
Why Modern Open Source Projects Fail
Jailton Coelho, Marco Tulio Valente

Federal University of Minas Gerais
Department of Computer Science

Belo Horizonte, Minas Gerais, Brazil
{jailtoncoelho,mtov}@dcc.ufmg.br

ABSTRACT
Open source is experiencing a renaissance period, due to the ap-
pearance of modern platforms and workflows for developing and
maintaining public code. As a result, developers are creating open
source software at speeds never seen before. Consequently, these
projects are also facing unprecedented mortality rates. To better un-
derstand the reasons for the failure of modern open source projects,
this paper describes the results of a survey with the maintainers of
104 popular GitHub systems that have been deprecated. We provide
a set of nine reasons for the failure of these open source projects.
We also show that some maintenance practices—specifically the
adoption of contributing guidelines and continuous integration—
have an important association with a project failure or success.
Finally, we discuss and reveal the principal strategies developers
have tried to overcome the failure of the studied projects.

CCS CONCEPTS
• Software and its engineering → Risk management; Main-
taining software; Open source model; Software evolution;

KEYWORDS
Project failure, GitHub, Open Source Software
ACM Reference format:
Jailton Coelho, Marco Tulio Valente. 2017. Why Modern Open Source Proj-
ects Fail. In Proceedings of 2017 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, Paderborn, Germany, September 4–8, 2017
(ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106246

1 INTRODUCTION
Over the years, the open source movement is contributing to a
dramatic reduction in the costs of building and deploying soft-
ware. Today, organizations often rely on open source to support
their basic software infrastructures, including operating systems,
databases, web servers, etc. Furthermore, most software produced
nowadays depends on public source code, which is used for exam-
ple to encapsulate the implementation of code related to security,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106246

authentication, user interfaces, execution on mobile devices, etc.
A recent survey shows that 65% out of 1,313 surveyed companies
rely on open source to speed application development.1 For exam-
ple, Instagram—the popular photo-sharing social network—has a
special section of its site to acknowledge the importance of public
code to the company.2 In this page, they thank the open source
community for their contributions and explicitly list 25 open source
libraries and frameworks used by the social network.

Although open source has its origins in the eighties (or even
earlier) [32], the movement is experiencing a renaissance period.
One of the main reasons is the appearance of modern platforms
and workflows for developing and maintaining open source proj-
ects [11]. The most famous example is GitHub; but other platforms
are also relevant, such as Bitbucket and GitLab. These platforms
modernized the workflow used on open source software develop-
ment. Instead of changing e-mails with patches, developers con-
tribute to a project by forking it, working and improving the code
locally, and then submitting a pull request to the project’s leaders.

As a result, developers are creating open source code at a rate
never seen before. For example, today GitHub has more than 19
million users and 52 million repositories (without excluding forks).
Consequently, these projects are also failing at unprecedented rates.
Despite this fact, we have very few studies that investigate the fail-
ures faced by open source projects [1]. We only find similar studies for
commercial software. For example, by means of a survey with de-
velopers and project managers, Cerpa and Verner study the failure
of 70 commercial projects [8]. They report that the most common
failures are due to unrealistic delivery dates, underestimated project
size, risks not re-assessed through the project, and when staff is
not rewarded for working long hours. Certainly, these findings do
not apply to open source projects, which are developed without
rigid schedules and requirements, by groups of unpaid developers.
The Standish Group’s CHAOS report is another study frequently
mentioned by software practitioners and consultants [34]. The 2007
report mentions that 46% of software projects have cost and sched-
ule problems and that 19% are outright failures. Besides having
methodological problems, as pointed by Jørgensen and Moløkken-
Østvold [21], this report does not target open source.

This paper describes an investigation with the maintainers of
open source projects that have failed, aiming to reveal the reasons
for such failures, the maintenance practices that distinguish failed
projects from successful ones, the impact of failures on clients, and
the strategies tried by maintainers to overcome the failure of their
projects. The paper addresses the following research questions:

1https://www.blackducksoftware.com/2016-future-of-open-source
2https://www.instagram.com/about/legal/libraries

ar
X

iv
:1

70
7.

02
32

7v
1

 [
cs

.S
E

]
 7

 J
ul

 2
01

7

https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1145/3106237.3106246
https://www.blackducksoftware.com/2016-future-of-open-source
https://www.instagram.com/about/legal/libraries

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Jailton Coelho, Marco Tulio Valente

RQ1: Why do open source projects fail? To answer this first RQ we
select 542 popular GitHub projects without any commits in the
last year. We complemented this selection with 76 systems whose
documentation explicitly mentions that the project is abandoned.
We asked the developers of these systems to describe the reasons
of the projects’ failure. Finally, we categorize their responses into
nine major reasons.

RQ2: What is the importance of following a set of best open source
maintenance practices? In this second research question, we check
whether the failed projects used a set of best open source mainte-
nance practices, including practices to attract users and to automate
maintenance tasks, like continuous integration.

RQ3: What is the impact of the project failures? To measure this
impact, we counted the number of opened issues and pull requests
of the failed projects and also the number of projects that depend
on them. The goal is to measure the impact of the studied failures,
in terms of affected users, contributors, and client projects.

RQ4: How do developers try to overcome the projects failure? In this
last research question, we manually analyze the issues of the failed
projects to collect strategies and procedures tried by their main-
tainers to avoid the failures.

We make the following contributions in this paper:

• We provide a list of nine reasons for failures in open source
projects. By providing these reasons, using data from real
failures, we intend to help developers to assess and control
the risks faced by open source projects.

• We reinforce the importance of a set of best open source
maintenance practices, by comparing their usage by the
failed projects and also by the most and least popular sys-
tems in a sample of 5,000 GitHub projects.

• We document three strategies attempted by the maintain-
ers of open source projects to overcome (without success)
the failure of their projects.

We organize the remainder of the paper as follows. Section 2
presents the dataset we use to search for failed projects. Section 3
to Section 6 presents answers to each of the four research questions
proposed in the study. Section 7 discusses and puts our findings
in a wider context. Section 8 presents threats to validity; Section 9
presents related work; and Section 10 concludes the paper.

2 DATASET
The dataset used in this paper was created by first considering the
top-5,000 most popular projects on GitHub (on September, 2016).
We use the number of stars as a proxy for popularity because it
reveals how many people manifested interest or appreciation to
the project [5]. We limit the study to 5,000 repositories to focus on
the maintenance challenges faced by highly popular projects.

We use two strategies to select systems that are no longer under
maintenance in this initial list of 5,000 projects. First, we select 628
repositories (13%) without commits in the last year. As examples,
we have nvie/gitflow (16,392 stars), mozilla/BrowserQuest
(6,702 stars), and twitter/typeand.js (3,750 stars). Second, we

search in the README3 of the remaining repositories for terms
like “deprecated”, “unmaintained”, “no longer maintained”, “no
longer supported”, and “no longer under development”. We found
such terms in the READMEs of 207 projects (4%). We then manually
inspected these files to assure that the messages indeed denote in-
active projects and to remove false positives. After this inspection,
we concluded that 76 repositories (37%) are true positives. As an ex-
ample, we have google/gxui4 whose README has this comment:

Unfortunately due to a shortage of hours in a day, GXUI is no longer
maintained.

As an example of false positive, we have twitter/labella.js.5
In its README, the following message initially led us to suspect
that the project is abandoned:

The API has changed. force.start() and . . . are deprecated.

However, in this case, deprecated refers to API elements and
not to the project’s status. In a final cleaning step, we manually
inspected the selected 704 repositores (628+76). We removed repos-
itories that are not software projects (51 repositories, e.g., books,
tutorials, and awesome lists), repositories whose native language is
not English (24 repositories), that were moved to another repository
(7 repositories), and that are empty (4 repositories, which received
their stars before being cleaned). We ended up with a list of 618
projects (542 projects without commits and 76 projects with an
explicit deprecation message in the README).

Figure 1 shows violin plots with the distribution of age (in
months), number of contributors, number of commits, and number
of stars of the selected repositories. We provide plots for all 5,000
systems (labeled as all) and for the 618 systems (12%) considered in
this study (labeled as selected). The selected systems are older than
the top-5,000 systems (52 vs 40 months, median measures); but they
have less contributors (11 vs 23), less commits (137 vs 346), and
less stars (2,345 vs 2,538). Indeed, the distributions are statistically
different, according to the one-tailed variant of the Mann-Whitney
U test (p-value ≤ 5%). To show the effect size of this difference, we
compute Cliff’s delta (or d). We found that the effect is small for
age and commits, medium for contributors, and negligible for stars

GitHub repositories can be owned by a person (e.g., torvalds/li-
nux) or by an organization (e.g., mozilla/pdf.js). In our dataset,
170 repositories (28%) are owed by organizations and 448 reposito-
ries (72%) by users. JavaScript is the most popular language (219
repositories, 36%), followed by Objective-C (98 repositories, 16%),
and Java (75 repositories, 12%). In total, the dataset includes sys-
tems spanning 26 programming languages. The first paper’s author
manually classified the application domain of the systems in the
dataset, as showed in Table 1. There is a concentration on libraries
and frameworks (502 projects, 81%), which essentially reproduces
a concentration also happening in the initial list of 5,000 projects.6

Dataset limitations: The proposed dataset is restricted to popular
open source projects on GitHub. We acknowledge that there are
3 READMEs are the first file a visitor is presented to when visiting a GitHub repository.
They include information on what the project does, why the project is useful, and
eventually the project status (if it is active or not).
4https://github.com/google/gxui
5https://github.com/twitter/labella.js
6For another research, we classified the domain of the top-5,000 GitHub projects; 59%
are libraries and frameworks.

https://github.com/google/gxui
https://github.com/twitter/labella.js
小雅Esther

Why Modern Open Source Projects Fail ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

0

25

50

75

100

all selected

A
ge

 (
m

on
th

s)

(a) Age

0

50

100

150

all selected

C
on

tr
ib

ut
or

s

(b) Contributors

0

1000

2000

3000

all selected

C
om

m
its

(c) Commits

2000

4000

6000

8000

all selected

S
ta

rs

(d) Stars

Figure 1: Distribution of the (a) age, (b) contributors, (c) commits, and (d) stars, without outliers.

Table 1: Application domain of the selected projects

Application Domain Projects

Libraries and frameworks 502
Application software (e.g., text editors) 63
Software tools (e.g., compilers) 31
System software (e.g., databases) 22

popular projects in other platforms, like Bitbucket, GitLab or that
have their own version control installations. Also, the dataset does
not include projects that failed before attracting the attention of
developers and users. We consider less important to study such
projects, since their failures did not have much impact. Instead, we
focus on projects that succeeded to attract attention, users, and
contributors, but then failed, possibly impairing other projects.

3 WHY DO OPEN SOURCE PROJECTS FAIL?
To answer the first research question, we conducted a survey with
the developers of 414 open source projects with evidences of no
longer being under maintenance.

3.1 Survey Design
The survey questionnaire has three open-ended questions: (1) Why
did you stop maintaining the project? (2) Did you receive any fund-
ing to maintain the project? (3) Do you have plans to reactivate the
project? We avoid asking the developers directly about the reasons
for the project failures, because this question can lead to multiple
interpretations. For example, an abandoned project could have been
an outstanding learning experience to its developers. Therefore,
they might not consider that it has failed. In Section 3.3, we detail
the criteria we followed to define that a project has failed based on
the answers to the survey questions.

Specifically to the developers of the 542 repositories without
commits in the last year we added a first survey question, asking
them to confirm that the projects are no longer being maintained.
We also instructed them to only answer the remaining questions if

they agree with this fact. We sent the questionnaire to the reposito-
ries’ owners or to the project’s principal contributor, in the case of
repositories owned by organizations. Using this criterion, we were
able to find a public e-mail address of 425 developers on GitHub.
However, 9 developers are the owners—or the main contributors—
of two or more projects. In this case, we only sent one mail to these
developers, referring to their first project in number of stars, to
avoid a perception of our mails as spam messages.

We sent the questionnaire to 414 developers. After a period of
20 days, we obtained 118 responses and 6 mails returned due to
the delivery problems, resulting in a response rate of 29%, which
is 118/(414 − 6). To preserve the respondents’ anonymity, we use
labels D1 to D118 to identify them. Furthermore, when quoting their
answers we replace mentions to repositories and owners by [Project-
Name] and [Project-Owner]. This is important because some answers
include critical comments about developers or organizations.

Finally, for some projects, we found answers to the first sur-
vey question (“Why did you stop maintaining the project?”) when
inspecting their READMEs. This happened with 36 projects, iden-
tified by R1 to R36. As an example, we have the following README:

Unfortunately, I haven’t been able to find the time that I would like
to dedicate to this project. (R6)

Therefore, for the first survey question, we collected 154 answers
(118 answers by e-mail and 36 answers from the projects’ README).
We analyzed these answers using thematic analysis [10, 33], a tech-
nique for identifying and recording “themes” (i.e., patterns) in tex-
tual documents. Thematic analysis involves the following steps: (1)
initial reading of the answers, (2) generating a first code for each
answer, (3) searching for themes among the proposed codes, (4)
reviewing the themes to find opportunities for merging, and (5)
defining and naming the final themes. Steps (1) to (4) were per-
formed independently by each of the paper’s authors. After this, a
sequence of meetings was held to resolve conflicts and to assign
the final themes (step 5).

3.2 Survey Results
This section presents the answers to the survey questions. For the
118 developers of systems with no commits in the last year, the

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Jailton Coelho, Marco Tulio Valente

survey included an opening question asking if he/she agrees that
the project is no longer under maintenance. 101 developers (86%)
confirmed this project condition, as in the following answer:
Yes, I surely have abandoned the project. (D20)

By contrast, 17 developers (14%) did not agree with the project
status. For example, two developers mentioned work being per-
formed out of the main GitHub repository:
One current issue that does need to be resolved is that the entire site
is served over https, but you wouldn’t see that change in the repo. (D18)
It is under maintenance. It’s just not a lot of people are using it, and
I am working on a new breaking version and thus didn’t want to
commit on the master branch. (D30)

Next, we present the reasons that emerged after analysing the
answers received for the first survey question (“Why did you stop
maintaining the project?”). We discuss each reason and give exam-
ples of answers associated to them.
Lack of time: According to 27 developers, they do not have free
time to maintain the projects, as in the following answers:
It was conceived during extended vacation. When I got back to work-
ing I simply didn’t have time. Building something like [Project-Name]
requires 5-6 hours of work per day. (D15)
I was the only maintainer and there was a lot of feature requests and
I didn’t have enough time. (D115)

Lack of interest: 30 developers answered they lost interest on
the projects, including when they started to work on other proj-
ects or domains, changed jobs, or were fired.7 As examples, we have:
My interest began to wane; I moved to other projects. (D67)
I’m not working in the CMS space at the moment. (D77)
It became less professionally relevant/interesting. (D80)

I was fired by the company that owns the project. (D65)

Project is completed: 17 developers consider that their projects
are finished and do not need more features (just few and sporadic
bug fixes). As an example, we have the following answers:
Sometimes, you build something, and sometimes, it’s done. Like if you
built a building, at some point in time it is finished, it achieved its
goals. For [Project-Name] — it achieved all its goals, and it’s done.
. . . The misconception is that people may mistake an open source proj-
ect with news. Sometimes there are just no more features to add, no
more news — because the project is complete. (D28)
I felt it was done. I think the dominant idea is that you have to con-
stantly update every open source project, but in my opinion, this thing
works great and needs no updates for any reason, and won’t for many,
many years, since it’s built on extremely stable APIs (namely git and
Unix utilities). (D69)

Usurped by competitor: 30 developers answered they abandoned
the project because a stronger competitor appeared in the market,
as in the case of these projects:
Google released ActionBarCompat whose goal was the same as [Project-
Name] but maintained by them. (D2)

7Consequently, these developers do not have more time to work on their projects;
however, we reserve the lack of time theme to the cases where the developers still
have interest on the projects, but not the required time to maintain them.

The project no longer makes sense. Apple has built technical and legal
alternatives which I believe are satisfactory. (D71)
It’s not been maintained for well over half a year and is formally
discontinued. There are better alternatives now, such as SearchView
and FloatingSearchView. (R42)

Specifically, 12 projects explicitly declare in their READMEs that
they are no longer maintained due to the appearance of a strong
competitor. In all cases, the update date of the project status as
unmaintained occurred after appearing the competitor. For exam-
ple, node-js-libs/node.io was declared unmaintained four years
after its competitor appeared. We also found this statement in its
README: I wrote node.io when node.js was still in its infancy.

Project is obsolete: According to 21 developers, the projects are
not useful anymore, i.e., their features are not more required or
applicable.8 As examples, we have the answers:
This was only meant as a stopgap to support older OSes. As we dropped
that, we didn’t need it anymore. (D11)
I do not have an app myself anymore using that code. (D36)
I personally have no use for it in my work anymore. (D38)

Project is based on outdated technologies: This reason, men-
tioned by 16 respondents, refer to discontinuation due to outdated,
deprecated or suboptimal technologies, including programming
languages, APIs, libraries, frameworks, etc. As examples, we have
the following answers:
Due to Apple’s abandonment of the Objective-C Garbage Collec-
tor which [Project-Name] relied heavily on, future development of
[Project-Name] is on an indefinite hiatus. (R20)
The core team is now building [Project-Name] in Dart instead of Ruby,
and will no longer be maintaining the Ruby implementation unless a
maintainer steps up to help. (R34)

Low maintainability: This reason, as indicated by 7 developers,
refers to maintainability problems. As examples, we have:
It is difficult to maintain a browser technology like JavaScript because
browsers have very different quirks and implementations. (D28)
The project reached an unmaintainable state due to architectural de-
cisions made early in the project’s life. (D30)

Conflicts among developers: This reason, indicated by three de-
velopers, denotes conflicts among developers or between developers
and project owners, as in this answer:
The project was previously an official plugin—so the [Project-Owner]
team worked with me to support it. However, they decided would not
longer have the concept of plugins—and they ended the support on
their side. (D73)

The remaining reasons include acquisition by a company, which
created a private version of the project (two answers), legal prob-
lems (two answers), lack of expertise of the principal developer in
the technologies used by the project (one answer), and high demand
of users, mostly in the form of trivial and meaningless issues (one
answer). Finally, in five cases, it was not possible to infer a clear
reason after reading the participant’s answers. Thus, we classified

8The theme does not include projects that are obsolete due to outdated technologies,
which have a specific theme.

Why Modern Open Source Projects Fail ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

these cases under an unclear answer theme. An example is the fol-
lowing answer: I am not so sure, but you can probably check the last
commit details in GitHub.

We also asked the participants a second question: did you receive
any funding tomaintain the project? 82 out of 118 answers (69%)were
negative. The positive answers mention funding from the company
employing the respondent (12 answers), non-profit organizations
(three answers; e.g., European Union), and other private companies
(two answers). Finally, we asked a third question: do you have
plans to reactivate the project? Only 18 participants (15%) answered
positively to this question.

3.3 Combining the Survey Answers
In our study, we consider that a project has failed when at least one
of the following conditions hold:

(1) The project is no longer under maintenance according to
the surveyed developers and they do not have plans to
reactivate the project (question #3) and the project is not
considered completed (question #1).

(2) The project documentation explicitly mentions that it is
deprecated (without considering it completed).

Among the considered answers, 76 projects attend condition (1)
and 32 projects attend condition (2). The reasons for the failure of
these projects are the ones presented in Section 3.2, except when
the themes are lack of interest or lack of time. For these themes
and when the answer comes from the top-developer of a project
owned by an organization we made a final check on his number of
commits. We only accepted the reasons suggested by developers
that are responsible for at least 50% of the projects’ commits. For
example, D85 answered he stopped maintaining his project due to
a lack of time. The project is owned by an organization and D85—
although the top-maintainer of the project—is responsible for 30%
of the commits. Therefore, in this case, we assumed that it would
be possible to other developers to take over the tasks and issues
handled by D85. By applying this exclusion criterion, we removed
four projects from the list of projects. The final list, which includes
reasons for failures according to relevant top-developers or project
owners, has 104 projects. In this paper, we call them failed projects.

Table 2 presents the reasons for the failure of these projects. The
most common reasons are project was usurped by competitor (27
projects), project is obsolete (20 projects), lack of time of the main
contributor (18 projects), lack of interest of the main contributor (18
projects), and project is based on outdated technologies (14 projects).
It is also important to note that projects can fail due to multiple
reasons, which happened in the case of 6 projects. Thus, the sum
of the projects in Table 2 is 110 (and not 104 projects).9

As presented in Table 2, we classified the reasons for failures in
three groups: (1) reasons related to the development team (includ-
ing lack of time, lack of interest, and conflicts among developers);
(2) reasons related to project characteristics (including project is
obsolete, project is based on outdated technologies, and low project
maintainability); (3) reasons related to the environment where the
project and the development team are placed (including usurpation
by competition, acquisition by a company, and legal issues).

9The values in Table 2 are not exactly the ones presented in Section 3.2 due to the
inclusion and exclusion criteria defined in this section.

Table 2: Why open source projects fail?

Reasons Group Projects

Usurped by competitor Environment 27
Obsolete Project 20
Lack of time Team 18
Lack of interest Team 18
Outdated technologies Project 14
Low maintainability Project 7
Conflicts among developers Team 3
Legal problems Environment 2
Acquisition Environment 1

Summary: Modern open source projects fail due to reasons re-
lated to project characteristics (41 projects; e.g., low maintainabil-
ity), followed by reasons related to the project team (39 projects;
e.g., lack of time or interest of the main contributor); and due to
environment reasons (30 projects; e.g., project was usurped by a
competidor or legal issues).

4 WHAT IS THE IMPORTANCE OF OPEN
SOURCE MAINTENANCE PRACTICES?

In this second question, we investigate whether the failed projects
followed (or not) a set of best open source maintenance practices,
which are recommended when hosting projects on GitHub.10 Sec-
tion 4.1 describes the methodology we followed to answer the
research question and Section 4.2 presents the results and findings.

4.1 Methodology
We analyzed four groups of projects: the 104 projects that have
failed, as described in Section 3.3 (Failed), the top-104 and the
bottom-104 projects by number of stars (Top and Bottom, respec-
tively), and a random sample of 104 projects (Random). Top, Bot-
tom, and Random are selected from the initial sample of top-5,000
projects, described in Section 2, and after applying the same clean-
ing steps defined in this section. The rationale is to compare the
Failed projects with the most popular projects in our dataset, which
presumably should follow most practices; and also with the least
popular projects and with a random sample of projects.

For each project in the aforementioned groups of projects we
collected the following information:11 (1) presence of a README
file (which is the landing page of GitHub repositories); (2) presence
of a separate file with the project’s license; (3) availability of a ded-
icated site and URL to promote the project, including examples,
documentation, list of principal users, etc; (4) use of a continuous
integration service (we check whether the projects use Travis CI,
which is the most popular CI service on GitHub, used by more than
90% of the projects that enable CI, according to a recent study [18]);
(5) presence of a specific file with guidelines for repository contrib-
utors; (6) presence of an issue template (to instruct developers to

10https://opensource.guide
11Five of these maintenance practices are explicitly recommended at: https://help.
github.com/articles/helping-people-contribute-to-your-project

https://opensource.guide
 https://help.github.com/articles/helping-people-contribute-to-your-project
 https://help.github.com/articles/helping-people-contribute-to-your-project

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Jailton Coelho, Marco Tulio Valente

Table 3: Percentage of projects following practices recommended when maintaining GitHub repositories. The effect size re-
flects the extent of the difference between the repositories in a given group (Top, Bottom, or Random) and the failed projects

Maintaince Practice Failed Top Effect Bottom Effect Random Effect

README 99 100 - 100 - 100 -
License 61 88 small 60 - 73 -
Home Page 58 87 small 52 - 60 -
Continuous Integration 27 68 medium 41 - 45 small
Contributing 16 72 large 13 - 32 small
Issue Template 0 15 small 2 - 5 -
Code of Conduct 0 13 - 0 - 2 -
Pull Request Template 0 3 - 0 - 0 -

write issues according to the repository’s guidelines); (7) presence
of a specific file with a code of conduct (which is a document that
establishes expectations for the behavior of the project’s partici-
pants [37]); and (8) presence of a pull request template (which is a
document to instruct developers to submit pull requests according
to the repository’s guidelines).

After collecting the data for each project in each group we com-
pared the obtained distributions. First, we analyzed the statistical
significance of the difference between the Top, Bottom, and Random
groups vs the Failed group, by applying the Mann-Whitney test at
p-value = 0.05. To show the effect size of the difference, we used
Cliff’s delta. Following the guidelines of previous work [16, 28, 36],
we interpreted the effect size as small for 0.147 < d < 0.33, medium
for 0.33 ≤ d < 0.474, and large for d ≥ 0.474.

4.2 Results
Table 3 shows the percentage of projects following each practice.
Despite the group, the most followed practices are the presence of
a README file, the presence of a license file, and the availability
of a project home page. For example, for the Failed projects the
percentage of projects following these practices are 99%, 61%, and
58%, respectively. For the Top projects, the same values are 100%,
88%, and 87%, respectively. The least followed practices are issue
templates, code of conduct, and pull request templates. We did not
find a single project following these practices in the Failed group. By
contrast, 15%, 13%, and 3% of the Top projects have these three kind
of documents, respectively. In general, we observe the following
order among the groups of projects regarding the adoption of the
eight considered practices: Top > Random > Failed ≡ Bottom. In
other words, there is a relevant adoption of most practices by the
Top projects. By contrast, the 104 projects that failed and that are
studied in this paper are more similar to the Bottom projects. This
fact is reinforced by the analysis of Cliff’s delta coefficient. There is a
large effect size between the adoption of contributing guidelines by
the Top (72%) and the Failed projects (16%), and amedium difference
in the case of continuous integration services (68% vs 27%). For
licenses, home pages, and issue templates, the difference is small.
For the remaining practices, the difference is negligible or does not
exist in statistical terms. In the case of the Bottom projects, there is
no statistical difference for the eight considered documents. Finally,
for Random, there is a small difference when we consider the use
of continuous integration and contributing guidelines.

Summary: Regarding the adoption of best open source mainte-
nance practices, the failed projects are more similar to the least
popular projects than to the most popular ones. Therefore, these
practices seem to have an effect on the success or failure of open
source projects. The practices with the most relevant effects are
contributing guidelines (large), continuous integration (medium),
and licences, home pages, and issue templates (small).

5 WHAT IS THE IMPACT OF FAILURES?
With this third research question, we intend to assess the impact
of the failure of the studied projects, both to end-users and to the
developers of client systems. First, we present the approach we
used to answer the question (Section 5.1). Then, we present the
results (Section 5.2).

5.1 Methodology
To answer the question, we collected data on (a) the number of
issues and pull requests of the failed projects; and (b) the number of
systems that depend on these projects, according to data provided
by GitHub and by a popular JavaScript package manager.

5.2 Results
Issues and Pull Requests: Using the GitHub API, we collected the
number of opened issues and opened pull requests for each failed
project (in the case of issues, we excluded 15 projects that do not use
GitHub to handle issues). Our rationale is that one of the negative
impacts of an abandoned project is a list of bugs and enhancements
(issues) that will not be considered and a list of source code modifi-
cations (pull requests) that will not be implemented. Pending issues
impact the projects’ users, who need to keep using a project with
bugs or a frozen set of features, or who will have to migrate to other
projects. Pending pull requests contribute to the frustration of the
projects’ contributors, who will not have their effort appreciated.

Dependencies:We also collected data on projects that depend on the
failed projects and that therefore are using unmaintained systems.
To collect dependencies data, we first rely on a GitHub service that
reports the number of client repositories that depend on a given
repository.12 Unfortunately, this feature is available only to Ruby
12https://github.com/blog/2300-visualize-your-project-s-community

https://github.com/blog/2300-visualize-your-project-s-community

Why Modern Open Source Projects Fail ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

0

50

100

150

All Project characteristics Development team External environment

Is
su

es

(a) Opened issues

0

10

20

30

All Project characteristics Development team External environment

P
ul

ls

(b) Opened pull requests

Figure 2: Distribution of the (a) Opened issues and (b) Opened pull requests, without outliers

systems. To cover more projects, we also consider dependency data
provided by npm, a popular package manager for JavaScript. As
result, we analysed the dependencies of 38 projects, including 10
Ruby projects and 28 JavaScript ones.

Issues and Pull Requests: Figure 2 shows violin plots with the dis-
tributions of opened issues and pull requests. Considering the 89
failed projects with issues on GitHub, the median number of opened
issues is 18 and the median number of pending pull requests is 5.
The top-3 failed projects with the highest number of pending issues
have 230, 173, and 160 issues. The top-3 failed projects with the
highest number of pending pull requests have 54, 45, and 38 pull
requests. The figure also shows the number of opened issues and
pull requests grouped by failure reasons. The median number of
issues for failures associated to project characteristics, development
team, and environment reasons are 21, 43, and 12 issues, respec-
tively. For pull requests, the median measures for the same groups
of reasons are 4, 11, and 4 pull requests, respectively. By applying
Kruskal-Wallis test to compare multiple samples, we find that these
distributions are not different.

Dependencies: 6 (out of 10) Ruby repositories do not have depen-
dent projects. However, we also found projects with 2,460, 270, 36
and 18 dependents. Regarding the JavaScript systems, 10 (out of
28) projects do not have an entry on npm (although npm is very
popular, systems can use other package managers or do not use a
package manager at all). 15 projects have five or less dependents
and three systems have respectively 158, 37, and 13 dependents.

Summary: The failed projects have 18 opened issues and 5 opened
pull requests (median measures). 55% of the Ruby and JavaScript
projects have less than five dependents, which suggests that most
clients have also abandoned these projects.

6 HOW DO DEVELOPERS TRY TO
OVERCOME THE PROJECTS FAILURE?

In this fourth research question, we qualitatively investigate at-
tempts to overcome the failure of the studied projects.

6.1 Methodology
The first paper’s author read the 20 most recent opened issues and
the 20 most recent closed issues of each of the 104 failed projects
(in a total of 1,654 issues). As a result, he collected 32 issues where
the developers question the status of the projects and/or discuss
alternatives to restart the development. The issues, which are iden-
tified by I1 to I32, cover 32 projects in the list of failed projects.
Examples of titles of selected issues are: Is this project dead? (I18),
Is this project maintained? (I1), and Is development of this ongoing?
(I7). After this first step, the first author extracted a set of recurrent
strategies (or “themes”) suggested by developers to overcome the
failure of the projects the issues refer to. The proposed themes were
validated by the second paper’s author, in a last step.

6.2 Results
After analyzing the issues, we found three strategies tried by own-
ers or collaborators to overcome the unmaintained status of the
projects. Next, we describe these strategies.

Moving to an organization account: This strategy, mentioned
in five issues, refers to the creation of an organization account with
a name similar to the project’s name. The hope is that with this
kind of account it would be easier to attract new maintainers and
to manage permissions. As examples, we have these comments:

Would creating a [Project-Name] repo in a [Project-Name] org be
something people would want? (I31)

I am totally cool with setting up an org and transferring control... Just
let me know what you need. (I3)

Transfer the project to new maintainers: This strategy, dis-
cussed for three projects, consists in a complete transfer of the
project’s maintainership to other developers (but keeping the proj-
ect’s name), as discussed in these issues:

Who want to take over this project will be appreciated. We will watch
the project together for a while and I will grant every permission. (I10)

In two projects, a new developer was found and assumed the
project, as documented in this issue:

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Jailton Coelho, Marco Tulio Valente

I have started working on [Project-Name]. [Project-Owner] trans-
ferred the repository to my account. (I7)

We tracked the activity of the new maintainers, until February,
2017. They did not perform significant contributions to the projects,
despite minor commits. In one project, we found the following
complaint about the new maintainer:

@[Owner-Name] gave this repo to someone who has never been active
on GitHub, so this repo is basically dead. (I11)

Accepting new core developers: In five cases, to overcome the
low activity on the repositories, volunteers offered to help with the
maintenance, as core developers. For example, we have this issue:

@[Project-Name] Would you be open to adding more collaborators to
this repo? (I17)

In all cases, the proposals were not answered or accepted. As
an example, we have this project owner, who requested a detailed
maintenance plan before accepting the maintainer:

I’d be willing to do this if the collaborators provided a roadmap of
what they’d like to accomplish with the library. (I17)

Although it is not exactly an overcome strategy, in 19 cases
owners suggested the developers to start collaborating on another
project, as in this issue:

I’d suggest you look at [Project-Name]. It’s very active and modern.
I’m trying to find time to switch over myself. (I9)

Finally, although the presented strategies were not able to restart
the development of the studied projects, they should not be consid-
ered as completely failed ones. To illustrate this fact, we selected
348 projects that almost failed in the year before the study (they
have five or less commits). 182 projects (52%) indeed failed in the
next year (the studied one). However, 35 projects show evidences of
recovering (they have more than the first quartile of commits/year
in the studied year, i.e., 15 commits). After inspecting the documen-
tation and issues of these 35 projects, we found that 14 projects
attracted new core developers (third strategy), two were transferred
to new maintainers (second strategy), and two projects moved to
an organization account (first strategy).

Summary: Developers attempted three strategies to overcome the
failure of their projects: (a) moving to an organization account;
(b) transfer the project to new maintainers; (c) accepting new
core developers.

6.3 Complementary Investigation: Forks
Forks are used on GitHub to create copies of repositories. The
mechanism allows developers to make changes to a project (e.g.,
fixing bugs or implementing new features) and submit the modified
code back to the original repository, by means of pull requests.
Alternatively, forks can become independent projects, with their
own community of developers. Therefore, forks can be used to
overcome the failure of projects, by bootstrapping a new project
from the codebase of an abandoned one. For this reason, we decided

to complement the investigation of RQ4 with an analysis of the
forks of the failed projects.

Figure 3a shows the distribution of the number of forks of the
failed projects. They usually have a relevant number of forks, since
it is very simple to fork projects on GitHub. The first, median, and
third quartile measures are 244, 400, and 638 forks, respectively. The
violin plot in Figure 3b aims to reveal the relevance of these forks.
For each project, we computed the fork with the highest number of
stars. The violin plot shows the distribution of the number of stars
of these most successful forks. As we can see, most forks are not
popular at all. They are probably only used to submit pull requests
or to create a copy of a repository, for backup purposes [20]. For
example, the third quartile measure is 13 stars. However, there are
two systems with an outlier behavior. The first one is an audio
player, whose fork has 1,080 stars. In our survey, the developer of
the original project answered that he abandoned the project due to
other interests. However, his code was used to fork a new project,
whose README acknowledges that this version “is a substantial
rewrite of the fantastic work done in version 1.0 by [Projet-Owner] and
others”. Besides 1,080 stars, the forked project has 70 contributors
(as February, 2017). The second outlier is a dependency injector for
Android, whose fork was made by Google and has 6,178 stars. The
forked project’s README mentions that it “is currently in active
development, primarily internally at Google, with regular pushes
to the open source community".

Summary: Forks are rarely used on GitHub to continue the devel-
opment of open source projects that have failed.

0

500

1000

1500

Failed

F
or

ks

(a) Forks

0

10

20

30

Forks

S
ta

rs

(b) Stars (best fork)

Figure 3: Distribution of the (a) number of forks of the failed
projects and (b) number of stars of the fork with the high-
est number of stars, for each failed project; both violin plots
without outliers

7 DISCUSSION
In this section, we discuss the main findings of our study.

Completed projects and first Law of Software Evolution: An
interesting finding of the survey with developers is the category of

Why Modern Open Source Projects Fail ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

completed projects (17 systems, 11%), which are considered feature-
completed by their developers. They do not plan to evolve these
systems, because “adding more features would just obfuscate the
original intent” (D55) of the projects. Moreover, they also think the
projects will not need adaptive maintenance, as in this answer:

I just stopped working on it because what I have works very well, and
will continue working very well until Unix stops being the foundation
of most Web development, which basically means until the end of the
human race . . .Most projects don’t build on similarly solid foundations
so they probably need to change more often. (D56)

Someone can argue that these projects contradict the first Law
of Software Evolution, which prescribes that “programs are never
completed” [26]. However, Lehman’s Laws only apply to E-type
systems, where the “E” stands for evolutionary.13 In these systems,
the environment around the program changes and hence the re-
quirements and the program specification [17]. Therefore, Lehman
opens the possibility to have completed programs, when they target
an environment controlled by the developers or that is very stable
(e.g., the Unix ecosystem, as mentioned by Developer D56).

Competition in open source markets: The study reveals an im-
portant competition between open source projects. The most com-
mon reason for project failures is the appearance of a stronger
open source competitor (27 projects). Usually, this competitor is
the major organization responsible for the ecosystem the project
is inserted on, specifically Google (Android ecosystem, 7 projects)
and Apple (iOS ecosystem, 5 projects). Therefore, open source de-
velopers should be aware of the risks of starting a project that
may attract the attention of major players, particularly when the
projects have a tight integration and dependency with established
platforms, like Android and iOS. Clients should also evaluate the
risks of using these “non-official” projects. They should evaluate
if it is worth to accept the opportunity costs of delaying the use
of a system until it is provided as a built-in service. Alternatively,
they can conclude that the costs of delaying the adoption further
exceeds the additional benefits of providing earlier a service to
end-users. Other competitors mentioned in the survey are d3/d3 (a
visualization library for JavaScript) and MVC frameworks, also for
JavaScript, such as facebook/react. For example, one developer
mentioned that “high-end front-end development seems to be moving
away from jQuery plugins” (D18). This result confirms that web
development is a competitive domain, where the risks of failures
are considerable, even for highly popular projects.

Practical implications: This study provides insights to the defi-
nition of lightweight “maturity models” to open source projects. By
lightweight, we mean that such models should be less complex and
detailed than equivalent models for commercial software projects,
like CMMI [9]. But at least they can prescribe that open source
projects should manage and constantly assess the risk factors that
emerged from our empirical investigation. We shed light on three
particular factors: (a) risks associated to development teams (for
example, projects than depend on a small number of core devel-
opers may fail due to the lack of time or lack of interest of these
developers, after a time working in the project); (b) risks associated

13The first law (Continuing Changing) is as follows: “An E-type system must be
continually adapted, else it becomes progressively less satisfactory in use.” [27]

to the environment the projects are immersed (which seems to be
particularly relevant in the case of projects with a tight integra-
tion with mobile operating systems or in the case of web libraries
and frameworks); (c) risks associated to project characteristics and
decisions, like the use of outdated technologies. Furthermore, we
also showed the importance of practices normally recommended
to open source development on GitHub. We show that successful
projects provide documents like README, contributing guidelines,
usage license declarations, and issue templates. They also include
a separate home page, to promote the projects among end-users.
Finally, we showed evidences on the benefits provided by continu-
ous integration, in terms of automation of tasks like compilation,
building, and testing.

8 THREATS TO VALIDITY
The threats to validity of this work are as follows:

External Validity: Threats to external validity were partially dis-
cussed when presenting the dataset limitations (Section 2). We
complement this discussion as follows. First, when investigating
the use of continuous integration by the failed, top, bottom, and
random projects (RQ2, Section 4), we only consider the use of Travis
CI. However, Travis is the most popular CI service on GitHub, used
by more than 90% of the repositories that enable CI [18]. Second, the
investigation of dependent projects (RQ3, Section 5) only consid-
ered systems implemented in Ruby and JavaScript. For JavaScript,
we only analyzed dependency data provided by a single package
manager system (npm).

Internal Validity: The first threat relates to the selection of the
survey participants. We surveyed the project owner, in the case
of repositories owned by individuals, or the developer with the
highest number of commits, in the case of repositories owned by
organizations. Although experts on their projects, it is possible
that some participants omitted in their answers the real reasons
for the project failures. To mitigate this threat, we avoid asking
the participants directly about the causes of the project failures. A
second threat relates to the themes denoting reasons for project
failures (RQ1) and strategies on how to overcome them (RQ4). We
acknowledge that the choice of these themes is to some extent sub-
jective. For example, it is possible that different researchers reach
a different set of reasons, than the ones proposed in Section 3.2.
To mitigate this threat, the initial selection of themes in RQ1 was
performed independently by the two authors of this paper. After
this initial proposal, daily meetings were performed during a whole
week to refine and improve the initial selection. In the case of RQ4,
the themes were proposed by the first paper’s author and validated
by the second author. A third internal validity threat might appear
when interpreting the results of RQ2. In this case, it is important to
consider that association does not imply in causation. For example,
by just providing contributing guidelines or codes of conduct, a
project does not necessarily will succeed.

Construct Validity: A first construct validity threat relates to
thresholds and parameters used to define the survey sample. We
consider as unmaintained the projects that did not have a single
commit in the last year (Section 2). We recognize a threat in the
selection of this threshold and time frame. However, to mitigate this

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Jailton Coelho, Marco Tulio Valente

threat, we included in the survey 36 projects whose README ex-
plicitly declares that the project is unmaintained or deprecated. The
second threat concerns the data about the maintenance practices
used to answer RQ2 (Section 4). This data was collected automati-
cally, by means of scripts that rely on regular expressions to match
different names and extensions used by the documents of interest
(e.g., license.md and license.txt). However, we cannot guarantee
that the implemented expressions match all possible variations of
file names. Moreover, we did not investigate and check the quality
of the retrieved documents. For example, we consider that a proj-
ect has contributing guidelines when this document exists in the
repository and it is not empty.

9 RELATEDWORK
Capiluppi et al. [7] analyze 406 projects from FreshMeat (a depre-
cated open source repository). For each project, they compute a
set of measures along four main dimensions: community of devel-
opers, community of users, modularity and documentation, and
software evolution. They report that most projects (57%) have one
or two developers and that only a few (15%) can be considered
active, i.e., continuing improving their popularity and number of
users and developers. However, they do not investigate the reasons
for the project failures. Khondhu et al. [23] discuss the attributes
and characteristics of inactive projects on SourceForge. They report
that more than 10,000 projects are inactive (as November, 2012).
They also compare the maintainability of inactive projects with
other project categories (active and dormant), using the maintain-
ability index (MI) [30]. They conclude that the majority of inactive
systems are abandoned with a similar or increased maintainability,
in comparison to their initial status. However, there are serious
concerns on using MI as a maintainability predictor [3].

Tourani et al. [37] investigate the role, scope and influence of
codes of conduct in open source projects. They report that seven
codes are used bymost projects, usually aiming to provide a safe and
inclusive community, as well as dealing with diversity issues. After
surveying the literature on empirical studies aiming to validate
Lehman’s Laws, Fernandez-Ramil et al. [12] report that most works
conclude that the first law (Continuing Change) applies to mature
open source projects. However, in this work we found 17 completed
projects, according to their developers. These projects deal with
stable requirements and environments and therefore do not need
constant updates or modifications.

Ye and Kishida [38] describe a study to understand what moti-
vates developers to engage in open source development. Using as
case study the GIMP project (GNU Image Manipulation Program)
they argue that learning is the major driving force that motivates
people to get involved in open source projects. However, we do not
known if this find applies to the new generation of open source
systems, developed using platforms as GitHub. Eghbal [11] reports
on the risks and challenges to maintain modern open source proj-
ects. She argues that open source plays a key role in the digital
infrastructure that sustain our society today. But unlike physical
infrastructure, like bridges and roads, open source still lacks a re-
liable and sustainable source of funding. Avelino et al. concluded
that nearly two-thirds of a sample of 133 popular GitHub projects
depend on one or two developers to survive [2].

Humphrey [19] presents 12 reasons for project failures, but in the
context of commercial software and to justify the adoption of matu-
rity models, like CMMI [9]. The reasons are presented and explained
in the form of questions concerning why large software projects
are hard to manage, the kinds of management systems needed, and
the actions required to implement such systems. Lavallee et al. [24]
weekly observed during ten months the development of software
projects in a large telecomunnication company. They show that
organization factors, e.g., structure and culture, have a major impact
on the success or failure of software projects. However, in our study
these factors did not appear with the same importance. For example,
only three projects failed due to conflicts among developers. We
hypothesise this is due to the decentralized and community-centric
characteristics of open source code. Washburn et al. [22] analyse
155 postmortems published on the gaming site Gamasutra.com.
They report the best practices and common challenges faced in
game development and provide a list of factors that impact project
outcomes. For example, they found that the creativity of the devel-
opment team is often a relevant factor in the success or failure of a
game. As a practical recommendation, they mention that projects
should practice good risk management techniques. We argue that
the failure factors elicited in this paper are a start point to include
such practices in open source development, i.e., to control the risks
we need first to known them.

Recent research on open source has focused on the organization
of successful open source projects [29], on how to attract and retain
newcomers [6, 25, 31, 35, 39], and on specific features provided by
GitHub, such as pull requests [13–15], forks [20], and stars [4, 5].

10 CONCLUSION
In this paper, we showed that the top-5 most common reasons
for the failure of open source projects are: project was usurped
by competitor (27 projects), project became functionally obsolete
(20 projects), lack of time of the main contributor (18 projects),
lack of interest of the main contributor (18 projects), and project
based on outdated technologies (14 projects). We also showed that
there is an important difference between the failed projects and the
most popular and active projects on GitHub, in terms of following
best open source maintenance practices. This difference is more
important regarding the availability of contribution guidelines and
the use of continuous integration. Furthermore, the failed projects
have a non-negligible number of opened issues and pull requests.
Finally, we described three strategies attempted by maintainers to
overcome the failure of their projects.

As future work, we propose that researchers and practitioners
work on defining and validating “maturity models” for open source
projects, which can contribute to minimize the risks of adopting
these projects in practice. We also recommend investigation on
proactive strategies to avoid the failure of projects, for example by
identifying and recommending new maintainers with the required
expertise to work in projects under threats of being deprecated.

ACKNOWLEDGMENTS
We would like to thank the 118 GitHub developers who took their
time to answer our survey. This research is supported by grants
from FAPEMIG, CAPES, and CNPq.

Why Modern Open Source Projects Fail ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Stephanos Androutsellis-Theotokis, Diomidis Spinellis, Maria Kechagia, Georgios

Gousios, et al. 2011. Open source software: A survey from 10,000 feet. Foundations
and Trends in Technology, Information and Operations Management 4, 3–4 (2011),
187–347.

[2] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.
A Novel Approach for Estimating Truck Factors. In 24th International Conference
on Program Comprehension (ICPC). 1–10.

[3] Dennis Bijlsma, Miguel Alexandre Ferreira, Bart Luijten, and Joost Visser. 2012.
Faster issue resolution with higher technical quality of software. Software Quality
Journal 20, 2 (2012), 265–285.

[4] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Predicting the
Popularity of GitHub Repositories. In 12th International Conference on Predictive
Models and Data Analytics in Software Engineering (PROMISE). 1–10.

[5] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors that Impact the Popularity of GitHub Repositories. In 32nd IEEE
International Conference on Software Maintenance and Evolution (ICSME). 334–
344.

[6] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is going to mentor newcomers in open source proj-
ects?. In 20th International Symposium on the Foundations of Software Engineering
(FSE). 44–54.

[7] Andrea Capiluppi, Patricia Lago, and Maurizio Morisio. 2003. Characteristics of
open source projects. In 7th European Conference on Software Maintenance and
Reengineering (CSMR). 317–330.

[8] Narciso Cerpa and June M. Verner. 2009. Why did your project fail? Communi-
cations of the ACM 52, 12 (2009), 130–134.

[9] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum. 2003. CMMI guidlines for
process integration and product improvement. Addison Wesley.

[10] Daniela S. Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthe-
sis in software engineering. In 5th International Symposium on Empirical Software
Engineering and Measurement (ESEM). 275–284.

[11] Nadia Eghbal. 2016. Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure. Technical Report. Ford Foundation.

[12] Juan Fernandez-Ramil, Angela Lozano, Michel Wermelinger, and Andrea
Capiluppi. 2008. Empirical Studies of Open Source Evolution. Springer, 263–288.

[13] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In 36th International Con-
ference on Software Engineering (ICSE). 345–355.

[14] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work prac-
tices and challenges in pull-based development: The contributor’s perspective.
In 38th International Conference on Software Engineering (ICSE). 285–296.

[15] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: the integrator’s
perspective. In 37th International Conference on Software Engineering (ICSE).
358–368.

[16] Robert J. Grissom and John J. Kim. 2005. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum.

[17] Israel Herraiz, Daniel Rodriguez, Gregorio Robles, and Jesus M. Gonzalez-
Barahona. 2013. The evolution of the laws of software evolution: A discussion
based on a systematic literature review. Comput. Surveys 46, 2 (2013), 1–28.

[18] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In 31st International Conference on Automated Software Engineering (ASE). 426–
437.

[19] Watts S. Humphrey. 2005. Why big software projects fail: The 12 key questions.
Crosstalk, The Journal of Defense Software Engineering 3, 18 (2005), 25–29.

[20] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang.
2016. Why and how developers fork what from whom in GitHub. Empirical
Software Engineering 22, 1 (2016), 547–578.

[21] Magne Jørgensen and Kjetil Moløkken-Østvold. 2006. How large are software
cost overruns? A review of the 1994 CHAOS report. Information and Software
Technology 48, 4 (2006), 297–301.

[22] Michael Washburn Jr, Pavithra Sathiyanarayanan, Meiyappan Nagappan,
Thomas Zimmermann, and Christian Bird. 2016. What went right and what
went wrong: an analysis of 155 postmortems from game development. In 38th
International Conference on Software Engineering Companion (ICSE). 280–289.

[23] Jymit Khondhu, Andrea Capiluppi, and Klaas-Jan Stol. 2013. Is it all lost? A study
of inactive open source projects. In 9th International Conference on Open Source
Systems (OSS). 61–79.

[24] Mathieu Lavallée and Pierre N. Robillard. 2015. Why good developers write bad
code: An observational case study of the impacts of organizational factors on
software quality. In 37th International Conference on Software Engineering (ICSE).
677–687.

[25] Amanda Lee, Jeffrey C. Carver, and Amiangshu Bosu. 2017. Understanding the
Impressions, Motivations, and Barriers of One Time Code Contributors to FLOSS
Projects: A Survey. In 39th International Conference on Software Engineering
(ICSE). 187–197.

[26] Meir M. Lehman. 1980. Programs, life cycles, and laws of software evolution.
IEEE 68, 9 (1980), 1060–1076.

[27] Meir M. Lehman, Juan F. Ramil, Paul D. Wernick, Dewayne E. Perry, and Wladys-
law M. Turski. 1997. Metrics and laws of software evolution the nineties view.
In 4th International Software Metrics Symposium Proceedings (METRICS). 20–32.

[28] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimil-
iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and
fault proneness: a threat to the success of Android apps. In 9th International
Symposium on the Foundations of Software Engineering (FSE). 477–487.

[29] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two case studies
of open source software development: Apache and Mozilla. ACM Transactions
on Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309–346.

[30] Paul Oman and Jack Hagemeister. 1992. Metrics for assessing a software system’s
maintainability. In 8th International Conference on Software Maintenance (ICSM).
337–344.

[31] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. 2016. More common
than you think: An in-depth study of casual contributors. In 23th International
Conference on Software Analysis, Evolution, and Reengineering (SANER). 112–123.

[32] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology &
Policy 12, 3 (1999), 23–49.

[33] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-
tor? Confessions of GitHub Contributors. In 24th International Symposium on
the Foundations of Software Engineering (FSE). 858–870.

[34] Standish Group. 1994. CHAOS: Project failure and success report report. Technical
Report. MISSING.

[35] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming open source project entry barriers with a portal
for newcomers. In 38th International Conference on Software Engineering (ICSE).
273–284.

[36] Yuan Tian, Meiyappan Nagappan, David Lo, and Ahmed E. Hassan. 2015. What
are the characteristics of high-rated apps? a case study on free Android appli-
cations. In 31st International Conference on Software Maintenance and Evolution
(ICSME). 301–310.

[37] Parastou Tourani, Bram Adams, and Alexander Serebrenik. 2017. Code of Con-
duct in Open Source Projects. In 24th International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER). 24–33.

[38] Yunwen Ye and Kouichi Kishida. 2003. Toward an understanding of the moti-
vation Open Source Software developers. In 25th International Conference on
Software Engineering (ICSE). 419–429.

[39] Minghui Zhou and Audris Mockus. 2015. Whowill stay in the FLOSS community?
modeling participant’s initial behavior. IEEE Transactions on Software Engineering
41, 1 (2015), 82–99.

小雅Esther

	Abstract
	1 Introduction
	2 Dataset
	3 Why do open source projects fail?
	3.1 Survey Design
	3.2 Survey Results
	3.3 Combining the Survey Answers

	4 What is the importance of open source maintenance practices?
	4.1 Methodology
	4.2 Results

	5 What is the Impact of Failures?
	5.1 Methodology
	5.2 Results

	6 How do developers try to overcome the projects failure?
	6.1 Methodology
	6.2 Results
	6.3 Complementary Investigation: Forks

	7 Discussion
	8 Threats To Validity
	9 Related Work
	10 Conclusion
	References

