
8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 1/11

Return to Classroom

SuperDuperDrive

REVIEW

CODE REVIEW 

HISTORY

Requires Changes

7 specifications require changes

Basic Functionality

Dear Student,

You have done a great job so far. I appreciate your efforts in making it to this level.

Most of the test cases implemented are correct and as per requirements.

However, there are some changes that are required. The project requirements are not fully implemented in the

web-ui. Please test the web-ui to make sure it passes all the tests.

Please find more details in the review.

Good luck with your next submission!

There are Spring Boot annotations like @Controller , @RestController , @RequestBody , @RequestParams ,

etc. in the Java classes.

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm_content=ret_600_auto_ndxxx_project-failed-review_global&bsft_clkid=d8b8e400-a05e-46dd-adba-035597f814b4&bsft_uid=3ac3e122-11e9-4b23-9c1a-aa3dca20b2f3&bsft_mid=4f2b559b-72d2-46f3-b381-9a720667997c&bsft_eid=0b3e6a73-d7e3-8bc7-2b4f-d3ef9a127f39&bsft_txnid=430c8791-fe5f-4cdb-ad97-a401100c9ad0&bsft_mime_type=html&bsft_ek=2023-08-04T11%3A16%3A43Z&bsft_aaid=8d7e276e-4a10-41b2-8868-423fe96dd6b2&bsft_lx=1&bsft_tv=8
https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm_content=ret_600_auto_ndxxx_project-failed-review_global&bsft_clkid=d8b8e400-a05e-46dd-adba-035597f814b4&bsft_uid=3ac3e122-11e9-4b23-9c1a-aa3dca20b2f3&bsft_mid=4f2b559b-72d2-46f3-b381-9a720667997c&bsft_eid=0b3e6a73-d7e3-8bc7-2b4f-d3ef9a127f39&bsft_txnid=430c8791-fe5f-4cdb-ad97-a401100c9ad0&bsft_mime_type=html&bsft_ek=2023-08-04T11%3A16%3A43Z&bsft_aaid=8d7e276e-4a10-41b2-8868-423fe96dd6b2&bsft_lx=1&bsft_tv=8
https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm_content=ret_600_auto_ndxxx_project-failed-review_global&bsft_clkid=d8b8e400-a05e-46dd-adba-035597f814b4&bsft_uid=3ac3e122-11e9-4b23-9c1a-aa3dca20b2f3&bsft_mid=4f2b559b-72d2-46f3-b381-9a720667997c&bsft_eid=0b3e6a73-d7e3-8bc7-2b4f-d3ef9a127f39&bsft_txnid=430c8791-fe5f-4cdb-ad97-a401100c9ad0&bsft_mime_type=html&bsft_ek=2023-08-04T11%3A16%3A43Z&bsft_aaid=8d7e276e-4a10-41b2-8868-423fe96dd6b2&bsft_lx=1&bsft_tv=8
https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm_content=ret_600_auto_ndxxx_project-failed-review_global&bsft_clkid=d8b8e400-a05e-46dd-adba-035597f814b4&bsft_uid=3ac3e122-11e9-4b23-9c1a-aa3dca20b2f3&bsft_mid=4f2b559b-72d2-46f3-b381-9a720667997c&bsft_eid=0b3e6a73-d7e3-8bc7-2b4f-d3ef9a127f39&bsft_txnid=430c8791-fe5f-4cdb-ad97-a401100c9ad0&bsft_mime_type=html&bsft_ek=2023-08-04T11%3A16%3A43Z&bsft_aaid=8d7e276e-4a10-41b2-8868-423fe96dd6b2&bsft_lx=1&bsft_tv=8
https://udacity.com/


8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 2/11

 All the above mentioned annotations are used well in place during the course of implementation. Keep

it up!

@Controller 

@PostMapping 

@RequestBody 

@RequestParams 

@GetMapping 

Suggestions:

Please read more about spring boot annotations which you can make use of in your application.

Refer this official documentation to know more about implementation of controllers in details.

There are Thymeleaf attributes in the HTMl files like th:action, etc.

 thymeleaf attributes have been used perfectly.

th:action 

th:href 

th:if 

th:text 

Here is a nice resource to learn more about thymeleaf form handling

There are annotations like @Mapper , @Select , @Insert , @Update , and @Delete  in the Java classes

and/or imports from MyBatis/iBatis API.

 All the above annotations are used well in place for making associated operations with database. Good

work pal!

@Mapper 

@Select 

@Insert 

@Delete 

@Update 

You may know!

Hibernate is another framework that deals with SQL type databases. To know more about the difference

between mybatis and hibernate, here is a nice article to know more about that.

Additional resources:

Mybatis springboot example with mysql

Mybatis: Selects and inserts

https://www.baeldung.com/spring-boot-annotations
https://docs.spring.io/spring-framework/docs/3.0.0.RC2/spring-framework-reference/html/ch15s03.html
https://springhow.com/thymeleaf-form-handling/
https://www.perfomatix.com/hibernate-vs-mybatis/#:~:text=Hibernate%20and%20MyBatis%20are%20both,SQL%20statements%20to%20Java%20methods.
https://www.youtube.com/watch?v=E0cRlFNpiL0
https://www.youtube.com/watch?v=ZP8Um12Z_mk


8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 3/11

If invalid or improper inputs are given to the system, it should not crash or display raw error

information. Error messages should be shown or users should be disallowed from sending invalid or

improper input. Make sure your implementation passes the testBadUrl()  and testLargeUpload()  test

cases provided by Udacity.

Nice work handling invalid inputs. However, the code breaks when a user wants to upload a very large file.

In order to make the code very robust, please handle that situation as well.

Below is some config you can leverage in your application.properties file(you can set the file size limit or

make it to be indefinite. But it's advisable to set a limit) alongside some exception handling in your files

controller.

spring.servlet.multipart.max-file-size=-1

spring.servlet.multipart.max-request-size=-1

Also handle a situation where the user does not select any file and tries to upload.

Logs:

https://udacity-reviews-uploads.s3.us-west-2.amazonaws.com/_attachments/197664/1691147292/Screenshot_2023-08-04_at_4.38.09_PM.png
https://udacity-reviews-uploads.s3.us-west-2.amazonaws.com/_attachments/197664/1691147313/Screenshot_2023-08-04_at_4.38.29_PM.png


8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 4/11

Front-End

The signup page already has input fields for all the data you need from the user, including username

and password fields.

Add the proper Thymeleaf attributes to bind the form data to the model and send it to the back-end on

submission.

 Thymeleaf attributes are used in place to bind the data provided to login models to authenticate the

user and allow the functionality to be accessed. Great work!

On a successful signup, the user should be taken to the login page with a message indicating their

registration was successful. Otherwise, an error message should be shown on the sign-up page. An error

message is already present in the template, but should only be visible if an error occurred during signup.

Make sure your implementation passes the testRedirection()  test case provided by Udacity.

 Proper thymeleaf attributes are used in place to bind the input data to appropriate java dtos used in

place. Good work!

Suggestion: However, try adding confirmPassword textbox in the signup page.

It is there now-a-days in almost every website.

 Nice work with the user signup. However, the user needs to be re-directed to the login page upon

successful signup. Think of it as the user successfully signed up, so you don't want him to click on a link

before taken to the login page(that's more work for the user right?), why not just take him directly to the

login page so that he can login.

In order to achieve this, you can use Redirect Attributes, something like the following:

@PostMapping()

    public String signupUser(@ModelAttribute Users users, Model model, RedirectAt

tributes redirectAttributes) {

        if (signupError == null) {

redirectAttributes.addFlashAttribute("SuccessMessage","Sign Up Successfully");

                return "redirect:/"login";

}

}



8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 5/11

The login page already has the username and password fields.

Add the proper Thymeleaf attributes to bind the form data to the model and send it to the back-end on

submission.

 Thymeleaf attributes are used in place to bind the data provided to login models to authenticate the

user and allow the functionality to be accessed. Great work!

On a successful login, the user should be taken to their home page.

An error message is already present in the template, but should only be visible if an error occurred

during signup.

On logout, the user should no longer have access to the home page.

 Successful login takes the user to the homepage. Proper error messages are shown wherever required.

 ON logout, user is no longer able to access homepage

The home page should have three tabs:

1. The user should be able to upload new files on this tab and download/remove existing files

2. The user should be able to add new notes and edit/remove existing ones

3. The user should be able to add new credentials, view existing credentials unencrypted and

remove them as well

The home template already has the forms required by this functionality. Add the proper Thymeleaf

attributes to bind the form data to the model and send it to the back-end on submission

https://udacity-reviews-uploads.s3.us-west-2.amazonaws.com/_attachments/197664/1691147440/Screenshot_2023-08-04_at_4.40.36_PM.png


8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 6/11

User-Facing Features

Details on individual features are documented in Section 3.

 User is able to add/download/remove file

 User is able to add/remove/edit notes

 I can add new credentials, edit them and rmeove them. decrypted password is shown wherever

required.

 All the above tabs and UI components are in place

When a user logs in, they should see the data they have added to the application.

Good work here 

I logged in from user A. Created a note N1

I logged out.

I logged in again from user A.

 User is able to see the saved data after log out and again logging in

Additional Resources:

Please refer this article to know more about spring security.

Creation: On successful note creation, the user should be shown a success message and the created

note should appear in the list.

Deletion: On successful note deletion, the user should be shown a success message and the deleted

note should disappear from the list.

Edit/Update: When a user selects edit, they should be shown a view with the note's current title and

text. On successful note update, the user should be shown a success message and the updated note

should appear from the list.

Errors: Users should be notified of errors if they occur.

Note Creation Flow  is working properly

Note Edit Flow  is working properly

Note Removal Flow  is working properly

https://www.baeldung.com/get-user-in-spring-security


8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 7/11

Upload: On successful file upload, the user should be shown a success message and the uploaded file

should appear in the list.

Deletion: On successful file deletion, the user should be shown a success message and the deleted file

should disappear from the list.

Download: On successful file download, the file should download to the user's system.

Errors: Users should be notified of errors if they occur.

 Please dont allow duplicate files to be uploaded.

 As suggested above, please handle the exceptions for large file uploads

Creation: On successful credential creation, the user should be shown a success message and the

created credential should appear in the list.

Edit/Update: When a user selects update, they should be shown a view with the unencrypted

credentials. When they select save, the list should be updated with the edited credential details.

Deletion: On successful credential deletion, the user should be shown a success message and the

deleted credential should disappear from the list.

Errors: Users should be notified of errors if they occur.

https://udacity-reviews-uploads.s3.us-west-2.amazonaws.com/_attachments/197664/1691147557/Screenshot_2023-08-04_at_4.42.33_PM.png
https://udacity-reviews-uploads.s3.us-west-2.amazonaws.com/_attachments/197664/1691147645/Screenshot_2023-08-04_at_4.44.02_PM.png


8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 8/11

Back-End

Credentials adding Flow  is working properly

Credentials editing Flow  is working properly

Credentials removal Flow  is working properly

The application should not allow duplicate usernames or duplicate filenames attributed to a single user.

 User is allowed to upload duplicate files

A user can’t access the home page or the three tabs on that page without logging in first. The login and

signup page should be visible to all the users without any authentication.

If someone isn't logged in, they must be redirected to the login page.

 Great job in not allowing the user to access home page without the login page.

 User is only allowed to access the homepage after successful login

https://udacity-reviews-uploads.s3.us-west-2.amazonaws.com/_attachments/197664/1691147696/Screenshot_2023-08-04_at_4.44.52_PM.png
https://udacity-reviews-uploads.s3.us-west-2.amazonaws.com/_attachments/197664/1691147733/Screenshot_2023-08-04_at_4.45.30_PM.png


8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm… 9/11

Additional Resources:

Please refer this article to know more about Spring Security login.

A logged-in user should only be able to view their own data, and not anyone else's data. The data should

only be viewable to the specific user who owns it.

Good work here 

I logged in from user A. Created a note N1

I logged out.

I logged in from user B.

User B is not able to see the notes of user A.

 User level data separation is implemented correctly in the application

All the passwords should be stored as encrypted in the database and shown as encrypted when the user

retrieves them.

The user should only see the decrypted version when they want to edit it.

 All the passwords stored are properly encrypted. Great work!

 Able to see decrypted password while Editting Password

 Same password again has a different encrypted value

Create Java classes to model the tables in the database (specified in src/main/resources/schema.sql ) and

create @Mapper  annotated interfaces to serve as Spring components in your application.

You should have one model class and one mapper class per database table.

 Mapper interfaces and schema.sql has been used properly

https://www.baeldung.com/spring-security-login
https://udacity-reviews-uploads.s3.us-west-2.amazonaws.com/_attachments/197664/1691147757/Screenshot_2023-08-04_at_4.45.54_PM.png


8/7/23, 3:28 PM Audit project submission

https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&ut… 10/11

Testing

Write a Selenium test that verifies that the home page is not accessible without logging in.

Write a Selenium test that signs up a new user, logs that user in, verifies that they can access the home

page, then logs out and verifies that the home page is no longer accessible.

 Will be re-evaluated in next submission

Write a Selenium test that logs in an existing user, creates a note and verifies that the note details are

visible in the note list.

Write a Selenium test that logs in an existing user with existing notes, clicks the edit note button on an

existing note, changes the note data, saves the changes, and verifies that the changes appear in the

note list.

Write a Selenium test that logs in an existing user with existing notes, clicks the delete note button on

an existing note, and verifies that the note no longer appears in the note list.

 Will be re-evaluated in next submission

Write a Selenium test that logs in an existing user, creates a credential and verifies that the credential

details are visible in the credential list.

Write a Selenium test that logs in an existing user with existing credentials, clicks the edit credential

button on an existing credential, changes the credential data, saves the changes, and verifies that the

changes appear in the credential list.

Write a Selenium test that logs in an existing user with existing credentials, clicks the delete credential

button on an existing credential, and verifies that the credential no longer appears in the credential list.

 Will be re-evaluated in next submission

 R E S U B M I T

 DOWNLOAD PROJECT

Learn the best practices for revising and resubmitting your project.

https://api.udacity.com/api/review/v1/submissions/4083719/archive
https://review.udacity.com/?utm_campaign=ret_600_auto_ndxxx_project-status-change_global&utm_source=blueshift&utm_medium=email&utm_content=ret_600_auto_ndxxx_project-failed-review_global&bsft_clkid=d8b8e400-a05e-46dd-adba-035597f814b4&bsft_uid=3ac3e122-11e9-4b23-9c1a-aa3dca20b2f3&bsft_mid=4f2b559b-72d2-46f3-b381-9a720667997c&bsft_eid=0b3e6a73-d7e3-8bc7-2b4f-d3ef9a127f39&bsft_txnid=430c8791-fe5f-4cdb-ad97-a401100c9ad0&bsft_mime_type=html&bsft_ek=2023-08-04T11%3A16%3A43Z&bsft_aaid=8d7e276e-4a10-41b2-8868-423fe96dd6b2&bsft_lx=1&bsft_tv=8

