon establishing how developers use GH, we identify the

drivers that motivate developers to contribute on GitHub (Ta-

ble III). We classified the drivers into: (1) personal drivers and

(2) professional drivers. The personal drivers included con-

tributing for hobby/fun, catering to self needs, and providing

inputs due to altruistic tendencies of developers. On the other

hand, the professional drivers were more related to job-related

contributions to GitHub, including organizational culture, job,

expertise and contributions to open source community.

We observe that experts contribute to GitHub more due

to personal rather than professional motivation. Among the

personal drivers, self needs is determined to be the key driver

behind developers’ contributions to GitHub. And, most of the

participants mention that they started contributing because they

were trying to solve a problem or a challenge they were

going to resolve; some responses on contribution included,

“if there’s a bug I ran into” (P1Q25P2), “contribute bug

fixes to software I use” (P3Q25P2), “I need to fix something

broken that’s blocking me” (P10Q25P2) and “I scratch my own

itches” (P22Q25P1). Self needs, however, is not a prime driver

for contribution to Stack Overflow, because of fundamental

difference between the two collaborative platforms, GitHub

allows for active participation, while Stack Overflow is more

passive contribution based on specific questions and answers.

The other important personal drivers that motivate develop-

ers to contribute to GitHub, include, hobby/fun and helping.

Some of the quotes of the former include, “. . . some of it

is hobby though” (P4Q25P2) and “personal interest, if I

spend my time for free, I want to enjoy it” (P11Q25P1).

And, on helping others, the responses were as follows: “I

contribute to new projects I think would be useful to others”

(P6Q25P2), “I contribute because I care about what’s being

made” (P10Q25P1), while another developer noted that “they

look like they might be useful” (P18Q25P1).

On the other hand, among the professional drivers we found

that “expertise” is the most critical driver. One developer

mentions that “mostly contribute to libraries used in work-

TABLE III
CONTRIBUTION TO GITHUB.

Personal Drivers Participants Quotes
Hobby/fun 7 8
Self needs 27 34
Helping 5 5
Total 39 47
Professional Drivers
Organizational culture 1 2
Job 1 1
Expertise 10 10
Open source community 1 1
Total 13 14
Challenges
Issue complexity 6 6
Lack of time 8 8
Total 14 14

related projects” (P36Q25P2) as a response about their nature

of contribution in GitHub. Others contribute because it is

their job (P19Q25P1, P4Q25P1) or to rectify existing bugs

(P34Q25P3, P32Q25P1, P10Q25P3) or it is compatible with

their skills (P7Q25P1). The other professional drivers include

organizational culture (P7Q25P4, P7Q25P3) and experts work-

ing on B2B solutions; for example one respondent noted,

“I work on B2B solutions or dev oriented solutions, so the

core of these solutions can be open-sourced so other devs can

contribute to it.” (P2Q25P2).

Answer to RQ2: Majority of experts participate in both

hosting private projects, as well as contributing to public

projects. Our findings show that developers believe that

personal drivers are more critical than professional factors

in motivating them to contribute to GitHub. Among the

personal drivers, developers are mainly driven by self

needs when contributing to GitHub.

D. RQ3: What factors drive developers to contribute to SO?

Stack Overflow, an online Q&A community for developers,

allows software developers to freely ask and answer questions

on any aspect of coding and hence, share their knowledge

and advance their careers. Moreover, Stack Overflow also

helps programmers and software developers by providing a

platform to discuss technical problems with others within the

software development community. The search functionality

also enables others with similar coding problems to benefit

from the posted solutions. Participants within this community

usually participate for three specific reasons, i.e., participation

trends: (i) view discussions to get help, (ii) post questions

on a particular problem to seek help and (iii) offer answers

and participate in their discussions. This research question

explores developers’ participation trends in Stack Overflow

and then investigates the factors that motivate developers

to contribute to Stack Overflow. In summary, this research

question aims at understanding the possible drivers behind

developers’ contributions in Stack Overflow.

We start with a closed-ended question to understand the

participation trends within Stack Overflow. The majority of

respondents (37 out of 41 or 90%) noted that they use SO for

318

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Purpose of using Stack Overflow.

viewing discussions to get help; while 80% (33 out of the 41)

of the respondents said that they post questions on a particular

problem to seek help; and, 85% (35 out of 41) of respondents

noted that they also participate in answer discussions. Figure 4

presents these results.

We found that unlike for GitHub results (RQ2), skills &

expertise are the key drivers behind contribution in Stack

Overflow (Table IV). The respondents mention that they

contribute only in areas that they are confident in and which

they believe they are qualified. More specifically, professional
factors are the primary drivers behind contribution in Stack

Overflow, while the personal drivers seem to take the back

seat. Moreover, an “expert” bias can be observed, especially

when it comes to contributing via posting questions as one

respondent mentions that “. . . the SO answerer community can

be quite cruel to askers; this has made me less inclined to par-

ticipate recently” (P25Q25P4). And another respondent noted

“I participate on discussion I can contribute. I avoid discussion

in which I can’t” (P37Q26P1). This is in stark contrast with

participation in GitHub, and this may be because a certain level

of expertise is expected by the SO community while answering

or asking questions, whereas GitHub community is more open

contributions from a greater community, i.e., any developer is

free to contribute and the project owners can either accept or

decline a contribution (e.g., a pull request).

Notwithstanding the “expert bias” in Stack Overflow, it

is ironic to note that some of the experts who responded

report that they do not participate in Stack Overflow anymore

because of lack of interesting questions (P10Q26P1) and that

the reward system is skewed towards easier questions, as noted

by one expert, “Questions that I can answer, particularly if

technically challenging. Unfortunately SO rewards contribut-

ing to easy topics over hard.” (P34Q26P1).

There is however, one interesting case for using Stack Over-

flow for the purpose of documenting expertise (or knowledge

base) of a software developer, as one response highlights:

“. . . due to time constraints: I recently use Stack Overflow

TABLE IV
CONTRIBUTION TO STACK OVERFLOW.

Personal Drivers Participants Quotes
Helping 3 3
Hobby/fun 5 5
Self-learning 3 3
Own needs 6 6
Total 17 17
Professional Drivers
Skills & expertise 19 20
Better answer 3 3
Alternative solutions 1 1
Total 23 24
Challenges
Rewarding system 1 1
Tagging system 7 8
Total 8 9

primarily as a way of documenting my hard-won findings on a

topic (e.g., posting and answering a question, then linking to it

in the code), but am happy to get other answers and opinions

added” (P16Q26P1). Another respondent discusses this further

saying that it “. . . needs to be a niche area where there isn’t

much expert competition. I can’t compete with ppl writing a

comprehensive answer. . . ” (P20Q26P1).

Some of the similarities between the factors driving contri-

butions across both platforms are related to participants being

motivated by “doing it for fun” (for GH, P:7; Q:8; while in

SO, P:5; Q:5) and out of personal interest rather than as a

chore; some responses include “personal interest. If I spend

time for free, I want to enjoy it” (P11Q25P1), “has to be

interesting” (P37Q25P1), and personal interest (P39Q25P2,

P21Q26P2, P9Q26P1).

Answer to RQ3: Contribution to SO is motivated more

by professional drivers (i.e., skills and expertise). There

seems to be a bias towards experts, yet developers do not

seem to be keen to participate on Stack Overflow as they

believe the questions are either no longer interesting or

they are too easy.

E. RQ4: What challenges do developers face when contribut-
ing to each platform?

This research question identifies key challenges developers

face when contributing to Stack Overflow or GitHub. In a way,

this question provides insights into why developers do not

contribute to the platform or contribute in a limited capacity.

We identified two categories of challenges for GitHub: one

related to issue complexity and one due to lack of time. While

for Stack Overflow, challenges are related to its tagging system
and rewarding system.

For our open-ended question on why developers do not

contribute to GitHub, majority of the respondents mention lack

of time as the reason, including “ I do not contribute more to

other people’s projects due to time constraints” (P16Q25P3),

“ I rarely contribute because I don’t have enough spare time”

(P23Q25P1). It seems that developers are already contributing

to their open source projects in GH and simply have no time

to contribute to other projects as explained by P13Q25P2: “I

319

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

have my own projects to work on on the side, so I don’t

really have the time or interest to contribute to other open

source projects”. Keeping GitHub projects small enough so

others can understand and build them, making issues small and

interesting are our key suggestions for GitHub project owners

for encouraging better contributions and engaging more con-

tributors on the projects. Another reason of why developers

may decide to contribute or not to the project is the project’s

or issue’s complexity. One developer (P8Q25P1) mentions

that “it mostly depends on the complexity of the project”,

while another respondent says that “when I try to contribute,

I generally choose small intriguing issues” (P23Q25P2). We

also observed that developers’ contributions are driven based

on whether they can build the project locally on their machines

as supported by the following quote “whether I can build the

project locally on my Macbook” (P26Q25P3).

Based on the responses we found that developers prefer to

contribute to GH rather than participate on SO. Some of the

issues cited were related to the difficulty finding interesting

questions to answer: “I mostly don’t participate in Stack

Overflow any more. It’s hard to find interesting questions to

answer, and my time to create answers has gone down, too”

(P10Q26P1). Another respondent (P34Q26P1) pointed out that

SO is rewarding answers to easy topics rather than more

challenging ones: “Unfortunately, SO rewards contributing to

easy topics over hard”. While some developers felt that SO

platform is less relevant to more specialized topics and thus

they do not feel it’s rewarding to contribute to the discussions,

“I do a lot more than I write on SO. SO is a waste of time

outside specialized niches” (P33Q29P1).

Furthermore, about 50% of the participants mentioned that

their poor contribution to SO is related to the current tagging

system. Since tags are automatically determined and assigned

by the gamification mechanisms within SO, participants found

that their “collected” tags (tags assigned to a developer’s

profile) may no longer reflect their current expertise or in-

terests. This response was consistent and reflects the fact that

individual interests and expertise are dynamic in nature and

they do evolve over time. As one respondent notes that “my

SO profile [is my] expertise during PhD” (P34Q29P2) and

thus does not reflect his/her current skills.

Answer to RQ4: In GitHub, developers mainly face

technical challenges such as project/issue complexity, as

well as personal challenges such as lack of time. While

on Stack Overflow, developers’ lack of contribution and

participation is perceived to be related to its tagging sys-

tem (mismatch of SO tags with the developers’ expertise)

and outdated/demotivating rewarding system.

V. DISCUSSION

We now discuss several research directions that have

emerged from this work, as well as implications that can help

researchers to plan their next research projects and developers

to make use of our findings.

Theory of software developer expertise. Baltes and Diehl [2]

have recently proposed a conceptual theory of software devel-

opment expertise. While their theory is grounded in the online

survey responses of 355 software developers, the targeted

population was focused primarily on Java experts. Our study

further investigates the concepts of “expert” and “expertise”

within the field of software development and discovers ad-

ditional findings on why developers may contribute to some

social platform but not the other. While our study results are

grounded in the survey responses of fewer developers, we

targeted a different population of developers who are active on

both platforms in order to better understand how they build and

maintain their expertise across multiple platforms. Our next

steps would be to extend the theory developed by Baltes and

Diehl by considering broader scope of “expertise” definition,

in particular we are interested in building a theory of cross-

platform expertise that focuses on the specific properties and

characteristics of the experts who are contributing to multiple

platforms. We are interested in investigating what skills and

behaviour are supportive of developers’ success in becoming

better experts.

Knowledge transfer across multiple platforms. Our findings

demonstrate that developers do share their knowledge on

multiple platforms. One of the interesting direction would

be to conduct studies to further understand what technical

knowledge and skills are more transferable across different

platforms. Such insights can help developers better plan how

they contribute to different platforms. If some platforms are

more favourable for specific knowledge transfer, developers

can, for example, increase their participation on that platform.

Implications for developers. The insights from this work

can help developers to better understand the platforms and

increase their awareness on some of the critical aspects that

may discourage their expertise gaining (e.g., Stack Overflow’s

tagging system and reward mechanisms) or, on the contrary,

further support their learning and expertise development (e.g.,

contributing to open source community in GH or sharing

knowledge on SO). Furthermore, developers often monitor

their activities and progress. However, modern tools are too

complex and create an informational overload on software

developers. Thus, in order to reduce burden of information

overload it is critical to offer personalized dashboards [47],

[48], [49], as some participants have mentioned, that improves

developer situational awareness [50], [51] and support self-

monitoring activities.

Suggestions for Stack Overflow decision makers. The results

of our study highlight the challenges developers face when

participating on Stack Overflow. More specifically, we found

that developers feel that current SO tagging system needs

major upgrade as tags assigned to the developers’ profiles

do not accurately reflect their current level of expertise. We

recommend Stack Overflow as a platform to add a tag updating

mechanism so developers can decide which tags are still rele-

vant to their expertise. Additionally, in the interest of nurturing

future talent Stack Overflow needs to be more welcoming to

new and novice contributors having their moderators be aware

320

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

of and better manage subtle and overt “bullying” that these

developers might be facing.

Suggestions for GitHub decision makers. Our results also

highlight the challenges developers face when participating

on GitHub. We observed that developers face project and/or

issue complexity on GitHub. Moreover, some developers lack

adequate computing resources when accessing and working on

GitHub projects. Our recommendation to GitHub would be to

consider integrating cloud computing resources to alleviate this

challenge.

Implications for researchers. Some of the findings of our

work can form the basis for further comprehensive multi-

layered research by expanding the number of platforms and

social media sources to draw a complete picture of on “expert”

and “expertise”. One of the observations from our study is that

each developer brings his/her own opinion on the definition

of the expertise. And therefore, the targeted population of the

developers who participate in such expertise-related surveys

should be diverse and inclusive. In addition to conducting

surveys on the topic of expertise, we believe more robust qual-

itative research methods such as interviews with developers

would be beneficial for collecting in-depth information about

developers’ opinions, experiences and behaviour.

VI. THREATS AND LIMITATIONS

Our work is subject to several threats and limitations. One

of the limitation is related to our findings from the qualitative

study. While we carefully designed our survey questions to

ensure their clarity, as with any exploratory study, there is

a chance we may have introduced the researcher bias when

applying an open coding approach. We tried to minimize this

bias by coding the 20% of the card sorts extracted from each

question independently, measuring the coder reliability on the

next 20% and reporting these values in the paper.

As with any survey method, to control for sampling bias

can be challenging. We targeted users of Stack Overflow

and GitHub who actively participate on both platforms by

contributing to Stack Overflow discussions and being active

developers and contributors on various GitHub projects. While

our findings might not generalize outside of the selected

population of users, we believe that developers who contribute

to both platforms may share and experience similar behaviour

and patterns.

We realize that our definition of “active users” is somewhat

ambiguous. While we obtained developer emails from the

2013 GHTorrent dataset (due to the GDPR being adopted in

2016, email addresses are no longer published), our “active

users” are determined to be active on these platforms based on

their activity and contributions as of December 2019. However,

our data certainly lacks active users who have joined SO and

GH after 2013.

We are also aware that our randomly selected sample of

active users on SO and GH lacks gender diversity. While

challenging, inclusion and equity are becoming more critical

parameters when recruiting participants for qualitative studies

like this one. The dataset does not provide gender information

on users (which can be classified as personal information and

thus violate privacy protection laws such as GDPR), while we

could have inferred the gender by applying gender detection

techniques [52], [53] in order to strive for a gender balanced

sample. Our next steps would be to include such techniques

and approaches for targeting a more diverse population of

participants.

However, further research studies are needed to be able to

provide greater insight into developer contributions to various

online social and collaborative platforms, beyond Stack Overl-

fow and GitHub, to be able to develop an empirical body of

knowledge on this topic. To encourage replication of our study,

we documented our survey questions and open coding results

in a technical report which together with anonymized survey

responses is made available online [15].

VII. CONCLUSION

In this paper, we presented a qualitative study of software

developer expertise with an attempt to understand the reasons

why or why not developers contribute to GitHub and Stack

Overflow. Also, we tried to understand the ways in which

experts monitor their performance and the challenges they

face when contributing to either collaborative platform. To

understand these aspects better, we designed a survey with

both open-ended and closed-ended questions. The survey

was sent to a sample of experts that were active on both

Stack Overflow and GitHub. We conducted an open coding

to the 324 individual quotes obtained from the open-ended

questions. As a result of the open coding, 46 main categories

together with four concept categories have emerged. Through

our research questions, we were able to gain insights into

developers’ opinions and perception on key characteristics of

an expert, factors that drive developers to contribute to GitHub

and Stack Overflow, as well as the challenges developers face

in the process.

Our findings suggest that JavaScript and C/C++ are the

leading programming language skills and surprisingly the

extent of skill diversification among experts was lower than

expected. Moreover, a software development expert would

have both technical and soft skills. Furthermore, users who

contribute to both platforms seem to favour GitHub more

often as it’s less biased towards experts. Also, developers

use GitHub for personal reasons, while Stack Overflow is

more catered to professional purposes. Lastly, we found that

developers on GitHub face technical challenges such as project

complexity, as well as personal challenges such as lack of time.

On the other hand, developers on Stack Overflow faced a more

negative reinforcements demotivating their contributions.

ACKNOWLEDGEMENT

We acknowledge the support of the Natural Sciences and

Engineering Research Council of Canada (NSERC). We thank

all developers who participated in our study for their time,

input, and opinion.

321

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer, “The role of delib-
erate practice in the acquisition of expert performance.” Psychological
Review, vol. 100, pp. 363–406, 1993.

[2] S. Baltes and S. Diehl, “Towards a theory of software development
expertise,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 187–200.

[3] R. Robbes and D. Röthlisberger, “Using developer interaction data
to compare expertise metrics,” in Proc. of Working Conf. on Mining
Software Repositories, 2013, pp. 297–300.

[4] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: The contributor’s perspective,”
in Proc. of Int. Conf. on Soft. Engineering, 2016, pp. 285–296.

[5] Y. Xiong, Z. Meng, B. Shen, and W. Yin, “Mining developer behavior
across github and stackoverflow,” in Conference: The 29th International
Conference on Software Engineering and Knowledge Engineering.,
2017.

[6] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the 36th
International Conference on Software Engineering. New York, NY,
USA: Association for Computing Machinery, 2014, p. 356–366.

[7] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github:
Transparency and collaboration in an open software repository,” in
Conference: CSCW ’12 Computer Supported Cooperative Work, Seattle,
WA, USA, February 11-15, 2012. ACM, 2012.

[8] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[9] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stack Overflow and GitHub:
Associations between software development and crowdsourced knowl-
edge,” in 2013 International Conference on Social Computing. IEEE,
2013, pp. 188–195.

[10] J. Liao, G. Yang, D. Kavaler, V. Filkov, and P. Devanbu, “Status, identity,
and language: A study of issue discussions in github,” PloS one, vol. 14,
no. 6, p. e0215059, 2019.

[11] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering,” in Proceedings of the 36th Inter-
national Conference on Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2014, p. 12–23.

[12] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality:
How developers see it,” in 2016 IEEE/ACM 38th International Confer-
ence on Software Engineering (ICSE), 2016, pp. 1028–1038.

[13] D. Posnett, E. Warburg, P. T. Devanbu, and V. Filkov, “Mining stack
exchange: Expertise is evident from earliest interactions,” in Social
Informatics, 2012.

[14] D. Movshovitz-Attias, Y. Movshovitz-Attias, P. Steenkiste, and
C. Faloutsos, “Analysis of the reputation system and user contributions
on a question answering website: Stackoverflow,” in Proceedings of
the 2013 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining. New York, NY, USA: Association for
Computing Machinery, 2013, p. 886–893.

[15] S. Vadlamani and O. Baysal, “Software developer expertise:
replication package,” https://github.com/Sri-Vadlamani/
Software-Developer-Expertise, 2020.

[16] G. Bergernsen, D. Sjoberg, and T. Dyba, “Construction and validation
of an instrument for measuring programming skill,” IEEE Transactions
on Software Engineering, vol. 40, no. 12, pp. 1163–1184, 2014.

[17] J. E. Montandon, L. L. Silva, and M. T. Valente, “Identifying experts in
software libraries and frameworks among github users,” in Proceedings
of the 16th International Conference on Mining Software Repositories.
IEEE Press, 2019, pp. 276–287.

[18] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Softw. Engg., vol. 19, no. 3, pp. 619–654, Jun. 2014.

[19] X. Yang, D. Lo, X. Xia, Z. Wan, and J. Sun, “What security questions
do developers ask? a large-scale study of stack overflow posts,” Journal
of Computer Science and Technology, vol. 31, pp. 910–924, 2016.

[20] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Softw. Engg., vol. 21,
no. 3, pp. 1192–1223, Jun. 2016.

[21] J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang, “Which non-
functional requirements do developers focus on? an empirical study on
stack overflow using topic analysis,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, 2015, pp. 446–449.

[22] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer inter-
actions in stackoverflow,” in Proc. of the 28th Annual ACM Symposium
on Applied Computing, 2013, pp. 1019–1024.

[23] H. Alharthi, D. Outioua, and O. Baysal, “Predicting Questions’ Scores
on Stack Overflow,” in Int. Workshop on Crowd Sourcing in Software
Engineering, 2016, pp. 1–7.

[24] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github:
Transparency and collaboration in an open software repository,” in Proc.
of Conf. on Computer Supported Cooperative Work, 2012, pp. 1277–
1286.

[25] M. M. Rahman and C. K. Roy, “An insight into the pull requests of
github,” in Proc. of Working Conference on Mining Software Reposito-
ries, 2014, pp. 364–367.

[26] B. Ray, D. Posnett, P. Devanbu, and V. Filkov, “A large-scale study of
programming languages and code quality in github,” Commun. ACM,
vol. 60, no. 10, pp. 91–100, Sep. 2017.

[27] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why
and how developers fork what from whom in github,” Empirical Softw.
Engg., vol. 22, no. 1, pp. 547–578, Feb. 2017.

[28] J. Sheoran, K. Blincoe, E. Kalliamvakou, D. Damian, and J. Ell,
“Understanding ”watchers” on github,” in Proc. of Working Conference
on Mining Software Repositories, 2014, pp. 336–339.

[29] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proc. of Int. Conf. on
Software Engineering, 2014, pp. 345–355.

[30] F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang, “Network structure of
social coding in github,” in European Conf. on Software Maintenance
and Reengineering, 2013, pp. 323–326.

[31] B. Vasilescu, A. Serebrenik, and V. Filkov, “A Data Set for Social
Diversity Studies of GitHub Teams,” in Proc. of Working Conference
on Mining Software Repositories, 2015, pp. 514–517.

[32] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and GitHub:
Associations between Software Development and Crowdsourced Knowl-
edge,” in 2013 Int. Conference on Social Computing, 2013, pp. 188–195.

[33] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Softw., vol. 30, no. 1, pp. 52–66, Jan. 2013.

[34] C. Chen and Z. Xing, “Towards correlating search on google and
asking on stack overflow,” IEEE 40th Annual Computer Software and
Applications Conference, 2016.

[35] G. Silvestri, J. Yang, A. Bozzon, and A. Tagarelli, “Linking accounts
across social networks: the case of stackoverflow, github and twitter.” in
KDWeb, 2015, pp. 41–52.

[36] J. Yan, H. Sun, X. Wang, X. Liu, and X. Song, “Profiling developer
expertise across software communities with heterogeneous information
network analysis,” in Internetware ’18, 2018.

[37] X. Yu, Y. He, Y. Fu, Y. Xin, J. Du, and W. Ni, “Cross-domain
developer recommendation algorithm based on feature matching,” in
ChineseCSCW, 2019.

[38] R. Venkataramani, A. Gupta, A. Asadullah, B. Muddu, and V. Bhat,
“Discovery of technical expertise from open source code repositories,”
in Proceedings of the 22nd International Conference on World Wide
Web, 2013, pp. 97–98.

[39] E. Constantinou and G. M. Kapitsaki, “Identifying developers’ expertise
in social coding platforms,” in 2016 42th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 2016,
pp. 63–67.

[40] W. Huang, W. Mo, B. Shen, Y. Yang, and N. Li, “Cpdscorer: Modeling
and evaluating developer programming ability across software commu-
nities.” in SEKE, 2016, pp. 87–92.

[41] X. Zhang, T. Wang, G. Yin, C. Yang, Y. Yu, and H. Wang, “Devrec:
a developer recommendation system for open source repositories,” in
International Conference on Software Reuse. Springer, 2017, pp. 3–
11.

[42] Qualtrics. Qualtrics software. [Online]. Available: https://www.qualtrics.
com

[43] M. Miles and A. Huberman, Qualitative Data Analysis: An Expanded
Sourcebook. SAGE Publications, 1994.

[44] “Recal2: Reliability for 2 coders,” December 2019. [Online]. Available:
http://dfreelon.org/utils/recalfront/recal2/

322

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

[45] P. Sumanth and K. Rajeshwari, “Discovering top experts for trending
domains on stack overflow,” in Discovering Top Experts for Trending
Domains on Stack Overflow, vol. 143. Elsevier BV, 2018, pp. 333–340.

[46] K. Georgiou, M. Papoutsoglou, A. Vakali, and L. Angelis, “Software
technologies skills: A graph-based study to capture their associations
and dynamics,” in BCI’19, 2019.

[47] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2006,
p. 1–11.

[48] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, “Fastdash:
A visual dashboard for fostering awareness in software teams,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2007, p. 1313–1322.

[49] O. Kononenko, O. Baysal, R. Holmes, and M. Godfrey, “Dashboards:

Enhancing developer situational awareness,” in Proceedings of the ICSE
2014, May 31 - June 7, 2014, Hyderabad, India. ACM, 2014.

[50] C. Treude and M.-A. Storey, “Awareness 2.0: Staying aware of projects,
developers and tasks using dashboards and feeds,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1, 2010, p. 365–374.

[51] O. Baysal, R. Holmes, and M. Godfrey, “Situational awareness person-
alizing issue tracking systems,” in Proceedings of the 2013 International
Conference on Software Engineering, 2013, p. 1185–1188.

[52] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation
and online participation: A quantitative study of stackoverflow,” in 2012
International Conference on Social Informatics, 2012, pp. 332–338.

[53] B. Lin and A. Serebrenik, “Recognizing gender of stack overflow
users,” in 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), 2016, pp. 425–429.

323

Authorized licensed use limited to: East China Normal University. Downloaded on May 09,2022 at 08:17:36 UTC from IEEE Xplore. Restrictions apply.

