
A First Look at Good First Issues on GitHub
Xin Tan

Department of Computer Science and
Technology, EECS, Peking University
Key Laboratory of High Confidence
Software Technologies, Ministry of

Education
Beijing, China

tanxin16@pku.edu.cn

Minghui Zhou∗
Department of Computer Science and
Technology, EECS, Peking University
Key Laboratory of High Confidence
Software Technologies, Ministry of

Education
Beijing, China

zhmh@pku.edu.cn

Zeyu Sun
Department of Computer Science and
Technology, EECS, Peking University
Key Laboratory of High Confidence
Software Technologies, Ministry of

Education
Beijing, China

szy_@pku.edu.cn

ABSTRACT
Keeping a good influx of newcomers is critical for open source
software projects’ survival, while newcomers face many barriers to
contributing to a project for the first time. To support newcomers
onboarding, GitHub encourages projects to apply labels such as
good first issue (GFI) to tag issues suitable for newcomers. However,
many newcomers still fail to contribute even after many attempts,
which not only reduces the enthusiasm of newcomers to contribute
but makes the efforts of project members in vain. To better support
the onboarding of newcomers, this paper reports a preliminary
study on this mechanism from its application status, effect, prob-
lems, and best practices. By analyzing 9,368 GFIs from 816 popular
GitHub projects and conducting email surveys with newcomers and
project members, we obtain the following results. We find that more
and more projects are applying this mechanism in the past decade,
especially the popular projects. Compared to common issues, GFIs
usually need more days to be solved. While some newcomers really
join the projects through GFIs, almost half of GFIs are not solved by
newcomers. We also discover a series of problems covering mecha-
nism (e.g., inappropriate GFIs), project (e.g., insufficient GFIs) and
newcomer (e.g., uneven skills) that makes this mechanism inef-
fective. We discover the practices that may address the problems,
including identifying GFIs that have informative description and
available support, and require limited scope and skill, etc. New-
comer onboarding is an important but challenging question in open
source projects and our work enables a better understanding of
GFI mechanism and its problems, as well as highlights ways in
improving them.

CCS CONCEPTS
• Software and its engineering → Collaboration in software de-
velopment; Programming teams.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409746

KEYWORDS
Newcomers, Onborading, Good first issues, Open Source software

ACM Reference Format:
Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A First Look at Good First
Issues on GitHub. In Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3368089.3409746

1 INTRODUCTION
Over the past decades, Open Source Software (OSS) has risen to
great prominence due to its unique advantages, e.g., low cost and
high quality [38]. Different from traditional software development,
OSS development generally depends on contributions from volun-
teers from all over the world [5]. For these projects, keeping a good
influx of new developers is critical for their survival, long-term
success, and continuity [1]. Moreover, new developers are a source
of innovation for new ideas and work procedures that the group
needs [17]. On the other hand, newcomers also eagerly participate
in OSS projects, driven by the factors such as extrinsic benefits (e.g.,
better jobs) and intrinsic motivations [8]. However, successful on-
boarding in OSS projects is difficult, especially for developers who
are new to open source [19, 41]. Many projects have multiple years
of development history, and therefore their scale and complexity
may be too complicated for newcomers to master, let alone modify-
ing the code. Even if it is a new project, if the experiences of the
newcomers do not match, it is not easy to contribute successfully.
These obstacles led many potential developers to fail to make their
first contribution. After multiple attempts, they may gradually lose
motivation, or even give up on contributing, which is a waste for
both projects and newcomers.

In order to make projects more beginner-friendly, various strate-
gies have been explored and attempted. For example, GitHub, as
the world’s largest community of developers [15], recommends
that projects’ maintainers add files such as README.md, CON-
TRIBUTING.md, etc., to make projects appeal to newcomers.1 These
strategies indeed can help newcomers to become more familiar
with the projects. However, finding beginner-friendly tasks is still
a formidable barrier for their onboarding [32]. A feasible way is
to suggest suitable tasks for newcomers, e.g., tasks that can be ac-
complished without in-depth knowledge of the project. This idea
is also applied in practice—GitHub encourages projects to tag the
issues that are suitable for newcomers with labels such as good

1https://help.github.com/en/github/building-a-strong-community

398

https://doi.org/10.1145/3368089.3409746
https://doi.org/10.1145/3368089.3409746
https://help.github.com/en/github/building-a-strong-community

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Xin Tan, Minghui Zhou, Zeyu Sun.

first issue.2 Although this mechanism has been applied for many
years, there are still many newcomers who spend a lot of time but
fail to solve such issues, see, e.g., scikit-learn: #115543. It wastes
the efforts of both newcomers and project members. Investigating
the practices of GFIs can help us truly understand the obstacles
that newcomers face when seeking tasks and the difficulties in
this guiding relationship, and therefore better support newcomers’
onboarding.

Previous studies related to newcomers onboarding examined
the motivations of people to become an OSS member, roadmaps
to becoming a core developer, or indicators of potential long-term
commitment [13, 14, 43]. Some others explored various barriers for
newcomers [23, 32]. However, few studies have been devoted to
understanding how exactly beginner-friendly tasks are identified
and what problems there are in resolving GFIs for newcomers.
In this paper, we investigate good first issues (GFIs) in GitHub.4
We start with understanding the application of this mechanism,
and then analyze its effect, reveal its problems and causes, and
eventually seek the good practices. In particular, the paper addresses
the following research questions:

RQ1: How common do projects report GFIs? We carefully select
816 popular GitHub projects and identify the GFIs in each project.
We analyze the use of this mechanism over time, the distribution of
GFIs in each project, and the relationship between its application
and project popularity. We find that GFIs are reported by more
and more projects, especially the popular projects. However, GFIs
account for a small proportion among the projects’ issues.

RQ2: How are GFIs solved? We answer this question from two
aspects: the resolution process of GFIs and the effect for helping
newcomers onboard. We utilize six metrics to compare the resolu-
tion process of GFIs with that of other issues, and manually analyze
200 GFIs to understand the participation of newcomers. We find
that GFIs usually need more days to be solved. Although some new-
comers contribute successfully through GFIs, there are still almost
half of the GFIs not solved by newcomers and those newcomers
who successfully solved GFIs are hard to retain.

RQ3: What factors and problems are related to the effectiveness of
GFIs? We establish four sets of metrics and fit a logistic regression
model to evaluate their correlation with whether a GFI is solved by
a newcomer. We find that several factors, e.g., project popularity,
significantly correlate to the effectiveness of GFIs. To complement
the above results, we conduct email surveys with the newcomers
and the project members to understand their problems and chal-
lenges. A thematic analysis on the responses reveals eight reasons
for failed contributions.

RQ4: How to identify appropriate GFIs? We conduct email surveys
with project members and summarize their practices on labelling
GFIs. We also compare the descriptions between the GFIs solved
by newcomers and the GFIs not solved by newcomers. Eventually,
we extract the key information in GFIs (one of criteria to identify
GFIs) that may help newcomers more likely onboard.

This paper makes the following contributions:

2https://help.github.com/en/github/building-a-strong-community/encouraging-
helpful-contributions-to-your-project-with-labels
3https://github.com/scikit-learn/scikit-learn/issues/11554
4In this paper, we refer all the issues intended for newcomers as GFIs.

• We make a comprehensive understanding of the mechanism
of GFIs from its application status, effect, problems, and good
practices.

• We obtain various reasons for unsuccessful first contribu-
tions, which can help us better understand the barriers facing
by newcomers and the difficulties in this guiding process.

• We discover the criteria to identify GFIs that may make GFIs
more likely to be solved by newcomers.

We organize the remainder of the paper as follows. Section 2
presents related work; Section 3 introduces our dataset. Section 4 to
Section 7 present methods and answers to each of the four research
questions. Section 8 discusses the implications of findings for prac-
titioners and researchers. Section 9 presents threats to validity and
Section 10 concludes the paper.

2 RELATEDWORK
We discuss the related work from two aspects: 1) motivations and
barriers for contributing to OSS projects; 2) theories and strate-
gies helping newcomers onboard. Developers participate in OSS
projects for a variety of motivations, which has been thoroughly
studied. Prior work has examined the motivations of core devel-
opers [2, 8, 29, 40] and of peripheral developers [18, 19]. A rather
comprehensive survey conducted by Von Krogh et al. reviewed
the research on developer motivations over ten years [37]. It sum-
marized that developers are generally motivated by intrinsic (i.e.,
ideology, altruism, kinship, and fun), internalized extrinsic (i.e.,
reputation, reciprocity, learning, and own-use), and extrinsic moti-
vations (i.e., career and pay). On the one hand, many newcomers
want to join OSS projects, and on the other hand, a continuous
influx of newcomers is essential for the survival, long-term suc-
cess, and continuity of OSS projects [1, 8]. However, newcomers
face many challenges in their initiative activities in OSS projects
due to lack of the necessary domain knowledge and programming
skills [19, 30]. Besides, some non-technical factors also affect new-
comers onboarding, e.g., communication [35]. Researchers found
that there are 58 barriers, grouped into six different categories:
cultural differences, newcomers’ characteristics, reception issues,
orientation, technical hurdles, and documentation problems [32].
A recent research conducted by Mendez [23] took a new perspec-
tive of barriers from tools and infrastructure and found that most
of these barriers are tied to newcomers’ barriers that have been
established in the literature.

Theories and strategies have been put forward to help newcom-
ers onboard. Zhou and Mockus [43] found that the probability for
newcomers to become long-term contributors is associated with
the capability they present through number of tasks, the effort they
devote into issue reports, and the amount of attention they receive
from the project. By investigating newcomers’ first interactions
on mailing lists, researchers found that receiving timely responses,
especially within 48 hours, was positively correlated with future
participation [13]. Besides, many studies aim to propose supportive
strategies for newcomers. Based on the interview and analysis of
the existing literature, Steinmacher et al. [34] propose guidelines
helping newcomers onboard including contribution process guide-
lines, social behavior guidelines, and technical guidelines. In order
to provide personalized technical support, some studies focus on

399

https://help.github.com/en/github/building-a-strong-community/encouraging-helpful-contributions-to-your-project-with-labels
https://help.github.com/en/github/building-a-strong-community/encouraging-helpful-contributions-to-your-project-with-labels
https://github.com/scikit-learn/scikit-learn/issues/11554

A First Look at Good First Issues on GitHub ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

recommending appropriate mentors for newcomers [26]. Task rec-
ommendation has also been found important for newcomers. By
conducting interviews with the newcomers and the experienced
members, researchers found that finding a task to start is difficult
for newcomers. To help newcomers find their tasks, they provided
a set of strategies, e.g., listing easy tasks by difficulty [33]. Although
this study noticed the importance of task recommendation for new-
comers, it did not take into account the fact that many projects
currently have been labelling suitable tasks (GFIs) for newcomers.
A recent study [4] investigated the relationship of newcomers’ sup-
portive strategies in GitHub with the level of project success and
found a strong positive relationship with task labelling for newcom-
ers. However, many problems still arise in practice concerning the
effect of GFIs, e.g., how exactly GFIs are identified and what prob-
lems exist. Different from earlier studies, we make a comprehensive
understanding of the mechanism of GFIs, which is necessary for
understanding newcomers’ barriers in finding tasks and the diffi-
culties in this guiding process, and further help newcomers to join
the OSS projects.

3 DATASET
We introduce how we construct our dataset, including the standard
we follow to select projects and the approach to identify GFIs.

3.1 Project Selection
We conduct this study based on GHTorrent database [10]. To ensure
query efficiency, GHTorrent can be accessed over Google Cloud
services, which provides an up to date import of the latest GHTor-
rent MySQL dump.5 Its lasted version is “2018-04-01” at the time of
data collection. We use this dataset as a source to select the most ap-
propriate projects for this study. According to GHTorrent, GitHub
hosted 83,624,114 OSS repositories (including forks) in April, 2018.
However, many are inactive, toy projects, or duplicates. In our
study, we are interested in state-of-the-art software systems that
have a relative large real-world user base, meaning that they may
have chance to attract newcomers’ attention. To retrieve a sensible
sample of projects from GitHub, we follow the established project
selection instructions [15, 24]. We focus on six programming lan-
guages with the largest number of GitHub repositories: JavaScript,
Python, Ruby, C/C++, Java, and PHP. We select the top-500 most
starred repositories (excluding forks to avoid including the same
project multiple times) for each of those languages at the moment
of analysis.

To safeguard the quality of the dataset, we excluded the follow-
ing repositories from the resulting collection of 3,000 repositories:
(a) the projects6 that do not report any issues or the number of
reported issues is small (< 50), (b) the projects that do not have
the files of “CONTRIBUTING.md” (a default community health
file7), which may indicate they are not willing to attract newcom-
ers, and (c) the projects that are not software units or are explicitly
labeled as unmaintained or are not in English. To apply the last
filter, we manually inspected the project descriptions and excluded

5http://ghtorrent.org/gcloud.html
6we use repository and project interchangeably in the paper.
7https://help.github.com/en/github/building-a-strong-community/creating-a-
default-community-health-file

240 projects (containing education, storage, and technology code
sample, etc.). The final dataset is composed of 816 (= 3000 - 443 -
1501 - 240) projects.

100

101

102

103

104

developers

#d
ev
el
op
er
s

101
102
103
104
105

commits

#c
om

m
its

103
103.5
104
104.5
105
105.5

stars

#s
ta
rs

100.5

101

101.5

102

age

#m
on
th
s

commits developers stars

#c
om
m
its

#d
ev
el
op
er
s

#s
ta
rs

#m
on
th
s

age

972 37
5.6K

58

Figure 1: Distribution of the number of commits, developers,
stars, and ages of the projects

Figure 1 shows violin plots with the distribution of the number of
commits, developers, stars, and age per project in logarithmic scale
(note the logarithmic scale of Y axis). The median values are indi-
cated inside the violin plots. It seems that the constructed dataset
typically includes large projects, both in number of commits and de-
velopers, and that the projects also more likely attract newcomers’
attention (number of stars) and have a relatively long history.

3.2 Identification of Good First Issues
GitHub gives projects’ members right to organize and prioritize
their work.8 They can apply labels to issues to signify priority, cat-
egory, or any other useful information. Although good first issue is
the default label that GitHub encourages projects to tag for issues
suitable for newcomers, many projects prefer to use other labels,
e.g., “beginner”, “easy”, “first timer only”, and some projects even
use multiple labels of this kind.9 Therefore, we consider two types
of labels as our study objects: labels indicating suitability for new-
comers (e.g., newbie); labels indicating simplicity of tasks (e.g., easy,
minor bug/feature, typo). We include the second type because easy
tasks are often considered suitable for newcomers [33].

In order to identify all the issues intended for newcomers, the
first two authors independently read and analyze the labels of all
the issues in the projects we collect. There are 1,471,541 issues with
7,924 different labels. Because in most cases, the labels indicating
issues intended for newcomers are obvious, two authors have the
same judgement on these labels. For few labels that we are not cer-
tain, such as “help wanted”, we decide to delete them to ensure the
quality of data (inter-coder reliability: 1-8/7,924=99.90%). We find
113 labels that are used to indicate issues suitable for newcomers.
Eventually, we obtain 9,368 GFIs including 9,110 closed GFIs.

Figure 2 presents the ratios of top 20 commonly used labels for
GFIs. Although these labels are various, many of them are similar
by nature. The label of GFI takes the largest proportion (14.2%) and
we use it to represent all the labels intended for newcomers.

4 RQ1: HOW COMMON DO PROJECTS
REPORT GFIS?

We aim to understand the application of the mechanism of GFIs in
the GitHub. All the analyses are conducted quantitatively.

8https://help.github.com/en/github/managing-your-work-on-github/labeling-
issues-and-pull-requests
9https://github.com/MunGell/awesome-for-beginners

400

http://ghtorrent.org/gcloud.html
https://help.github.com/en/github/building-a-strong-community/creating-a-default-community-health-file
https://help.github.com/en/github/building-a-strong-community/creating-a-default-community-health-file
https://help.github.com/en/github/managing-your-work-on-github/labeling-issues-and-pull-requests
https://help.github.com/en/github/managing-your-work-on-github/labeling-issues-and-pull-requests
https://github.com/MunGell/awesome-for-beginners

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Xin Tan, Minghui Zhou, Zeyu Sun.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

go
od

 fir
st

iss
ue

ea
sy

Easy

low
 ha

ng
ing

 fr
uit

mino
r b

ug

Easy
 Pick

Easy
 to

 Fi
x

go
od

 fir
st

bu
g

be
gin

ne
r

go
od

 fir
st

co
ntr

ibu
tio

n

Goo
d f

irs
t ta

sk

ne
wbie

sta
rte

r b
ug

be
gin

ne
r-t

ask

M
ino

r B
ug

ea
sy-

pic
k

mino
r f

eat
ure

he
lp

wan
ted

 (e
asy

)

up
-fo

r-g
rab

s

go
od

-fi
rst

-bu
g

R
at

io

Figure 2: Top 20 commonly used issue labels for newcomers

4.1 Methodology
We answer this RQ from three aspects: 1) the trend of the application
of this mechanism; 2) the distribution of GFIs in a project; 3) the
relationship between the application of this mechanism and the
project popularity. The analysis is based on the projects and GFIs
described in Section 3. To decide whether a project applied this
mechanism in a certain time period, we consider whether it reported
GFIs in that time period.

4.2 Results
Trend of application. Figure 3 shows the number of projects that
applied GFI labels from 2009 to 2017.10 We can see that more and
more (state-of-the-art) projects applied this mechanism over time.
Especially in recent years, it shows a significant increasing trend. In
2017, nearly 20 percent of the projects that reported issues reported
GFIs. It suggests that labelling GFIs has become an increasingly
popular way to help newcomers to participate into projects.

Figure 3: Trend of the application of the mechanism of GFIs

Distribution of GFIs. Figure 4 shows violin plots with the dis-
tribution of the number of GFIs and the ratio of GFIs per project
(note the logarithmic scale of Y axis). We can see that the number of
GFIs varies largely in different projects—the project scikit-learn re-
ported 789 GFIs (41.1% of all the issues), whereas the project savonrb
reported only one (0.2%) GFI. However, GFIs are few overall: the
median number of GFIs reported by a project is 11 and the median
ratio is only 0.04.

Relationship between project popularity and application
of this mechanism. As shown in Figure 5, 52.5% of the top 40
popular projects (sorted by #stars) had ever reported GFIs, whereas
this number is 22.5% for the bottom 40 projects. On the whole, the
10We do not draw the data of 2018 because we only have four months data for that
year.

10−4

10−3

10−2

10−1

100

R
at
io

100

101

102

103

N
um

11

0.04

(a) (b)

Figure 4: Distribution of GFIs per projects

ratios show a downward trend. It seems that a project’s popularity
is correlated with whether it labels issues for newcomers (note: it
does not suggest causality). To validate this assumption, we use
a Spearman correlation to evaluate whether a project has ever
reported GFIs is related to the number of stars it has. However, the
results (p-value = 4.51e-08, rho = 0.19) suggest a quite weak positive
relationship, which shows that the factors related to a project’s
popularity are complex.

0

0.1

0.2

0.3

0.4

0.5

0.6

R
at
io

Figure 5: Ratio of the projects reporting GFIs. Each bar rep-
resents 40 projects. All the projects are sorted in descending
order of popularity (#stars).

Summary: In GitHub, more and more projects (state-of-the-
art software systems) are helping newcomers contribute
by labeling GFIs, especially for extremely popular projects.
However, for most projects, this type of issues account for
a small proportion among the projects’ issues.

5 RQ2: HOW ARE GFIS SOLVED?
We intend to explore the resolution process and effect of GFIs. Effect
means to what extent GFIs can help newcomers onboard.

5.1 Methodology
Targeting the above two goals, our method includes two parts:
analysis of the resolution process and the effect of this mechanism.

5.1.1 Analysis of the Resolution Process. We compare the resolu-
tion process of the GFIs with that of other issues. Considering there
are 9,110 closed GFIs in our dataset, we randomly select the same
number of other issues to make a comparison (confidence level:
95%, margin of error: 1.01% [3]). The labels used by other issues are
different from GFIs. For example, the top three most used labels
are: “bug”, “question”, and “enhancement”. Taking into account the
existing studies related to issue resolution process [16] and the
availability of GitHub API, we calculate the following metrics for
these two groups of issues. #Days_Resolution: number of days
of resolution, which starts from the day the issue is reported until

401

A First Look at Good First Issues on GitHub ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

it is resolved; #Actors_Subscription: number of actors who sub-
scribe to receive notifications for an issue; #@mentioned: num-
ber of times that developers are @mentioned in an issue body;
#Times_Reference: number of times that an issue is referenced
in a commit body; #Commenter: number of developers who com-
ment on an issue; #Comments: number of comments on an issue.
To determine whether GFIs and other issues are different on these
metrics, we utilize the Mann-Whitney U test to compare the two
independent groups [25].

5.1.2 Analysis of the Effect. We demonstrate the effect of GFIs
from three aspects: (1) among GFIs, how many were solved by
newcomers; (2) among newcomers who attempted to solve GFIs,
how many of them successfully contributed; (3) among newcom-
ers who successfully solved GFIs, how many of them may retain.
The first two aspects focus on the effect of attracting newcomers,
while the last aspect focuses on contributor retention. Retention
helps to accumulate expertise and developer fluency, thus reducing
development costs due to improved productivity [42].

To this end, we randomly choose 200 GFIs from 9,110 closed GFIs
for manual analysis. For each of them, we analyze their comments
to identify who successfully solved it and who attempted to solve
it but eventually failed. We determine whether a developer was
willing to solve the issue by the comments such as, “I’ll do this one...”,
“I’d be glad to take a stab at putting a PR in for this”, and etc. To
determine who successfully solved the issues, we check the reasons
why the issues were closed, e.g.,“jnothman closed this in #15138 on
30 Oct 2019”.11 Among 200 GFIs, 36 GFIs are not suitable for our
study, such as the issues were closed because the requirements were
changed, the issues were duplicate, or they had already been fixed
before being reported. Therefore, our analysis is based on 164 GFIs
(confidence level: 95%, margin of error: 7.58%). These GFIs involve
a total of 141 newcomers attempting to contribute.

Previous research usually treats a newcomer as a developer try-
ing to place their first code contributions into the project [1]. How-
ever, when manually analyzing GFIs, we observe that in many cases,
developers who had already successfully made a contribution still
asked for solving a GFI because they thought they are not capable
enough to solve other issues. Therefore, in this study, we treat a
developer who have previously contributed less than three commits
to a project as the newcomer to this project.12

5.2 Results
5.2.1 Resolution Process of GFIs. Figure 6 shows the differences be-
tween GFIs and other issues in their resolution process, calculated
by the metrics defined in Section 5.1. We can see that almost all the
box plots have long upper whiskers and short lower whiskers. It sug-
gests that there are larger variances among the greater values, but
the smaller values are concentrated. That is to say, except for some
issues with extremely long resolution process (#Days_Resolution)
and extensive participation (other metrics), many issues can be
solved relatively quickly with limited participation. We can also
see that GFIs and other issues distribute differently on this set of

11https://github.com/scikit-learn/scikit-learn/issues/15076
12We use “less than three commits” because the distribution of #previous_commits of
developers who solved GFIs shows “sparse in the middle while dense at both ends”
and two (commits) is a perfect dividing point.

Table 1: Statistical difference of resolution process for GFIs
and other issues

Median Mean r

GFIs Others GFIs Others
#Days_Resolution 33 3 143.97 75.55 0.32∗
#Actors_Subscription 1 0 1.40 1.13 0.06∗
#@mentioned 1 0 1.85 1.14 0.16∗
#Times_Reference 0 0 1.49 0.48 0.24∗
#Commenter 2 2 2.88 2.43 0.12∗
#Comments 4 3 5.60 4.63 0.11∗

𝑟 represents the effect size (𝑟 = 𝑧/
√
𝑁). According to [9], 𝑎𝑏𝑠 (𝑟) ≥ 0.1,

𝑎𝑏𝑠 (𝑟) ≥ 0.3, and 𝑎𝑏𝑠 (𝑟) ≥ 0.5 represent small, medium, and large
effect sizes, respectively.
∗ means p-value < 0.001.

metrics: the box plots for GFIs seem to be higher than the equivalent
plots for other issues.

Figure 6: Comparison of resolution process between GFIs
and other issues. The outliers are removed.

Table 1 shows the statistical difference of GFIs and other issues
on the defined metrics. Consistent with the above analysis, both
median and mean values of GFIs are greater than or equal to those
of other issues. The results of the Mann-Whitney U test show that
although the differences of these two groups on all the metrics
are statistically significant, most metrics (except #Day_Resolution)
show small effect size, i.e., the differences are not necessarily mean-
ingful in practice.

Summary: For the resolution process, GFIs often take
longer in terms of resolution time. However, for other
aspects (e.g., the numbers of actors who subscribe, the
number of comments and commenters), there is no obvi-
ous actual difference between GFIs and other issues.

5.2.2 Effect of GFIs. Figure 7 shows the resolution of GFIs. Less
than half (45.1%) of the GFIs were successfully solved by the new-
comers who had not contributed any commits yet. A small number

402

https://github.com/scikit-learn/scikit-learn/issues/15076

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Xin Tan, Minghui Zhou, Zeyu Sun.

(14.0%) of GFIs were solved by newcomers with little experiences
(less than three commits). However, 40.9% of GFIs were not solved
by newcomers, among which 29.3% did not attract newcomers’
attention at all.

Figure 7: Resolution of GFIs

While the above analysis takes the perspective of GFIs, Figure 8
shows the effect of this mechanism from the newcomers’ perspec-
tive. Among the 141 newcomers, 68.8% contributed successfully,
which implies that some newcomers did contribute successfully
through GFIs. However, 31.2% of newcomers did not succeed in con-
tribution and these GFIs were eventually solved by other newcom-
ers or experienced developers.13 When analyzing the comments, we
noticed that while some newcomers were trying to solve the GFIs,
some other newcomers suddenly submitted the correct patches (e.g.,
material-ui: #1060914), which leads to the futility of some newcom-
ers’ efforts, thus reducing their enthusiasm for contribution. Also,
there are cases where newcomers have tried for a long time but still
did not submit the right patches. Eventually, the issues were solved
by the experts, for example, eslint: #321815. It implies that these
GFIs may be difficult and thus are not suitable for newcomers.

#newcomers who
successfully
solved GFIs

#newcomers who failed
to solve GFIs while they
were solved by
experienced developers

#newcomers who
failed to solve GFIs
while they were
solved by other
newcomers

68.8%
10.6%

20.6%

Figure 8: Count of Newcomers who tried to solve GFIs

Figure 9 shows the retention of newcomers who successfully
contributed through this mechanism, which is represented by the
number of commits they contributed later. Among the 97 newcom-
ers, most (58.4%) are one time contributors meaning that they left
the projects after their first contribution. Only three contributors
contributed more than ten commits. It suggests that this mechanism
may be hard to attract long-term contributors.

13In this paper, experienced developers refer to non-newcomers.
14https://github.com/mui-org/material-ui/issues/10609
15https://github.com/eslint/eslint/issues/3218

0 50 100 150

#commits

Figure 9: Retention of newcomers

Summary: Some newcomers did join the projects through
GFIs but there are still 40.9% of GFIs that were not solved by
newcomers and 31.2% of newcomers who failed to solve the
GFIs after several attempts. A serious problem seems to be
that GFIs are hard to attract long-term contributors, which
makes GFIs less effective from the projects’ perspectives.

6 RQ3: WHAT FACTORS AND PROBLEMS
ARE RELATED TO THE EFFECTIVENESS OF
GFIS?

We aim to identify the factors related to whether GFIs is solved by
newcomers and the problems of this mechanism.

6.1 Methodology
We first quantitatively explore the factors that may affect newcom-
ers to solve GFIs. Then, we conduct email surveys with newcomers
and project members to provide more comprehensive findings.

6.1.1 Quantitative Analysis. We construct a logistic regression
model to examine the relationship between the resolution of GFIs
and four sets of metrics. These metrics are proposed based on the
hypothesises taking into account the factors that may affect new-
comers to solve issues and the accessibility of data. They are also
generally used in the previous studies. The dependent variable Y of
the model is whether a GFI is solved by a newcomer. We code the
dependent variable as Y = 1 if a GFI is solved by a newcomer and
Y = 0 otherwise. The independent variables use metrics from the
following four factors.

(1) Textual Factors are extracted directly from the textual data
(i.e., the description and title of a GFI), borrowed from a study re-
lated to issue reports [12].
- Length of the Title is defined as the number of words contained
in the title of a GFI. A longer title is more likely to provide sufficient
information, and thus newcomers may easily solve it.
- Length of the Description is the number of words in the descrip-
tion. Similar to the title, a longer description is likely to provide
more elaborate information about the issue.
– Number of the URLs is the number of URLs in the description.
URLs usually provide valuable information of GFI, e.g., ways to
reproduce the bug. More URLs may help newcomers solve the GFI.
- Number of the Code Snippets is the number of code snippets
in the description. Similar to URLs, code snippets usually provide
valuable information (e.g., the location of bugs) about the GFI.
-Readability is the Coleman-Liau index [21] of the GFI description,
which has been applied in the evaluation of issue reports [11]. It

403

https://github.com/mui-org/material-ui/issues/10609
https://github.com/eslint/eslint/issues/3218

A First Look at Good First Issues on GitHub ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

reveals how difficult to understand the text. A higher readability is
more likely to make the GFI easier to understand.

(2) Technical Factors aim to evaluate the difficulty and risk
of solving a GFI. Instead of directly measuring GFI, they measure
the commits corresponding to a GFI. The following metrics are
borrowed from a study evaluating software changes [31].
– Number of the Lines Added calculates the number of lines of
code added when solving a GFI. Adding more lines may mean that
the GFI is more difficult and requires more effort to solve.
– Number of the Lines Deleted calculates the number of lines of
code deleted when solving a GFI. Deleting more lines may introduce
more risks, so it is less possible for newcomers to solve.
– Number of the Files Modified calculates the number of code
files modified when solving a GFI. Modifying more files may mean
that the GFI is more risky, so it is not easy for newcomers.

(3) Project Popularity is measured by the number of stars of
a project that the GFI exists in. More popular the project is, more
likely the GFI can attract newcomers’ attention [36].

(4) Reputation of the Labeler calculates the contributing his-
tory of project members who labeled GFIs. Experienced project
members are more likely to accurately identify GFIs. We consider
the experience of a developer in the certain project and design two
metrics: Number of Days Previously Contributed and Num-
ber of Commits Previously Contributed in a project.

To construct this model, for a GFI, we need to know who suc-
cessfully solved it, but there is no such field in GitHub and because
there are 9,110 closed GFIs, manual inspection seems impossible.
Fortunately, GitHub supports developers to use keywords (e.g.,
close, fix, resolve) in pull request descriptions, as well as commit
messages, to automatically close issues.16 Issues will be automati-
cally closed only when commits are merged into the main branch,
which can be obtained through GitHub API. Therefore, we identify
who successfully solved GFIs and the corresponding commits by
analyzing these connections. Eventually, we obtain 1,429 GFIs using
this mechanism to close issues, including 684 cases solved by new-
comers and 745 cases solved by experienced developers (confidence
level: 95%, margin of error: 2.38%). Based on this data, we firstly
conduct metric selection because the existing highly correlated
factors can lead to overfitting of a model [7]. Then, we calculate the
Spearman rank correlation for our metrics to test whether there is
any highly correlated pair of metrics. We find that only one high
correlation (correlation coefficient 𝜌 >= 0.7 [22]) exists: the pair
of Number of Days Previously Contributed and Number of
Commits Previously Contributed. We decide to keep the latter.
6.1.2 Email Surveys. In Section 5.2.2, we have identified 44 new-
comers who failed to solve GFIs and 39 project members who were
associated with 67 ineffective GFIs—meaning that the GFIs labeled
by them were failed to be solved by newcomers. We conduct email
surveys with them to obtain their views and experiences. Specifi-
cally, we ask newcomerswhy they failed to solve this GFI. For project
members, we ask what reasons they thought caused the GFI failed
to be solved by newcomers. We also ask the newcomers and project
members their views for the common challenges and problems of this

16https://help.github.com/en/enterprise/2.16/user/github/managing-your-work-on-
github/closing-issues-using-keywords

Table 2: Results of the logistic regressionmodel. Only signif-
icant predictors are shown

Metrics Est. Std. Err. z Pr(>|z|)

(Intercept) -6.61 0.85 -7.75 9.1e-15
length of the description 0.17 0.06 2.85 0.00436
#lines deleted -0.16 0.06 -2.82 0.00487
#commits previously contributed -0.11 0.03 -3.63 0.00031
#stars of the project 0.58 0.07 8.02 1.1e-15

All the metrics were log-transformed. H-L: 𝑋 2 = 10.70, 𝑑𝑓 = 8, 𝑝 = 0.22

mechanism. Eventually, we obtain nine responses from newcom-
ers (response rate: 20.5%) and 11 responses from project members
(response rate: 28.2%). We analyze these answers using thematic
analysis [6], a common method for analyzing qualitative data. It
involves the following steps: (1) initial reading of the answers,
(2) generating the initial codes for each answer, (3) searching for
themes among the proposed codes, (4) reviewing the themes to find
opportunities for merging, and (5) defining the final themes aiming
to identifying the “essence” of what each theme is about. Steps (1)
to (4) are performed independently by the first two authors. After
this, a sequence of meetings is held to resolve conflicts and to assign
the final themes (step 5). The final inter-rater reliability is 94.29%.

6.2 Results
6.2.1 Results for Logistic Regression Model. Table 2 shows the re-
sults of the model. The inferential goodness-of-fit test is the Hos-
mer–Lemeshow (H–L) test that yield a 𝑋 2 of 10.70 and is insignifi-
cant (𝑝 > 0.05), suggesting that the model is fit to the data well [27].
We find that four predictors are significant (at < 0.005 level). After re-
moving those non-significant predictors from the model, we obtain
more significant results (at < 0.001 level). We observe that the most
significant factor is the Popularity of the Project. It is reasonable
because if a project can not attract the attention of newcomers,
let alone expecting them successfully onboard through GFIs. The
results show that the Reputation of the Labeler is also an impor-
tant factor. Different from what we assume, we find that if a GFI is
labeled by a project member with less experiences (#commits s/he
made), it may have more chance to be solved by a newcomer. A
project member in the survey (Section 7.1.1) expressed the similar
views, he said, “I usually treat the issues which I know how to do
myself without any substantial investigation as GFIs, but as I have
become more familiar with the code, this criterion is less useful”. This
may reveal a mismatch between experts and novices, a well under-
stood “zone of proximal development” [39], which describes the
case where experts are not usually effective at training or teaching
novices. We find that the Number of the Lines Deleted shows a
negative relationship, which suggests that newcomers are unlikely
to solve a GFI involving bulk deletions. After all, this is a high-risk
operation. It is worth to note that Number of the Lines Added
is not correlated, because the GFIs solved by newcomers vary in
this regard, including document modifications, enhancement (e.g.,
adding comments and renaming functions/classes, which generally
involve a large number of additions), and minor fixes. In addition,
we observe that Length of a GFI’s Description, i.e., level of detail,
is positively related to whether it is resolved by newcomers.

404

https://help.github.com/en/enterprise/2.16/user/github/managing-your-work-on-github/closing-issues-using-keywords
https://help.github.com/en/enterprise/2.16/user/github/managing-your-work-on-github/closing-issues-using-keywords

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Xin Tan, Minghui Zhou, Zeyu Sun.

Table 3: Problems of the Mechanism of GFIs/ Why did new-
comers fail to solve GFIs? (: Newcomer : Project member)

Problems Categories Responses

Insufficient GFIs in the project Project 11
Inappropriate GFIs Mechanism 10
Lacking of motivations to retain Newcomer 7
Hard to start on a new project Newcomer 6
Few newcomers in the project Project 5
Uneven level of newcomers’ skill Newcomer 5
Getting snapped up soon Mechanism 3
Lacking of mentors Mechanism 2

6.2.2 Results for Email Surveys. We obtain more comprehensive
results by email surveys, as shown in Table 3. The thematic anal-
ysis on the email responses reveals eight problems classified into
three categories. The results of the earlier regression model only re-
flect two: inappropriate GFIs—reflected by length of the description,
#lines deleted, and #commits previously contributed (reputation of
the labeler), and few newcomers in the project—reflected by #stars of
the project. The categoryMechanism contains the problems of the
mechanism itself. Eight newcomers and two project members report
that certain GFIs are inappropriate for newcomers, e.g., it requires
a lot of time to figure out where the issue exists. Some developers
report that GFIs getting snapped up soon and lacking mentors when
getting stuck are the main reasons for unsuccessful contributions.
For example, a newcomer complains that “when I were trying to
solve this issue, another developer submitted the right solution soon”.
It indicates that projects need to establish an allocation mechanism
to limit who can pick GFIs. The category Newcomer contains the
problems mainly related to newcomers themselves, such as lack
of motivations to contribute back and hard to start on a new project.
For example, a project member says “they just looking for a way
to put a few PRs on their resume, and often aren’t willing to make
more involved contributions.” It can explain why the solvers of GFIs
are almost one time contributors, as illustrated in Figure 9. The last
category is Project that contains two problems. One is insufficient
GFIs, which is consistent with the findings in Figure 4. The other is
few newcomers. Consistent with results of the logistic regression
model, it is mainly due to the low visibility of the projects.

Summary: The factors and problems affecting the effec-
tiveness of GFIs are complicated and various. We find that
several factors are correlated with the resolution of GFIs,
including project popularity, reputation of the labeler, etc.
The problems revealed by newcomers and project mem-
bers cover the categories of project (e.g., insufficient GFIs),
mechanism (e.g., inappropriate GFIs) and newcomer (e.g.,
uneven skill).

7 RQ4: HOW TO IDENTIFY APPROPRIATE
GFIS?

We conduct email surveys with project members to discover the
criteria for identifying GFIs. We further complement the key infor-
mation needed in GFI descriptions by comparing the descriptions of

solved GFIs and unsolved GFIs. For brevity, in this RQ, “solved GFIs”
represents the GFIs that were solved by newcomers; “unsolved GFIs”
represents the GFIs that were solved by experienced developers.

7.1 Methodology
7.1.1 Extraction of the Criteria for Identifying GFIs. We extract the
common characteristics of GFIs by summarizing the practices of
project members in identifying GFIs, which can provide insights for
understanding beginner-friendly tasks and further optimizing this
mechanism.We conduct email surveys asking project members who
ever labelled GFIs how they identify GFIs. Specifically, we choose
three GFIs that they most recently labeled and ask: (1) For each of
the above issues, why did you think it was suitable for newcomers?
To obtain more general criteria, we asked the second question: (2)
In general, what are your standards when judging whether an issue
is suitable for newcomers? We also provide some tips based on the
former analysis, e.g., the required technology, type of tasks, and
descriptions. There are 191 developers who recently (after January,
2018) had identified GFIs. Among them, 153 developers disclosed
their email information on GitHub. We send them questionnaire.
After a period of 20 days, we obtain 24 responses and seven mails
undelivered, resulting in a response rate of 16.4%. To preserve the
respondents’ anonymity, we use labels D1 to D24 to identify them.
We analyze these answers using thematic analysis that is similar
to the process in Section 6.1.2. The first two authors conduct this
process and the final inter-rater reliability is 95.18%.

7.1.2 Extraction of Key Information in GFI Descriptions. Descrip-
tion is the most important indicator of an issue, as confirmed by the
analysis described in Section 7.1.1. Therefore, we extract the key
information needed by GFI through comparing the descriptions of
solved GFIs and that of unsolved GFIs. The analysis is based on the
1,429 GFIs referred in Section 6.1.1.

The descriptions of GFIs may contain many redundant and triv-
ial words, as well as non-text information (e.g., screenshots and
code snippets). Therefore, we first perform a format analysis on the
descriptions, leaving only the plain texts. Then, we employ a term
frequency-inverse document frequency (TF-IDF) algorithm [28] to
mine the keywords. TF-IDF determines the relative frequency of
words in a given GFI description compared to the inverse propor-
tion of that word over a set of GFI descriptions. Intuitively, this
algorithm determines how relevant a given word is in a given GFI.
Formally, for a set of GFI descriptions 𝑆 and a given word 𝑤 in a
GFI description 𝑑 (𝑑 ∈ 𝑆), the word relevance 𝑖𝑤 is computed by

𝑖𝑟 = 𝑓𝑤,𝑑 log(|𝑆 |/𝑓𝑤,𝑆), (1)

where 𝑓𝑤,𝑑 denotes the number of times the word𝑤 appears in𝑑 , |𝑆 |
denotes the size of the set 𝑆 , and 𝑓𝑤,𝑆 denotes the number of times
the word𝑤 appears in 𝑆 . Based on this algorithm, we obtain a set
of relevant words of each GFI’s description. In particular, to avoid
recognizing different inflected forms (e.g., “return” and “returns”)
as different words, we use lemmatisation to refine each GFI via the
NLTK tools [20]. We select the top 20 relevant words as keywords
of GFI. To find the key information that may make GFIs easier to
be solved by newcomers, we collect and compare the keywords of
the solved GFIs and unsolved GFIs.

405

A First Look at Good First Issues on GitHub ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

7.2 Results
7.2.1 Criteria for Identifying GFIs. To understand how project
members identify GFIs, we conduct email surveys and obtain 24
responses. We present the criteria for judging GFIs with examples
of answers associated to them. Because the answers to the two
questions in the surveys are similar, we do not make a distinction.
Clear Issue Description: Sixteen developers report a GFI should
have a clear description telling where errors occur or what changes
need to be done, as in the following answers:
We wrote up exactly what the problem was and pinpointed the exact
code that needed to be changed. (D1)
The issue to be addressed was described clearly in the issue. (D10)
Clearly written issue which identifies specifically what needs to change
in the behaviour of the software or application. (D19)
Self-Contained Change: Almost all the developers (20 out of 24
responses) consider the scope of changes is an important factor to
evaluate whether issues are suitable for newcomers, for example:
The change is self-contained: (1) it touches a small part of the codebase,
ideally a single function; (2) it doesn’t change wide-spread APIs that
require chasing callers; (3) ideally, it’s unit-testable. (D4)
Its a short, self contained task that should only touch very few files
and the approach to take was already outlined in the issue. (D20)
Limited Skills Needed. Fifteen developers report that an ideal
GFI only requires limited skills for solving, because newcomers
generally do not have rich experiences, for example:
Issues which won’t require any substantial knowledge of the specific
programming language or the overall application. (D5)
It doesn’t require inside out familiarity with the whole codebase,
doesn’t imply deep knowledge of RFCs or technical standards, and
doesn’t require guru-level coding skills. (D4)
“Good first issues” should not tackle any large architectural or be-
havioural changes. Documentation changes, test fixes, small non-
urgent bug-fixes and internal refactoring are good candidates. (D13)
Less Workload: Fourteen developers report that an ideal GFI
should take less time for newcomers to solve. As examples,
As for what we use to judge if it’s suitable for newcomers, usually it’s
the amount of time it would take to implement it (usually < 3h). (D5)
Most times I consider issue to be beginner friendly when it only requires
few lines of changes which should be more or less trivial to do. (D6)
Available Support: Eight developers consider whether maintain-
ers can provide timely and effective support is essential, e.g.,
I can support newcomers if they get stuck and lead the decisions. (D4)
Is someone on the maintainer team willing and available to support
someone new to the project to get the context they’d need to solve this
by themselves? (D18)
MotivatingNewcomers:Three developers express this view,which
brings us a new perspective for identifying GFIs, for example:
It has a visible final impact on users. This is a meta-property of the
issue, and I try to take that into consideration to avoid assigning
boring tasks. Also, newcomers want to “see” the end result. (D8)
Issues with medium-high value: it can provide a chance to learn about
and practice with a new feature. (D12)
LowUrgency.There are three developersmention that GFIs should
be low urgency. As an example:

Table 4: Comparison of keywords in GFIs solved by newcom-
ers and GFIs solved by others. (: Solved : Unsolved)

Keywords Comparison Keywords Comparison

version 107 map 37
documentation / doc 89 platform 36
return 49 subsystem 34

Weusually treat issues that are low urgency as good first issues because
newcomers need more time to get familiar with projects. (D12)

There are other interesting findings that seem inconsistent with
the above opinions and are not the mainstream view. For example:
a project member (D9) considers GFIs is a way to attract outside
experts. He says, “a good first issue isn’t necessarily an easy issue. In
many cases these are actually quite difficult. Sometimes the ‘good first
issue’ label is more like an invitation for experts in other subject areas
who have knowledge about a related external piece of software to
contribute”. Project member D11 also expresses the similar opinion:
“the newcomers that don’t find them easy are not qualified: these
‘good first issues’ are effectively a test to see who should be encouraged
further”.

Additionally, three of the respondents express their doubts. It
implies that correct identification of GFIs is not an easy task. For
example, D3 says, “unfortunately, these boundaries are also murky
for me and I abstain from applying these labels myself ”. Similarly,
D7 says, “I don’t always agree that issues other people have marked
as ‘good first issues’ are actually good for newcomers”.

Summary: The following criteria are generally used by
project members to identify GFIs: whether it has clear de-
scriptions, whether the changes are self-contained, how
much effort and skill it requires, whether it motivates new-
comers, whether support is available, and the urgency.

Unsolved Issues

Solved Issues

version
return

subsystem
documentation

platformdoc
mapzoom

hour
control
a−frame

obvious

function

updatethrow

data

layer

command

bashco.

crypto.publicencryptencrypt

hindsight

passed−in
wall

rest
behavior

finegame

n/a

type

graph

leaflet
mgba

explain

nice
key

directory

buffer

spend

Unsolved
GFIs

Solved
GFIs

Figure 10: Comparison of solved GFIs and unsolved GFIs.
The top 50 keywords with the highest frequency are shown.

7.2.2 Key Information in GFI Descriptions. We extract the most
relevant keywords in the GFIs’ descriptions that we believe may
distinguish suitable GFIs from inappropriate ones. The results are
shown in Figure 10 with two clouds (R function: comparison.cloud),
where we use the keywords of 1,429 GFIs in total. We select the
top 50 frequent keywords in total obtained by TF-IDF and make a

406

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Xin Tan, Minghui Zhou, Zeyu Sun.

comparison of the GFIs that are solved by newcomers (green) and
the GFIs that are not solved by newcomers (red). As shown, the
keywords of GFIs solved by newcomers are richer than those of
GFIs not solved by newcomers. However, the real status is just the
opposite: the descriptions of solved GFIs are relatively similar (high
keyword frequency), while the descriptions of unsolved GFIs are
more diverse (low keyword frequency). Furthermore, the meaning
of these two sets of keywords are quite different.

We notice that there are six most frequent keywords. Their fre-
quencies are shown in Table 4.17 It appears the GFIs that contain
keywords “version” (66.4%), “return” (81.6%), “subsystem” (94.1%),
“documentation / doc” (80.9%), and “platform” (86.1%) in the descrip-
tions are more likely to be solved by newcomers. For more details,
we check the occurrence of these words. The words “version”, “sub-
system”, and “platform” mostly appear when describing the environ-
ment in which issues occur (e.g., “version: master, platform: UNIX,
subsystem: test”). The word “return” mostly appears when describ-
ing the return it should be (e.g., it should return a not implemented
error.) or the actual return (e.g., statusbar.current height returns
undefined instead of real height). The word “documentation / doc”
usually appears when the document is not detailed enough and
needs to be edited or added (e.g., “I think the documentation needs
to be updated to clarify this behavior”). In fact, such information
clarifies the steps for reproducing issues and the form of expected
output, which is critical for newcomers. These findings detail the
results of earlier survey that show “clear description” is a criterion
for GFIs but it is unclear how to quantify “clear” in the descriptions.

Summary: The following information in descriptions may
make GFIs more likely to be solved by newcomers: 1) the
detailed environment of the version, the subsystem, and the
platform where the issue occurs; 2) the actual return of the
issue; 3) the expected return of the issue. The issues about
documentation are more likely to be solved by newcomers.

8 IMPLICATIONS
We offer practical implications of our findings for newcomers,
project members, and researchers.

8.1 Newcomers
The results for RQ2 (Figure 8) shows that 68.8% of newcomers suc-
cessfully contributed to OSS projects by solving GFIs. Therefore, for
newcomers, it is often a good idea to start with GFIs, which should
be noticed. In RQ3, we identify the problems and challenges that
newcomers may meet when solving GFIs. Clarifying these issues
can help newcomers join OSS projects more easily. For example,
we find that some newcomers complained that it is hard to start on
a new project and get timely help from mentors. Therefore, when
newcomers look for a project to contribute to, they may check first
whether they can get decent documentations and available support
from the project. The newcomers can also learn from the crite-
ria of identifying GFIs, e.g., they may evaluate whether the GFI’s
description indicates where the issue is, and whether it fits their
scope and skill. From another perspective, these findings can help
17We merged “documentation” and “doc” because they are the same.

projects build a more friendly environment for newcomers (e.g.,
identify appropriate GFIs), which in turn can reduce the barriers
for newcomers to join a project to some extent.

8.2 Project Members
Our findings provide practical implications for optimizing onboard-
ing process. The results of RQ1 and RQ2 show that more and more
projects are helping newcomers onboard through GFIs, which actu-
ally play a role. Therefore, other OSS projects that want to bring
in newcomers can also try this mechanism. However, many practi-
cal problems and difficulties still exist. We expect to help project
members optimize this mechanism by identifying these issues and
discussing the possible strategies.

1) Set clear criteria for GFIs. The results for RQ3 indicate that
many newcomers perceived that their failed contribution was due
to inappropriate GFIs. It means that to solve these GFIs, they need
deep knowledge of the projects and spend a lot of time, which
is beyond the capabilities of most newcomers. Worse still, some
project members are unclear about the criteria of GFIs. For exam-
ple, a project member, a respondent to our survey for RQ4, says,
“these boundaries are also murky for me.” The seven general rules
extracted to identify GFIs (RQ4) can provide valuable references for
practice. In particular, whether issue descriptions have the relevant
information (e.g., version and platform) is a critical indicator for
GFI.

2) Adopt a strict but flexible GFIs allocation process. Despite the
small number of GFIs in a project (as shown in Figure 4 and Table 3),
40.9% of GFIs were not solved by newcomers (see Figure 7). Part of
reason is that the GFIs often get snapped up quickly by experienced
developers, which makes GFIs fail to achieve their desired effect.
Therefore, project members could put a limit on who can pick the
GFIs. There is also a chaotic allocation of GFIs among newcomers:
a GFI is picked up by multiple newcomers simultaneously. It makes
newcomers frustrated by wasting their efforts. Introducing tags
like “taken”/ “not taken” and at least one maintainer/collaborator
is watching a GFI should be helpful.

3) Build friendly environment for newcomers. Table 3 shows that
newcomers have difficulty starting on a new project and lack the
timely guidance of mentors. Therefore, projects could prepare clear
documentations introducing how to set up local environment, fold
structures, code style, and development process etc. GFIs should
either be assigned to mentors, or come with specific instructions. Be
patient to newcomers whenever they meet difficulties. Encourage
and praise newcomerswhen theymake a little progress. As reported,
attention helps cultivate long-term contributors [43].

8.3 Researchers
Researchers can build on top of our results and open research
questions to deeply understand and improve onboarding process for
newcomers. For example, based on the criteria for identifying GFIs
obtained in RQ4, future research can explore how to measure these
criteria and then automatically identify GFIs. The results for RQ3
show that the factors affecting the effect of GFIs are complicated and
various. In fact, we have not conducted in-depth research on some
factors. For example, we find that insufficient GFIs are identified
as a factor associated with ineffective mechanism, but it is unclear

407

A First Look at Good First Issues on GitHub ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

whether this is because some appropriate issues are not marked as
GFIs or whether such issues are actually rare in projects. Future
work can explore the reasons behind these factors and find more
valuable factors and solutions. The essential reason for the failure
of this mechanism is the mismatch between project members and
newcomers. The study of cognitive differences between experts
and novices should also be an interesting question in the future.

9 THREATS TO VALIDITY
Construct Validity concerns the relationship between the treat-
ment and the outcome. Threat comes from the rationality of the
questions asked. We are interested in assessing GFIs in GitHub. To
achieve this goal we focus on its application status, effect, problems,
and practices. We believe that these questions have high potential to
provide unique insights and value for practitioners and researchers.

Internal Validity concerns the threats to how we perform our
study. The first threat relates to the identification of GFIs (Sec-
tion 3.2). To identify GFIs, we only consider the labels that obvi-
ously indicate friendliness to newcomers. This may have missed
some GFIs (e.g., some projects recommend newcomers to start with
“help wanted” issues, while others do not) but ensured the quality
of the dataset. The second threat relates to the identification of
newcomers (Section 5.1.1). To identify newcomers, we focus on the
number of commits that developers contribute to a certain project,
which may misrepresent of their actual contributions (e.g, report
issues) and omit their contributions to other projects. Besides, we
use “less than three commits” to identify newcomers, which may
bring risks in some cases, e.g., just after solving a GFI, newcomers
are capable of solving other issues. To mitigate this risk, we also
observe the contributors who have not contributed any commit
(commonly used in the literature) and obtain the similar results,
e.g., only 45.1% GFIs were solved by newcomers. The third threat
relates to the selection of GFIs when answering RQ2 (Section 5.2.2)
and RQ3 (Section 6.1.1). Although we select a sample of GFIs, the
margins of error are acceptable [3]. The forth threat comes from
the data we use to extract the criteria for identifying GFIs (RQ4:
Section 7.1.1) because we can not ensure all the project members
hold the right judgement for GFIs. To mitigate this threat, we only
consider the standards mentioned by multiple project members
as the final results. The last threat relates to the themes extracted
by thematic analysis (RQ3: Section 6.1.2, RQ4: Section 7.1.1). We
acknowledge that the choice of these themes is to some extent sub-
jective. For example, it is possible that different researchers reach
a different set of criteria, than the ones proposed in Section 7.2.1.
To mitigate this threat, the initial selection of themes is performed
independently by the two authors of this paper. After this initial
proposal, we compare our list of codes and themes, and develop
a coding guide with definitions and examples for each identified
theme. Each author then use the coding guide to independently an-
alyze the complete set of data. Based on a discussion of the second
round of analysis, the coding guide is further refined, and the data
are independently analyzed for a third and final time.

External Validity concerns the threats to generalize our find-
ings. When conducting this study, we only focus on the popular
open source projects on GitHub (Section 3.1). While onboarding
newcomers is important for all the projects, the GFI mechanism is

rarely applied to less popular projects as discovered in this study.
This is probably because newcomers tend to work for more visi-
ble projects, and on the other hand, senior developers in the less
popular projects do not have much time to train newcomers [43].
However, the findings of this study, particularly the criteria to label
GFIs should benefit any project that attempts to help newcomers
onboard. Whether or not newcomers are willing to get onboarding
in a particular project is a different story.

10 CONCLUSION
Numerous OSS projects rely on the contributions of volunteers from
all over the world. Therefore, to remain sustainable, these projects
need a constant influx of new volunteers, or newcomers. However,
newcomers face many barriers during their onboarding process.
The primary challenge faced by newcomers is finding appropriate
initial tasks. To alleviate this problem, the direct solution is to
recommend tasks (GFIs) to newcomers, which is also advocated by
GitHub. However, many newcomers still fail to contribute through
GFIs.

Therefore, we conduct a preliminary study on this mechanism
from its application status, effect, problems, and best practices.
We find that this mechanism has been increasingly adopted by the
projects in GitHub. We also find that GFIs usually require more time
to be solved, whereas for the other aspects of the resolution process
(e.g., the number of comments), GFIs do not present significant
difference compared to other issues. To analyze the effect of this
mechanism, we find that although some newcomers successfully
solved GFIs, most of them are one-time contributors.We analyze the
factors and problems related to the effectiveness of this mechanism
and identify various problems, e.g., insufficient and inappropriate
GFIs. Eventually, in view of these problems, we discover the criteria
for identifying appropriate GFIs and discuss the corresponding
strategies to help newcomers onboarding.

Helping newcomers contribute to OSS projects has always been
an important concern of practitioners and researchers, while assist-
ing them to find the right task is the first step to their success. Our
work investigates this mechanism from multiple aspects, which can
help to better understand the barriers in newcomers onboarding
and the difficulties in the guiding process, and thus finding ways to
avoid them.

To facilitate replications or other types of future work, we pro-
vide the data, scripts, and detailed coding guidelines used in this
study online: https://github.com/SunflowerPKU/FSE20Dataset.

ACKNOWLEDGEMENT
This work is supported by the National key R&D Program of China
Grant 2018YFB1004201, the National Natural Science Foundation
of China Grant 61825201. We would also like to thank Peng Cheng
Laboratory for its support of computing resources.

REFERENCES
[1] Shaosong Ou Alexander Hars. 2002. Working for free? Motivations for partici-

pating in open-source projects. International journal of electronic commerce 6, 3
(2002), 25–39.

[2] Mohammad Y. Allaho and Wang-Chien Lee. 2013. Analyzing the Social Ties and
Structure of Contributors in Open Source Software Community. In Proceedings
of the 2013 IEEE/ACM International Conference on Advances in Social Networks

408

https://github.com/SunflowerPKU/FSE20Dataset

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Xin Tan, Minghui Zhou, Zeyu Sun.

Analysis and Mining. Association for Computing Machinery, New York, NY, USA,
56–60.

[3] J. Barlett. 2001. Organizational research: determining appropriate sample size in
survey research. Information Technology, Learning, and Performance Journal 19
(01 2001), 43–50.

[4] Shahab Bayati. 2019. Effect of Newcomers’ Supportive Strategies on Open Source
Projects Socio-Technical Activities. In 2019 IEEE/ACM 12th InternationalWorkshop
on Cooperative and Human Aspects of Software Engineering (CHASE). IEEE, USA,
49–50.

[5] Hoda Baytiyeh and Jay Pfaffman. 2010. Volunteers in Wikipedia: Why the
community matters. Journal of Educational Technology & Society 13, 2 (2010),
128–140.

[6] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis
in software engineering. In 2011 international symposium on empirical software
engineering and measurement. IEEE, USA, 275–284.

[7] Donald Farrar and Robert Glauber. 1967. Multicollinearity in Regression Analysis:
The Problem Revisited. The Review of Economics and Statistics 49 (02 1967), 92–107.
https://doi.org/10.2307/1937887

[8] J. Feller, B. Fitzgerald, S. A. Hissam, and K. R. huff. 2007. Why Hackers Do What
They Do: UnderstandingMotivation and Effort in Free/Open Source Software Projects.
MITP, USA, 3–21. https://ieeexplore.ieee.org/document/6277090

[9] Catherine O Fritz, Peter EMorris, and Jennifer J Richler. 2012. Effect size estimates:
current use, calculations, and interpretation. Journal of experimental psychology:
General 141, 1 (2012), 2.

[10] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories. IEEE Press, Piscat-
away, NJ, USA, 233–236.

[11] Pieter Hooimeijer and Westley Weimer. 2007. Modeling Bug Report Quality. In
Proceedings of the Twenty-Second IEEE/ACM International Conference on Auto-
mated Software Engineering. Association for Computing Machinery, New York,
NY, USA, 34–43.

[12] Yonghui Huang, Daniel Costa, Feng Zhang, and Ying Zou. 2018. An empirical
study on the issue reports with questions raised during the issue resolving process.
Empirical Software Engineering 24 (08 2018). https://doi.org/10.1007/s10664-018-
9636-3

[13] Carlos Jensen, Scott King, and Victor Kuechler. 2011. Joining free/open source
software communities: An analysis of newbies’ first interactions on project
mailing lists. In 2011 44th Hawaii international conference on system sciences. IEEE,
USA, 1–10.

[14] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. 2011. The onion patch:
migration in open source ecosystems. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineer-
ing. ACM, USA, 70–80.

[15] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th working conference on mining software repositories. ACM,
USA, 92–101.

[16] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. 2016. Using dynamic and contex-
tual features to predict issue lifetime in GitHub projects. In 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). IEEE, USA, 291–302.

[17] Robert E Kraut and Paul Resnick. 2012. Building successful online communities:
Evidence-based social design. MIT Press, USA.

[18] Rajiv Krishnamurthy, Varghese Jacob, Suresh Radhakrishnan, and Kutsal Dogan.
2016. Peripheral Developer Participation in Open Source Projects: An Empirical
Analysis. ACMTrans. Manage. Inf. Syst. 6, 4, Article Article 14 (Jan. 2016), 31 pages.
https://doi.org/10.1145/2820618

[19] Amanda Lee, Jeffrey C. Carver, and Amiangshu Bosu. 2017. Understanding the
Impressions, Motivations, and Barriers of One Time Code Contributors to FLOSS
Projects: A Survey. In Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, USA, 187–197.

[20] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit.
In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics. ACM, USA,
63–70.

[21] Douglas R McCallum and James L Peterson. 1982. Computer-based readability
indexes. In Proceedings of the ACM’82 Conference. ACM, USA, 44–48.

[22] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016.
An empirical study of the impact of modern code review practices on software
quality. Empirical Software Engineering 21, 5 (01 Oct 2016), 2146–2189. https:
//doi.org/10.1007/s10664-015-9381-9

[23] Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilder-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma,
and Margaret Burnett. 2018. Open source barriers to entry, revisited: A sociotech-
nical perspective. In Proceedings of the 40th International Conference on Software
Engineering. ACM, USA, 1004–1015.

[24] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (2017), 3219–3253.

[25] Nadim Nachar et al. 2008. TheMann-Whitney U: A test for assessing whether two
independent samples come from the same distribution. Tutorials in quantitative
Methods for Psychology 4, 1 (2008), 13–20.

[26] Sebastiano Panichella. 2015. Supporting newcomers in software development
projects. In 2015 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME). IEEE, USA, 586–589. https://doi.org/10.1109/ICSM.2015.7332519

[27] Chao Ying Joanne Peng, Kuk Lida Lee, and Gary M. Ingersoll. 2002. An Intro-
duction to Logistic Regression Analysis and Reporting. Journal of Educational
Research 96, 1 (2002), 3–14.

[28] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Piscataway, NJ, USA, 133–142.

[29] Sonali K. Shah. 2006. Motivation, Governance, and the Viability of Hybrid Forms
in Open Source Software Development. Manage. Sci. 52, 7 (July 2006), 1000–1014.
https://doi.org/10.1287/mnsc.1060.0553

[30] B. Shibuya and T. Tamai. 2009. Understanding the process of participating
in open source communities. In 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development. ACM, USA, 1–6. https:
//doi.org/10.1109/FLOSS.2009.5071352

[31] Emad Shihab, Ahmed E Hassan, Bram Adams, and Zhen Ming Jiang. 2012. An
industrial study on the risk of software changes. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering.
ACM, USA, 1–11.

[32] Igor Steinmacher, Ana Paula Chaves, Tayana Uchoa Conte, and Marco Aurelio
Gerosa. 2014. Preliminary empirical identification of barriers faced by newcomers
to Open Source Software projects. In 2014 Brazilian Symposium on Software
Engineering. IEEE, USA, 51–60.

[33] Igor Steinmacher andMarco Aurélio Gerosa. 2015. Understanding and Supporting
the Choice of an Appropriate Task to Start With In Open Source Software Com-
munities. In 48th Hawaii International Conference on System Sciences (HICSS-48).
IEEE, USA, 5299–5308.

[34] Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. 2018. Let me in:
Guidelines for the Successful Onboarding of Newcomers to Open Source Projects.
IEEE Software PP (01 2018), 1–1. https://doi.org/10.1109/MS.2018.110162131

[35] Xin Tan and Minghui Zhou. 2019. How to Communicate When Submitting
Patches: An Empirical Study of the Linux Kernel. Proc. ACM Hum.-Comput.
Interact. 3, CSCW, Article 108 (Nov. 2019), 26 pages. https://doi.org/10.1145/
3359210

[36] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proceedings of the
36th international conference on Software engineering. Association for Computing
Machinery, New York, NY, USA, 356–366.

[37] Georg Von Krogh, Stefan Haefliger, Sebastian Spaeth, and Martin W. Wallin. 2012.
Carrots and Rainbows: Motivation and Social Practice in Open Source Software
Development. MIS Q. 36, 2 (June 2012), 649–676.

[38] Georg Von Krogh and Eric Von Hippel. 2003. Special issue on open source
software development.

[39] Lev Vygotsky. 1978. Interaction between learning and development. Readings on
the development of children 23, 3 (1978), 34–41.

[40] Yunwen Ye and Kouichi Kishida. 2003. Toward an understanding of themotivation
of open source software developers. In 25th International Conference on Software
Engineering, 2003. Proceedings. IEEE Computer Society, USA, 419–429.

[41] Minghui Zhou. 2019. Onboarding and Retaining of Contributors in FLOSS
Ecosystem. In Towards Engineering Free/Libre Open Source Software (FLOSS)
Ecosystems for Impact and Sustainability. Springer, USA, 107–117.

[42] Minghui Zhou and Audris Mockus. 2010. Developer fluency: Achieving true
mastery in software projects. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering. ACM, USA, 137–
146.

[43] Minghui Zhou and Audris Mockus. 2012. What make long term contributors:
Willingness and opportunity in OSS community. In Proceedings of the 34th Inter-
national Conference on Software Engineering. IEEE Press, USA, 518–528.

409

https://doi.org/10.2307/1937887
https://ieeexplore.ieee.org/document/6277090
https://doi.org/10.1007/s10664-018-9636-3
https://doi.org/10.1007/s10664-018-9636-3
https://doi.org/10.1145/2820618
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1109/ICSM.2015.7332519
https://doi.org/10.1287/mnsc.1060.0553
https://doi.org/10.1109/FLOSS.2009.5071352
https://doi.org/10.1109/FLOSS.2009.5071352
https://doi.org/10.1109/MS.2018.110162131
https://doi.org/10.1145/3359210
https://doi.org/10.1145/3359210

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	3.1 Project Selection
	3.2 Identification of Good First Issues

	4 RQ1: How common do projects report GFIs?
	4.1 Methodology
	4.2 Results

	5 RQ2: How are GFIs solved?
	5.1 Methodology
	5.2 Results

	6 RQ3: What factors and problems are related to the effectiveness of GFIs?
	6.1 Methodology
	6.2 Results

	7 RQ4: How to identify appropriate GFIs?
	7.1 Methodology
	7.2 Results

	8 Implications
	8.1 Newcomers
	8.2 Project Members
	8.3 Researchers

	9 Threats to Validity
	10 Conclusion
	References

